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The Total Synthesis of the Neurogenic Ganglioside LLG-3 Isolated
from the Starfish Linckia laevigata™*

Hideki Tamai, Hiromune Ando,* Hide-Nori Tanaka, Ritsuko Hosoda-Yabe, Tomio Yabe,

Hideharu Ishida, and Makoto Kiso*

Recently, echinodermatous gangliosides have attracted much
attention because of their characteristic structure and their
potent neurogenic activity towards neuron-like rat adrenal
pheochromocytoma (PC-12) cells in the presence of the nerve
growth factor (NGF); this activity can greatly exceed that of
the mammalian ganglioside GM1.!"! Therefore, it is of great
importance to cultivate their potential as drug leads for
combating neurological disorders at the molecular level.
However, the extensive structural diversity in echinoderma-
tous gangliosides has impeded studies into their structure—
activity relationships and the mechanism by which they
promote neurogenesis. Their structure characteristically con-
tains a range of modified sialic acid units connected by a
variety of linker groups, and such units are never seen in
mammalian gangliosides.”! Previously, we carried out the first
synthesis of two of these structures, namely, Neu5Gca-
(2,4)NeuSAc and 8-0O-SO;H-NeuSAca(2,8)NeuSAc, by
developing the N-Troc sialyl (Neu5Troc) donor as a key
intermediate to modified sialic acid residues.’! Recently, we
were the first to synthesize the neurogenic ganglioside HLG-
2, which is found in the sea cucumber.*! Herein we report the
first total synthesis of ganglioside LLG-3 (1; Scheme 1),
which contains the 8-O-Me-NeuSAca(2,11)NeuSAc struc-
ture, by using Neu5Troc chemistry combined with the glucosyl
ceramide (Glc-Cer) cassette approach.

Ganglioside LLG-3 (1) was identified in the starfish
Linckia laevigata by Higuchi and co-workers (Scheme 1).1%!
They revealed that at a concentration of 10 um LLG-3 caused
neurogenesis of (63.1 +6.3)% of PC-12 cells in the presence
of NGF (5 ngmL™"), whereas in the control experiment (only
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NGF) (20.6+2.2)% of PC-12 cells were affected. Ganglio-
side 1 is the second most potent enchinoderm ganglioside
amongst the fifteen that have been examined. The most
potent activity [(64.8 £7.6) %] was exhibited by the gangli-
oside SJIG-2,""! which is a heptasaccharide and contains a
trisialyl tetrasaccharide unit. Therefore, even though 1 is a
tetrasaccharide, it is considered to be more effective than
SJG-2 and has attracted much attention in the field of
medicinal chemistry.

The characteristic structure of modified sialic acids (8-O-
Me-Neu5 Aca(2,11)Neu5Ge) that is presumably responsible
for the neurogenic activity, was expected to be efficiently
synthesized from the common Neu5Troc donor 4
(Scheme 1).® Thus, it was envisioned that the synthesis of
the 5-NH,-Neu intermediate and the 8-O-methyl-Neu glyco-
late derivative could be achieved from 4 through the cleavage
of the Troc group with subsequent migration of the acetyl
group from O8 to N5. To avoid the loss of the glycan portion
as a result of inefficient coupling with the lipid portion we
anticipated using the glycosyl ceramide cassette approach,
which was recently established in our laboratory.””! Therefore,
1 was disconnected into the trisaccharide segment 2 and the
Glc-Cer cassette 3. Then, 3 was fragmented into the glucosyl
donor 5 and the phytoceramide 6 as an aglycon.

As depicted in Scheme 2, the synthesis of the 8-O-methyl
sialyl unit from 4 commenced with the stereoselective
incorporation of benzylglycolate at the anomeric position to
give 8°%in a 91 % yield (a/f =7.5:1). Next, 8 was treated with
zinc under acidic conditions to produce the 8-hydroxy-N-
acetyl sialyl derivative 9, through the migration of the acetyl
group from O8 to N5, in a high yield. The 8-O-methylation of
9 was attempted using two different methylating reagents
(Me;OBF, and MeOTf) but each attempt was unsuccessful,
and only generated a complex mixture of 5-methylimidate
derivatives and N-acetyl-N-methyl derivatives. Therefore, we
masked the C8hydroxy group with a chloroacetyl group
[(CICH,CO),0, cat. DMAP, THF]," and then protected the
C5 acetamide with an acetyl group (isopropenyl acetate,
TsOH)," thereby obtaining 11 in a high yield (93 % over two
steps). Compound 11 was then subjected to a two-step
sequence for 8-O-methylation. 1-Selenocarbamoylpiperidine
(12), which was recently developed by our research group,'?!
was found to be the best reagent for the selective dechloro-
acetylation at C8. The chloroacetyl group could also be
removed by using the widely used DABCO method™
(DABCO, EtOH), however this strategy promoted the
migration of the acetyl group from N5 to OS, giving the
fully acetylated derivative as the major product. Removal of
the chloroacetyl group using 12 and 2,6-lutidine as an acid
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Scheme 1. Retrosynthetic scheme for target molecule 1. Ac=acetyl, LG
group, PMB = p-methoxybenzyl, Troc =2,2,2-trichloroethoxycarbonyl.
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Scheme 2. Synthesis of 8-O-Me-sialyl glycolic acid 14. a) 4, NIS, TfOH,
EtCN, molecular sieves (4 A), —80°C, 91% (a/B=7.5:1); b) Zn, DMF/
AcOH (4:1), 84%; c) (CICH,CO),0, DMAP, THF, 93%; d) TsOH-H,0,
isopropenyl acetate, 85°C, 98 %,; €) 12, 2,6-lutidine, DMF, 65°C;

f) Me;OBF,, DTBMP, CH,Cl,, reflux, 81% (2 steps); g) H,, 20%
Pd(OH),/C, EtOAc, quant. Bn=benzyl, DMAP = 4-(dimethylamino)pyr-
idine, DMF = N,N’-dimethylformamide, DTBMP =2,6-di-tert-butyl-4-
methylpyridine, NIS = N-iodosuccinimide, Tf=trifluoromethanesul-
fonyl, THF =tetrahydrofuran, Ts = p-toluenesulfonyl.

Angew. Chem. Int. Ed. 2011, 50, 23302333

=leaving group, P=protecting

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

was achieved using zinc under
acidic conditions. This reaction
produced the 5-amino sialyl unit
17 in a satisfactory yield. The
carboxylic unit 14 and the amine
unit 17 were successfully coupled to deliver the key terminal
trisaccharide 18 in an 88 % yield; 18 was then manipulated in
a straightforward manner to furnish the imidate 19.1"

The synthesis of the Glc-Cer portion (30) was conducted
in accordance with our earlier report.**! The (R)-2-hydroxy-
tricosanoic acid derivative 23 was successfully assembled
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Scheme 3. Synthesis of trisaccharide unit 19. a) See Ref 8a and 8¢ for
reaction conditions; b) Zn, MeCN/AcOH (4:1), 89%; c) 14, EDC-HCI,
HOBt, NaHCO;, MeCN, 88%; d) H,, 20% Pd(OH),/C, EtOAc;

e) Bz,0, DMAP, Py, 40°C, 96% (2 steps); f) CAN, toluene/MeCN/H,O
(5:6:3), 0°C, 80%; g) CCL,CN, DBU, CH,Cl,, 0°C, 84%. Bz =benzoyl,
CAN = cerium(IV) ammonium nitrate, DBU =1,8-diazabicyclo-
[5.4.0lundec-7-ene, EDC = 1-ethyl-3-(3-dimethylaminopropyl)carbodi-
imide, HOBt = 1-hydroxybenzotriazole, Imd =trichloroacetimidoyl,
PMP = p-methoxyphenyl, Py =pyridine.
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Scheme 4. Synthesis of the ceramide portion 25. a) 21, nBuli, HMPA;
b) BzCl, DMAP, Py, 41% (2 steps); c) H,, 10% Pd(OH),/C, EtOAc, RT;
d) DMP, NaHCO,, CH,Cl,, RT; €) NaClO,, NaH,PO,, 2-methyl-2-
butene, THF/tBuOH/H,0 (4:5:1), RT, 84% (3 steps); f) 24, EDC-HCI,
HOBt, CH,Cl,, 61%; g) TrCl, Py, 50°C; h) BzCl, DMAP, Py, 50°C, 78%
(2 steps); i) H,, 10% Pd(OH),/C, 88 %. DMP = Dess—Martin perio-
dinane, HMPA = hexamethylphosphoric acid triamide, Tr=triphenyl-
methyl.

from oxirane 20 and icos-1-yne (21) using a five-step reaction
sequence (Scheme 4). Phytosphingosine (24), which was
synthesized from 1,2:4,6-diacetone-D-mannose using proce-
dures reported by Tzou and Lin et al.,'*'"l was coupled with
23 using a carbodiimide (EDC-HCI, HOBt) to yield the
phytoceramide framework. In preparation for the subsequent
coupling with the Glc section, the hydroxy groups were
protected with benzoyl groups and the resulting product was
additionally manipulated to provide the 1-hydroxy derivative
25.

The protecting group at C4 of the Glc donor was shown to
strongly influence the yield of the coupling reaction with the
ceramide acceptor 25 (Scheme 5). As previously reported,”
the 4-chloroacetyl Glc donor 26! provided Glc-Cer 28 in
poor yield (23%). In contrast, the use of the TBS derivative
2717 increased the yield to 81 %. Upon exposure to TBAF,
the TBS group of 29 was removed to afford the Glc-Cer
acceptor 30, which was now ready for the assembly of the
glycolipid framework of LLG-3.

Pleasingly, the final glycosidation of the trisac-
charide donor 19 (1.0 equiv) with the Glc-Cer
acceptor 30 (1.0 equiv), promoted by TMSOTT in
CH,Cl, at 0°C, successfully produced the protected
LLG-3 31 in good yield (73 %; Scheme 6). Treat-
ment of 31 with TFA resulted in removal of the
PMB groups, and subsequent treatment with LiCl
liberated the carboxylic acid, and then removal of
the acyl groups® successfully delivered ganglioside Acz
LLG-3 (1, 25 mg).

Examination of the neurite growth of PC-12
cells revealed that the synthesized ganglioside
LLG-3 (1) potentiated the neurite outgrowth in
the presence of NGF (5 ngmL™).l% LLG-3 (1 um),
NGF (5ngmL!, control), and NGF at high con-
centration (50 ngmL™', positive control) all gave a
similar increase in the number of neurites that had a
length between one and two cell-body diameters. In
contrast, the number of neurites that were more

oM
AcO

www.angewandte.org

AcO OAc

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

(0]
HN)JYC%HAS
: OBz
OCP)'V'B OPMB i OBz
RO _a . Rro O o . _
PMBE%/'SPh PMBO \/Y\C13H27
OPiv OPiv OBz
(1.0 equiv)
26 R = CICH,CO 28 R = CICH,CO (23%)
27 R=TBS 29 R = TBS (81%)
(0]
HN CZ'\HJS
H OBz
OPMB I OBz
b Moo o~
o PMBO “INTY G My
OPiv OBz
30

Scheme 5. Synthesis of the Glc-Cer cassette 30. a) 25 (1 equiv), NIS,
TfOH, molecular sieves (4 A), CH,Cl,, 0°C; b) TBAF, THF, 30°C, 93%.
Piv = pivaloyl, TBAF =tetra-n-butylammonium fluoride, TBS =tert-butyl-
dimethylsilyl.

than twice the cell-body diameter varied depending on the
exogenous factors; for example, NGF at 5 ngmL ™" (0.57/cell),
NGF at high concentration (0.85/cell), and LLG-3 at 1 pm
(0.73/cell). These results suggest that in the presence of NGF
LLG-3 enhances the elongation of the neurites rather than
their formation.

In summary, we have presented the first synthesis of
ganglioside LLG-3 (1). The efficient assembly of the unusual
structure comprising of an 8-O-Me-sialic acid and an N-
glycolyl-sialic acid reinforces the utility of the N-Troc sialyl
donor 4 for the synthesis of different sialyl glycosides. The
Glc-Cer cassette approach provides an efficient route to
gangliosides that contain a phytoceramide moiety. It was also
revealed that silyl protection of the C4 hydroxy group of the
glucosyl donor remarkably improved the yield of the coupling
reaction with the phytoceramide acceptor. Finally, we could
demonstrate the neurogenic activity of the synthesized LLG-3
(1) towards the PC-12 cells. We are also investigating the

19 + 30
(1.0 equiv) (1.0 equiv)
a | 73% o
HNJK‘/CMHM
AcO  OAc ERY: %
CO,Me COMe OPMB © o8z
00 OAc AOBZ opw OBz

b-e \ 82% (4 steps)

1

Scheme 6. Final coupling and global deprotection to deliver LLG-3 1. a) TMSOT(,
CH,Cl,, acid washed molecular sieves (4 A),
c) hydrazine acetate, THF, 0°C; d) LiCl, Py, reflux; e) 0.1 m NaOH (aq.),
45°C, 82% (4 steps). TFA=trifluoroacetic acid, TMSOTf= trimethylsilyl trifluoro-
methanesulfonate.

0°C, 73%; b) TFA, CH,Cl,, 0°C;
0°C to
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neurogenic activity towards PC-12 cells by using other
synthesized gangliosides such as GM1,") GM2,% GQ1b,”!
X1,2"and HLG-2.¥ The detailed results of their activities will
be reported in due course.
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