New Cross Aldol Reactions. Titanium Tetrachloride-promoted Reactions of Silyl Enol Ethers with Carbonyl Compounds Containing A Functional Group

Kazuo Banno

The First Research Institute, Tokushima Factory,
Otsuka Pharmaceutical Co., Ltd., Kagasuno, Kawauchi-cho Tokushima 771-01
(Received March 8, 1976)

It was found that, in the presence of titanium tetrachloride, silyl enol ethers selectively react with aldehyde or ketone function of various carbonyl compounds containing another functional group giving the corresponding cross aldols in good yields. The present cross aldol reaction was successfully applied to the synthesis of arturmerone, one of the volatile principles of turmeric oil.

In previous paper,¹⁻³) it was reported that the reactions of silyl enol ethers with various simple carbonyl compounds in the presence of titanium tetrachloride proceed under mild conditions giving the desired cross aldols in good yields. According to this procedure, it was established that cross aldols are exclusively produced in most cases and no by-products, such as the di-, poly-, and self-condensation products, and α,β -unsaturated carbonyl compounds formed in the usual base-promoted aldol condensation, are produced. Therefore, it is recognized that this reaction is one of the most useful cross aldol processes among the methods reported by House⁴) et al. and Wittig⁵) et al.

In the present paper, the titanium tetrachloridepromoted reaction of silyl enol ethers with a variety of carbonyl compounds containing an additional functional will be described.

In the first experiment, the reaction of ethyl pyruvate with silyl enol ether (1) in the presence of an equimolar amount of titanium tetrachloride was attempted at room temperature. After hydrolysis, ethyl 2-hydroxy-2,3-dimethyl-4-oxohexanoate (2) was obtained in an 87% yield.

$$\begin{array}{c} \text{OSi}(\text{CH}_3)_3\\ \text{CH}_3\text{COCO}_2\text{C}_2\text{H}_5 + \text{CH}_3\text{CH}=\text{C}\\ \text{C}_2\text{H}_5\\ \hline \\ \textbf{1}\\ &\xrightarrow{\text{TiCl}_4} \xrightarrow{\text{H}_2\text{O}} \text{C}_2\text{H}_5 \overset{\text{l}}{\text{C}}\text{CH}-\overset{\text{l}}{\text{C}}\text{CO}_2\text{C}_2\text{H}_5\\ \overset{\text{l}}{\text{C}}\text{H}_3\overset{\text{l}}{\text{C}}\text{H}_3\\ \\ \textbf{2}\\ \end{array}$$

The effect of the amount of titanium tetrachloride upon the yield of 2 was investigated using the reaction of ethyl pyruvate with 1 as a model and 2 was obtained in the highest yield when an equimolar amount of titanium tetrachloride was employed.

The reactions of various silyl enol ethers with a variety of keto esters were attempted in the presence of an equimolar amount of titanium tetrachloride. These results are given in Table 1. Of these keto esters, it was found that ethyl acetoacetate did not react with silyl enol ethers under the same conditions and was recovered quantitatively.

In the next experiment, the reaction of silyl enol ethers with various dicarbonyl compounds was studied. For example, when silyl enol ether (17) was allowed to react with an equimolar amount of phenylglyoxal at -78 °C for 2 h, 2-hydroxy-1,3-diphenyl-1,4-pentane-

dione (18) was obtained exclusively in an 83% yield, and none of the product added to the ketone function was detected.

COCHO +
$$CH_{3}$$

OSi(CH₃)₃

17

OH

 $CH_{2}CI_{2}$
 $CH_{3}COCHCHCO$

Unexpectedly, in the case of the reaction of 1,4-cyclohexanedione with an equimolar amount of the silyl enol ether (10), 1,4-bis(benzoylmethyl)-1,4-cyclohexanediol (19) was obtained in an 86% yield (based on 10), and no 4-hydroxy-4-(benzoylmethyl)-1-cyclohexanone was detected by NMR and TLC analyses.

As described above, it should be noted that the silyl enol ether reacted only with the aldehyde function of the keto aldehyde in the presence of titanium tetrachloride at -78 °C giving the corresponding hydroxy diketone, and the silyl enol ether selectively reacted with the ketone function of the keto ester at room temperature to give the corresponding hydroxy keto ester. However, when the diketone was treated with an equimolar amount of the silyl enol ether, the latter reacted with both the ketone functions of the diketone.

Of the usual protecting groups of the carbonyl function examined, 6) it was found that only thioacetal 7) was stable and useful in the present reaction. Thus,

Table 1. Synthesis of hydroxy keto esters from silyl enol ethers and keto esters

Reagents		Product		
Keto ester	Silyl enol ether	Hydroxy keto ester	Yield (%	
$\mathrm{CH_{3}COCO_{2}C_{2}H_{5}}$	$\mathrm{CH_2} ext{=}\mathrm{C}$ $\mathrm{CH_3}$	O OH CH ₃ C̈-CH ₂ C̈-CO ₂ C ₂ H ₅ ĊH ₃	55	
	OSi(CH ₃) ₃	$\begin{array}{c} 4 \\ \text{O} \text{OH} \\ \overset{}{\overset{}{\smile}} \overset{}{\overset{}{\overset{}{\smile}}} \text{CO}_2\text{C}_2\text{H}_5 \\ \overset{}{\overset{}{\smile}} \overset{}{\overset{}{\overset{}{\smile}}} \text{CH}_3 \end{array}$	76	
	OSi(CH ₃) ₃	$\begin{array}{c} 6 \\ \text{O} \text{OH} \\ \overset{}{\overset{}{\bigcirc}} \text{C-CO}_2\text{C}_2\text{H}_5 \\ \text{CH}_3 \end{array}$	88	
$\mathrm{CH_3}$ $\mathrm{CH_3CO}\text{-}\mathrm{\overset{1}{C}-CO_2C_2H_5}$ $\mathrm{\overset{1}{C}H_3}$	7	8 O OH CH ₃ C-C-CO ₂ C ₂ H ₅ CH ₃ CH ₃	52	
	$CH_2=C$ OSi $(CH_3)_3$ 10	O OH CH_3 $\stackrel{\circ}{\subset} -\overset{\circ}{C}CH_2\overset{\circ}{\subset} -\overset{\circ}{C}-CO_2C_2H_5$ $\stackrel{\circ}{\subset} H_3\overset{\circ}{C}H_3$ 11	38	
$\mathrm{CH_3CO}(\mathrm{CH_2})_2\mathrm{CO}_2\mathrm{C}_2\mathrm{H}_5$	1	$\begin{array}{ccc} & {\text{O}} & \text{OH} \\ & \overset{\parallel}{\text{C}}_2\text{H}_5\overset{\parallel}{\text{C}}\text{CH} - \overset{\dashv}{\text{C}} - (\text{CH}_2)_2\text{CO}_2\text{C}_2\text{H}_5 \\ & \overset{\dag}{\text{C}}\text{H}_3 \overset{\dag}{\text{C}}\text{H}_3 \\ & & 12 \end{array}$	86	
$\mathrm{CH_3CO}(\mathrm{CH_2})_2\mathrm{CO}_2\mathrm{C}_2\mathrm{H}_6$	5	O OH $\overset{\square}{\overset{\square}{\bigcirc}}\overset{C}{\overset{\square}{\bigcirc}}(CH_2)_2CO_2C_2H_5$ $\overset{\square}{\overset{\square}{\bigcirc}}\overset{\square}{\overset{\square}{\bigcirc}}$ 13	73	
	10	O OH $ \begin{array}{c} C & CH_2 \\ C & CH_2 \\ C & CH_3 \end{array} $	41	
$\mathrm{CH_3CO}(\mathrm{CH_2})_3\mathrm{CO}_2\mathrm{CH}_3$	1	$egin{array}{ccc} \mathrm{O} & \mathrm{OH} \\ \mathrm{C_2H_5} \buildrel \mathrm{CCH_2} \buildrel \mathrm{CCH_2} \buildrel \mathrm{CH_3} \\ \mathrm{CH_3} \buildrel \mathrm{CH_3} \end{array}$	71	
	7	$\begin{array}{c} \textbf{15} \\ \textbf{O} \textbf{OH} \\ \overset{\text{"}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{CH}_2}{\overset{\text{CO}_2\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CO}_2\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CO}_2\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CO}_2\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CO}_2\text{CH}_3}}{\overset{\text{CO}_2\text{CH}_3}{\overset{\text{CO}_2\text{CH}_3}{\overset{\text{CO}_2\text{CH}_3}{\overset{\text{CO}_2\text{CH}_3}{\overset{\text{CO}_2\text{CH}_3}{\overset{\text{CO}_2\text{CH}_3}{\overset{\text{CO}_2\text{CH}_3}{\overset{\text{CO}_2\text{CH}_3}}{\overset{\text{CO}_2\text{CH}_3}{\overset{\text{CO}_2\text{CH}_3}}{\overset{\text{CO}_2\text{CH}_3}{\overset{\text{CO}_2\text{CH}_3}{\overset{\text{CO}_2\text{CH}_3}}{\overset{\text{CO}_2\text{CH}_3}{\overset{CO}_2\text{CH}_3}}{\overset{CO}_2\text{CH}_3}}{\overset{CO}_2\text{CH}_3}}{\overset{CO}_2\text{CH}_3}}}}}}}}}}}}$	69	

aldol formation at one of the keto groups in a diketone was performed after converting the other keto groups into its thioacetal. For example, when silyl enol ether (3) was allowed to react with 6,6-ethylenedithio-1-phenyl-3-heptanone in the presence of titanium tetrachloride, 7,7-ethylenedithio-4-hydroxy-4-phenethyl-2-octanone (20) was obtained in a 76% yield.

Next, in order to examine the influence of various functional groups on the titanium tetrachloride-promoted reaction of silyly enol ethers with carbonyl

$$\begin{array}{c|c} S & S & OSi(CH_3)_3 \\ CH_3C(CH_2)_2CO(CH_2)_2 & & & \\ CH_3 & & & \\ CH_3 & & & \\ & & &$$

Table 2. Synthesis of aldols from silyl enol ethers and carbonyl compounds having a functional group

Reagents		Reaction condition	ns Product	Product	
Carbonyl compound	Silyl enol ether	$\begin{array}{c} \text{temp } (^{\circ}\mathbf{C}) \\ \text{time } (\mathbf{h}) \end{array}$	Aldol	Yield (%)	
		–78	O OH		
CCl ₃ CHO	7	1	CHCCI ₃	94	
		-			
		70	21 O OH		
	10	-78	~ CCH2CHCCl3	92	
		1	22		
		0	о он		
$\mathrm{CH_3CO}(\mathrm{CH_2})_3\mathrm{CN}$	3	1	$\mathrm{CH_3}\ddot{\mathbb{C}}\mathrm{-CH_2}\dot{\mathbb{C}}\mathrm{(CH_2)_3CN}$	52	
		1	$\dot{ ext{CH}}_3$		
		0	O OH		
	5		$ ho^{\prime\prime}_{ m C}$ $ ho^{\prime}_{ m C}$ $ ho^{\prime\prime}_{ m 2}$ $ ho^{\prime\prime}_{ $	73	
		1	CH ₃		
			24 O OH		
CH ₃ COCH ₂ OCOCH ₃	7	0	CCH2OCOCH3	34	
· -		1	$\int \mathrm{ch}^3$		
			25		
	_	-10	O OH		
Cl-	7	3	CH-Cl	86	
			26		
		-10	О ОН		
$(CH_3)_2N$ -CHO	1		C_2H_5 CCHCH- \sim -N(CH ₃) ₂	65	
<u>`</u>		3	ĊH₃		
		10	27 O OH		
CH ₃ O-CHO	1	-10	C_2H_5 CCHCH- $\langle - \rangle$ -OCH $_3$	82	
\=/		3	CH_3		
CH ₃ O\			28 O OH ,OCH₃		
-CHO	1	—10	C_2H_5 CCHCH- $<$	88	
/		3	CH ₃		
CTT O			29		
CH ₃ O-CHO	1	-10	O OH OCH ₃ C ₂ H ₅ CCHCH-OCH ₃	82	
CH ₃ O	•	3	$C_2\Pi_5$ CH_3 CH_3	02	
•			30		
/ CITO		-10	O OH		
OCOCH ₃	1	3	C₂H₅C-CHCH-	78	
0000113			^{СН} ³ ÓСОСН _³ 31		
		10	О ОН		
CH ₃ O ₂ C-	1	-10	C_2H_5 CCHCH- \sim -CO $_2$ CH $_3$	86	
\= /		3	$\dot{\mathrm{CH}}_{3}$		
			32		

Table 2. (Continued)

Reagents		Reaction conditions	s Product	Product	
Carbonyl compound	Silyl enol ether	temp (°C) time (h)	Aldol	Yield (%)	
O_2 N- $\left\langle \begin{array}{c} \end{array} \right\rangle$ -CHO	7	-10 3	O OHNO2	85	
O CH ₃ CO- ————————————————————————————————————	1	40 3	33 O OH C_2H_5 CCH- C - C	36	
	10	40 3	$\begin{array}{c} O & OH \\ & \stackrel{\cdot}{\bigcirc} - \stackrel{\cdot}{\bigcirc} CH_2 \stackrel{\cdot}{\bigcirc} - \begin{array}{c} \\ & \stackrel{\cdot}{\bigcirc} \end{array} \\ & \stackrel{\cdot}{\bigcirc} CH_3 \end{array} \longrightarrow -OCOCH_3$	11	
$C_2H_5O_2C-$ -COCH	, 1	Room temp	35 O OH C_2H_5 CCH CH_3 CH_3 CH_3	68	
O_2N - \bigcirc - $COCH_3$	10	Room temp	$ \begin{array}{c} 36 \\ \mathbf{O} \mathbf{OH} \\ -\overset{\parallel}{\mathbf{C}} - \overset{\square}{\mathbf{CH}_2} \overset{\square}{\mathbf{C}} - \overset{\square}{\mathbf{NO}_2} \end{array} $	52	
			37		

compounds, the reaction of silyl enol ethers with a variety of aliphatic and aromatic carbonyl compounds having, acyloxy, alkoxy, carboxy, amino, cyano, halogeno, hydroxy, and nitro substituents was investigated. The results are summarized in Table 2.

As shown is in Table 2, it is apparent that the titanium tetrachloride-promoted aldol reaction using silyl enol ethers is not influenced by groups such as acyloxy, alkoxyl, cyano, dialkylamino, halogeno, nitro, and thioacetal groups. However, in the cases of the carbonyl compounds containing active hydrogen, such as carboxyl, hydroxyl, primary amino, and secondary amino groups, no aldols were obtained and the silyl enol ethers were decomposed into the original carbonyl compounds. In these cases, it is believed that, at first, the carbonyl compound with active hydrogen reacted with titanium tetrachrloride to produce hydrogen chloride, which in turn rapidly reacted with the silyl enol ether to form the original carbonyl compound.

It was also established that the aldols were obtained by reactions of silyl enol ethers with various substituted aromatic aldehydes. In the cases of substituted aromatic ketones having an electron-attracting group, aldols were produced, but aromatic ketones having an electron-releasing group did not afford aldols for the same reaction procedure.

The utility of this new procedure was demonstrated by the synthesis of ar-turmerone, 8,9) 2-methy-6-p-tolyl-2-heptene-4-one, one of the volatile principles of turmeric oil. 10,11)

By dehydration of the reaction product of 4-methylacetophenone with the silyl enol ether (3) in the presence

of titanium tetrachloride, the α,β -unsaturated ketone (38) was obtained in a 53% yield, and the catalytic reduction of 38 over Raney nickel afforded the ketone

(39) and the alcohol (40) in 77% and 16% yields, respectively. The silyl enol ether (41), prepared from 39 according to the method of House et al. 12) was treated with acetone and titanium tetrachloride giving the aldol (42) in a 88% yield. This was dehydrated with p-toluenesulfonic acid-benzene to give racemic ar-turmerone (43) in a 92% yield. In summary, it is concluded that, in the presence of titanium tetrachloride, various silyl enol ethers react with a variety of aliphatic and aromatic carbonyl compounds containing an additional functional group, except for functional groups having active hydrogen, affording the corresponding aldols in good yields. The selective reaction forming an aldol in one of the carbonyl groups of a dialdehyde or a diketone occurs after converting the other carbonyl group into its thioacetal.

Experimental

Materials. Commercially available carbonyl compounds having the functional group, $\mathrm{TiCl_4}$ and chlorotrimethylsilane were purified by the conventional procedures, recrystallization or distillation, before use. A commercial hexane solution of n-BuLi was used after standarization and commercially produced Raney nickel was thoroughly washed with methanol. 6,6-Ethylenedithio-1-phenyl-3-heptanone was prepared by the method of Araki $et\ al.^{13}$)

Methyl 6-oxohexanoate and 5-oxohexanenitril were prepared from ethyl acetoacetate and acrylonitrile according to a procedure in the literature.¹⁴⁾

Trimethylsilyl enol ethers of ketones have been described in a previous paper.³⁾

Reaction of Ethyl Pyruvate with 3-Trimethylsiloxy-2-pentene (1) To a dichloromethane (15 ml) solution of ethyl pyruvate (0.390 g, 3 mmol) and TiCl₄ (0.567 g, 3 mmol) was added a dichloromethane (30 ml) solution of silyl enol ether (1) (0.468 g, 3 mmol) at room temperature in an argon atmosphere, and the mixture was kept at room temperature for 3 h with stirring. After hydrolysis with cold water (30 ml), the resulting organic layer was extracted with ether (70 ml). The extract was washed with a saturated NaCl solution and dried over anhydrous Na₂SO₄. The ethereal solution was concentrated under reduced pressure. The aldol, ethyl 2hydroxy-2,3-dimethyl-4-oxohexanoate (2), was obtained in an 87% (0.527 g) yield from the residue after purification by column chromatography (silica gel). The physical properties and analytic data of the product (2) are shown in Table. 3.

Reaction of 6,6-Ethylenedithio-1-phenyl-3-heptanone with 2-Trimethylsiloxypropene (3). As in the same procedure described above, 6,6-ethylenedithio-1-phenyl-3-heptanone (0.843 g, 3 mmol) reacted with silyl enol ether (3) (0.390 g, 3 mmol) in dichloromethane (40 ml) in the presence of TiCl₄ (0.567 g, 3 mmol) at 0 °C for 3 h. The reaction mixture was worked up as in the preparation of 2 to give a crude oil. It was purified by preparative TLC (silica gel) using dichloromethane to give 0.767 g (76%) of 7,7-ethylenedithio-4-hydroxy-4-phenethyl-2-octanone (20). The physical properties and analytical data of 20 are shown in Table 3.

Reaction of p-Dimethylaminobenzaldehyde with 3-Trimethylsiloxy-2-pentene (1). In a procedure similar to that described above, p-dimethylaminobenzaldehyde (0.450 g, 3 mmol) reacted with silyl enol ether (1) (0.474 g, 3 mmol) in dichloromethane (40 ml) in the presence of TiCl₄ (0.567 g, 3 mmol) at -10 °C for 3 h. The reaction mixture was quenched with aq. 5% K₂CO₃ (30 ml) at 0 °C, and the

suspension was kept standing at room temperature for 10 min. After filtration, the filtrate was extracted with ether (100 ml). The organic layer was separated, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (aluminium oxide active, neutral) to give 1-(p-dimethylaminophenyl)-1-hydroxyl-2-methyl-3-pentanone (27) in a 65% (0.458 g) yield. The physical properties and analytical data of 27 are listed in Table 3.

Reaction of p-Acetoxyacetophenone with 1-Phenyl-1-trimethyl-siloxyethylene (10). A dichloromethane (10 ml) solution of 0.576 g (3 mmol) of silyl enol ether (10) was added dropwise into a refluxing mixture or 0.434 g (3 mmol) of p-acetoxyacetophenone and 0.567 g (3 mmol) of TiCl₄ in dichloromethane (30 ml) in an argon atmosphere within 10 min, and the reaction mixture was refluxed for 30 min. After cooling to room temperature, the reaction mixture was quenched with water (10 ml) and extracted with ether (100 ml). The resulting crude product was analyzed by chromatography on silica gel. Elution with benzene and dichloromethane (1:1) gave 0.098 g (11%) of 3-hydroxy-1-phenyl-3-(p-acetoxyphenyl)-1-butanone (35).

Synthesis of ar-Turmerone. Preparation of 4-p-Tolyl-3pentene-2-one (38): A dichloromethane (40 ml) solution of 5.20 g (40 mmol) of silyl enol ether (3) was added to a refluxing mixture of 2.68 g (20 mmol) of p-methylacetophenone and 3.78 g (20 mmol) of TiCl₄ in dichloromethane (50 ml) in an argon atmosphere over a period of 10 min, and the reaction mixture was refluxed for 3 h. After a similar workup, a benzene solution (50 ml) of the resulting crude was refluxed for 1 h in the presence of p-TsOH (0.2 g). After removal of the solvent and the unreacted starting material by distillation, 38 was isolated in a 53% (1.84 g) yield by column chromatography (silica gel) [bp 150—154 °C/25 mmHg. IR (neat): 1680, 1600 cm⁻¹. NMR (CCl₄): δ 2.20 (s, 3H), 2.37 (s, 3H), 2.50 (s, 3H), 6.45 (s, 1H), 7.0— 7.7 (m, 4H)].

Reduction of 4-p-Tolyl-3-pentene-2-one (38). A methanol (50 ml) solution of 3.48 g (20 mmol) of 38 was treated with hydrogen for 2 h at -10 °C in the presence of commercially produced Raney nickel. About 490 ml of hydrogen was adsorbed. After filtering off the Raney nickel, the filtrate was evaporated and the residual oil was purified by column chromatography (silica gel) using dichloromethane as a developer to give 2.71 g (77%) of 4-p-tolyl-2-pentanone (39). [Found: C, 81.93; H, 9.18%. Calcd for C₁₂H₁₆O: C, 81,77; H, 9.15%. IR (neat): 1720 cm⁻¹. NMR (CCl₄): δ 1.25 (d, J=7 Hz, 3H), 2.01 (s, 3H), 2.38 (s, 3H), 2.68 (d, J=7 Hz, 2H), 3.0—3.5 (m, 1H), 7.15 (s, 4H)], and 0.56 g (16%) of 4-p-tolyl-2-pentanol (40) [IR (neat): 3400 cm⁻¹. NMR (CDCl₃): δ 1.0—1.4 (m, 6H), 1.5—2.1 (m, 2H), 2.33 (s, 3H), 2.5—4.0 (m, 2H), 7.17 (s, 4H)].

Silylation of 4-p-Tolyl-2-pentanone (39). A hexane solution (30.8 ml) containing 55 mmol of n-BuLi was mixed with 500 ml of THF. The resulting solution was cooled to $-10\,^{\circ}\mathrm{C}$ and treated with 5.5 g (55 mmol) of diisopropylamine. To this solution, 8.8 g (50 mmol) of 4-p-tolyl-2pentanone (39) was added dropwise over a 20 min period with stirring. After stirring the mixture at the same temperature for 30 min, 6.0 g (55 mmol) of chlorotrimethylsilane was added. The reaction mixture was stirred for 30 min, diluted with 300 ml of ether, and washed rapidly with two 100 ml portions of cold aqueous 10% KHSO₄ and then cold aqueous 5% NaHCO3. The organic layer was dried and concentrated. Fractional distillation of the residue through a spinning Teflon-band column gave fraction 1, 9.4 g (76%), bp 152—155/3.2 mmHg, containing pure 4-p-tolyl-2-trimethyl-

Table 3. Physical properties and analytical data of the products

Product IR	NMR (δ)	Anal. Found (%) (Calcd)			
Troduct	(cm^{-1})	111111 (0)	\mathbf{C}	H	N
2	a)3505 1730 1700	$^{\circ)}0.99(t, J=7 \text{ Hz}, 3\text{H}), \ 1.20(t, J=7 \text{ Hz}, 3\text{H}), \ 1.42(s, 1\text{H}), \ 1.43(d, J=7 \text{ Hz}, 3\text{H}), \ 3.58$ (b, 1H) $^{\circ}$)	59.13 (59.38)	8.97 (8.97)	
4	^{a)} 3505 1735 1715	$^{\circ)}1.27(t, J=7 \text{ Hz}, 3\text{H}), 1.31(s, 3\text{H}), 2.12$ (s, 3H), $3.57(b, 1\text{H})^{\circ)}$	54.84 (55.16)	8.40 (8.10)	
6	a) 3490 1760 1710	$^{\circ}$ 1.29(t, J =7 Hz, 3H), 1.46(s, 3H), 1.5—2.8(m, 7H), 3.88(b, 1H) $^{\circ}$)	59.95 (59.98)	8.05 (8.05)	
8	a) 3505 1730 1700	°)1.16(s, 3H), 1.23 and 1.26(t, $J=7$ Hz, 3/2 and 3/2H), 1.4—3.0(m, 9H), 3.16 (b, 1H)°)	61.30 (61.66)	8.81 (8.47)	
9	a)3500 1725 1700	$^{\circ}$ 1.2—1.4(m, 12H), 1.5—3.0(m, 9H), 3.18(b, 1H) $^{\circ}$, 4.16(q, J =7 Hz, 2H)	65.21 (65.59)	9.60 (9.44)	
11	a) 3480 1715 1670	$^{\circ}$ 1.26(t, J =7 Hz, 3H), 1.29(s, 9H), 4.30 (b, 1H) $^{\circ}$), 7.0—8.0(m, 5H)	68.92 (69.04)	8.01 (7.97)	
12	^{a)} 3500 1735 1705	°1.02(t, J =7 Hz, 3H), 1.05(d, J =7 Hz, 3H), 1.14(s, 3H), 1.25(t, J =7 Hz, 3H), 3.35(b, 1H)°)		(9.63)	
13	^{a)} 3500 1770 1725	°)1.11(s, 3H), 1.26(t , J =7 Hz, 3H), 1.5—2.5(m , 11H), 3.55(b , 1H) o)	63.51 (63.13)	8.69 (8.83)	
14	a) 3490 1730 1670	°)1.23(t, J =7 Hz, 3H), 1.26(s, 3H), 3.98 (b, 1H)°), 7.4—8.1(m, 5H)	68.48 (68.16)	7.60 (7.63)	
15	^{a)} 3505 1740 1700	$^{\circ)}0.99(t, J=7 \text{ Hz}, 3H), 1.04(d, J=6 \text{ Hz}, 3H), 1.14(s, 3H), 3.46(b, 1H)^{\circ)}, 3.61(s, 3H)$	<u> </u>	 (9.63)	
16	^{a)} 3500 1740 1700	°)1.12 and 1.14(s, 3/2 and 3/2H), 1.3—2.6(m, 15H), 3.40(b, 1H)°), 3.61(s, 3H)	64.31 (64.44)	9.43 (9.15)	
18	^{a)} 3430 1720 1685	°)2.03 and 2.08(s, 3/2 and 3/2H), 4.35 (b, 1H)°), 7.1—8.1(m, 10H)	75.78 (76.10)	6.43 (6.01)	
19	^{b)} 3490 1655	$^{d)}1.5-2.1(m, 8H), 3.10(s, 4H), 4.00(s, 1H)^{e)}, 7.4-8.1(m, 10H)$	74.74 (74.97)	6.79 (6.86)	
20	^{a)} 3480 1700	°)1.75(s, 3H), 2.11(s, 3H), 3.30(s, 4H), 3.60(b, 1H)°), 7.19(s, 5H)	64.12 (63.88)	7.80 (7.74)	
21	^{b)} 3395 1695	$^{d)}1.6-3.2$ (m, 9H), 3.29 (d, $J=5.5$ Hz, 1H) $^{e)}$, 4.99 (d, d, $J=5.5$ and 2.0 Hz, 1H)	39.10 (39.13)	4.60 (4.52)	
22	^{b)} 3440 1680	°)3.47(d, J =5.5 Hz, 2H), 4.83(t, J =5.5 Hz, 1H), 4.92(b, 1H)°), 7.1—8.0(m, 5H)	45.27 (44.89)	3.40 (3.39)	
23	a) 3430 2250 1720	c)1.23(s, 3H), 2.12(s,3H), 5.39(b, 1H)e),	63. 91 (63. 88)	8.75 (8.94)	8.05 (8.28)
24	a)3500 2250 1740	°1.10(s, 3H), 1.3-2.9(m, 13H), 3.96(b, 1H)°)	67.32 (67.66)	8.69 (8.78)	6.95 (7.17)
25	^{a)} 3450 1740 1700	o) 1.13 and 1.19(s, 3/3 and 6/3H), 1.2-2.5(m, 11H), 2.03(s, 3H), 3.34 and 3.73(s, 1/3 and 2/3H)	61.18 (61.66)	8.65 (8.47)	

TABLE 3. (Continued)

$\begin{array}{cc} \text{Product} & & \text{IR} \\ \text{(cm}^{-1}) \end{array}$	IR NMR (δ)		Anal. Found (%)		
	(cm^{-1})	NWIK (b)	\mathbf{C}	$({f Calcd}) \ {f H}$	N
26	^{b)} 3440 1695	$^{d)}1.1-3.2(m, 9H), 3.93(d, J=2.5 Hz, 1H)^{e)}, 4.71(d, d, J=2.5 and 8.0 Hz, 1H), 7.1-7.8(m, 4H)$	65.76 (65.41)	6.06 (6.33)	
27	^{a)} 3460 1705	°)0.76 and 0.82(d, $J=7$ Hz, 3/3 and 6/3H), 2.90(s, 6H), 6.45(d,d, $J=9$ and 2 Hz, 2H), 7.02(d,d, $J=9$ and 2 Hz, 2H)	71.93 (71.45)	9.11 (9.00)	6.28 (5.95)
28	a)3480 1710	$^{\rm d)}0.94({ m d}, J=7~{ m Hz},~3{ m H}),~1.04({ m t}, J=7~{ m Hz},~3{ m H}), \\ 3.73({ m s}, 3{ m H}),~6.97({ m d}, J=9{ m Hz}, 2{ m H}), \\ 7.37({ m d}, J=9~{ m Hz}, 2{ m H})$	70.32 (70.24)	8.15 (8.16)	
29	^{a)} 3460 1710	°)0.83 and 0.86(d, $J=7$ Hz, 3/2 and 3/2H), 1.03(t, $J=7$ Hz, 3H), 3.77(s, 3H), 4.63 and 4.91(b, 1/2 and 1/2H)°), 6.6—7.4(m, 4H)	70.64 (70.24)	8.07 (8.16)	
30	^{a)} 3500 1710	°)0.7—1.2(m, 6H), 3.76(s, 9H), 4.20(b, 1H)°), 6.43(d, $J=1.5$ Hz, 2H)	63.38 (63.81)	7.92 (7.85)	
31	a)3400 1705	°)0.80 and 0.90(d, J = Hz, 3/2 and 3/2H), 0.94(t, J =7 Hz, 3H), 2.32(s, 3H), 3.62 (b, 1H)°), 7.2—7.8(m, 4H)	(67.18)	— (7.25)	
32	^{a)} 3490 1710	°)0.84 and 0.90(d, $J=7$ Hz, 3/2 and 3/2H) 0.94(t, $J=7$ Hz, 3H), 3.62(b, 1H)°, 3.83(s, 3H), 7.27(d, $J=8$ Hz, 2H), 7.86(d, $J=8$ Hz, 2H)	67.17 (67.18)	7.28 (7.25)	
33	^{a)} 3440 1700	$^{d)}1.3-3.0$ (m, 9H), 4.15 (d, $J=4.5$ Hz, 1H) $^{e)}5.42$ (d, d, $J=4.5$ and 7 Hz, 1H), $7.1-7.9$ (m, 9H)	62.86 (62.64)	6.13 (6.07)	5.64 (5.62)
34	^{a)} 3480 1755 1690	°)0.81(d, $J=7$ Hz, 3H), 1.02(t, $J=7$ Hz, 3H), 1.44(s, 3H), 2.22(s, 3H), 4.10(b, 1H)°), 6.9—7.8(m, 4H)	67.72 (68.16)	7.85 (7.63)	
35	a)3470 1755 1670	1.56(s, 3H), 2.20(s, 3H), 4.60(b, 1H) e , 6.8—8.0(m, 9H)	72.88 (72.46)	6.00 (6.08)	
36	^{a)} 3500 1755 1680	°)0.98(t, J =7 Hz, 3H), 1.04(d, J =7 Hz, 3H), 1.14(t, J =7 Hz, 3H), 1.82(s, 3H), 3.61 (b, 1H)°), 7.27(d, J =8 Hz, 2H), 7.86(d, J =8 Hz, 2H)	(69.44)	 (7.97)	
37	^{ь)} 3485 1670	d) 1.57(s, 3H), 3.47(d, $J=17$ Hz, 1H), 3.59 (d, $J=17$ Hz, 1H), 4.76(b, 1H)e, 7.2—8.1(m, 9H)	67.20 (67.36)	5.33 (5.30)	4.96 (4.91)

a) Neat, b) KBr disk, c) in CCl₄, d) in CDCl₃, e) exchanged with D₂O.

siloxy-1-pentene (41) [IR (neat): $1620~\rm{cm^{-1}}$. NMR (CCl₄): δ 0.17 (s, 9H), 1.20 (d, $J=7~\rm{Hz}$, 3H), 2.30 (s, 3H), 3.90 (s, 2H), 7.34 (s, 4H)] and fraction 2, 2.2 g bp 156—159 °C/3.2 mmHg, containing 41 and an unknown compound.

Preparation of 2-Hydroxy-2-methyl-6-p-tolyl-4-heptanone (42). To a dichioromethane (40 ml) solution of acetone (0.580 g, 10 mmol) and TiCl₄ (1.89 g, 10 mmol) was added a dichloromethane (10 mmol) solution of silyl enol ether (41) (1.24 g, 5 mmol) at 0 °C, and the reaction mixture was stirred for 1 h. After the usual work-up, the resulting crude product was analyzed by chromatography on silica gel. Elution with dichloromethane afforded 1.03 g (88%) of 2-hydroxy-2-methyl-6-p-tolyl-4-heptanone (42) [IR (neat): 3470, 1700 cm⁻¹. NMR (CCl₄): δ 1.10 (s, 6H), 1.21 (d, J=7 Hz, 3H), 2.30 (s, 3H), 2.37 (s, 2H), 2.59 (d, J=7 Hz, 2H), 3.0—3.5 (m, 1H), 3.35 (b, 1H), 7.05 (s, 4H)].

Preparation of 2-Methyl-6-p-tolyl-2-heptene-4-one. (43: arturmerone). A benzene (50 ml) solution of 2-hydroxy-2-

methyl-6-*p*-tolyl-4-heptanone (**42**) (0.468 g, 2 mmol) was refluxed for 1 h in the presence of *p*-TsOH (0.2 g) with a conventional Dean Stark apparatus. After removal of the solvent, the resulting crude product was analyzed by chromatography on silica gel. Elution with benzene gave 0.420 g (97%) of 2-methyl-6-*p*-tolyl-2-heptene-4-one (**43**: ar-turmerone) [Found: C, 83.09; H, 9.35%. Calcd for $C_{15}H_{20}O$: 83.28; H, 9.32%. IR (neat): 1690, 1620 cm⁻¹. NMR (CCl₄): δ 1.23 (d, J=7 Hz, 3H), 1.80 (s, 3H), 2.30 (s, (3H), 2.56 (d, J=7 Hz, 2H), 3.0—3.5 (m, 1H), 5.93 (s, 1H), 7.06 (s, 4H)].

The author wishes to express his thanks to Professor Teruaki Mukaiyama of Tokyo University for his continuous guidance and helpful discussions. The author is also grateful to Mr. Akihiko Ostuka, vice president of Otsuka Pharmaceutical Co., Ltd., for support and encouragement throughout this work.

References

- 1) T. Mukaiyama, K. Narasaka, and K. Banno, Chem. Lett., 1973, 1011.
- 2) T. Mukaiyama, K. Banno, and K. Narasaka, J. Am. Chem. Soc., 96, 7503 (1974).
- 3) K. Banno and T. Mukaiyama, Chem. Lett., 1975, 741.
- 4) H. O. House, O. S. Crumrine, A. Y. Teranishi, and H. D. Olmstead, J. Am. Chem. Soc., 95, 3310 (1973).
 - 5) G. Wittig and A. Hesse, Org. Synth., 50, 66 (1970).
- 6) Acetal, enol ether, thioenol ether, and enol acetate react with silyl enol ether or a carbonyl compound. T. Mukaiyama and M. Hayashi, Chem. Lett., 1974, 15; T. Mukaiyama, E. Kitazawa, and K. Saigo, ibid., 1975, 569; T. Mukaiyama, K. Kamio, and K. Narasaka, ibid., 1974, 565; T. Mukaiyama, T. Izawa, and K. Saigo, ibid., 1974,

323.

- Thioacetal easily reverts to the carbonyl compound 7) upon treatment with CuCl₂ and CuO in acetone. K. Narasaka, T. Sakashita, and T. Mukaiyama, Bull. Chem. Soc. Jpn., 43, 2632 (1970).
- 8) A. St. Pfau, Helv. Chim. Acta, 15, 1482 (1932).
 9) H. Rupe, G. Clar, A. St. Pfau, and P. Plattner, Helv. Chim. Acta, 17, 372 (1934).
- 10) H. Rupe and A. Gassmann, Helv. Chim. Acta, 19, 569 (1936).
- 11) J. Cologe and J. Chambion, C. R. Acad. Sci., 222, 557 (1946).
- 12) H. O. House, L. J. Czuba, and H. D. Olmstead, J. Org. Chem., 34, 2324 (1969).
- 13) M. Araki, S. Sakata, H. Takei, and T. Mukaiyama, Bull. Chem. Soc. Jpn., 47, 1777 (1974).
- 14) C. W. Yoho and R. Levine, J. Am. Chem. Soc., 74, 5597 (1952).