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Abstract: Synthetic studies on haouamine B are described. The
characteristic indenotetrahydropyridone skeleton was constructed
by intramolecular Friedel–Crafts alkylation of mesyloxy b-lactam
derivative and intramolecular McMurry coupling as key processes.

Key words: Friedel–Crafts reaction, b-lactam, McMurry coupling,
natural products

Haouamines, a family of marine alkaloids, were isolated
from a tunicate, Aplidium haouarianum, in the southern
coast of Spain by Zubía and co-workers.2 Among them,
haouamine A (1) exhibits highly specific and strong cyto-
toxicity against HT-29 human colon carcinoma cell line
(IC50 = 200 nM). In addition to the significant biological
activity, haouamines have the unique structural features
such as cis-fused indenotetrahydropyridine and highly
strained 3-aza[7]paracyclophane containing bent aromat-
ic ring. Therefore, many synthetic efforts have been di-
rected toward these compounds.3 However, only one total
synthesis of haouamine A (1) by Baran and co-workers

has so far been reported due to its highly strained struc-
ture.4 Regarding haouamine B (2), there has been no re-
port on total synthesis and the absolute stereochemistry.

We planned to construct tetrahydropyridine ring in the
central part of these molecules by intramolecular Mc-
Murry coupling5 of the advanced intermediate such as 3
having indane segment and macrolactam ring (Scheme 1).
After formation of six-membered lactam, reduction of
amide function3d and oxidative conversion to biaryl struc-
ture would lead to haouamines. In this context, we chose
compound 5 as a model compound to examine the pro-
posed intramolecular McMurry coupling as well as a pos-
sible intermediate for the synthesis of haouamine B, and
carried out its synthetic investigations.

Scheme 2 illustrates our retrosynthetic analysis of the sub-
strate 6 for the key reaction. b-Amino aldehyde 6 possess-
ing cis stereochemistry would be derived from indane-
fused tetracyclic b-lactam 7. We planned to construct this
unusual b-lactam 7 by Friedel–Crafts alkylation of b-
lactam derivative 8, which would be accessible from

Scheme 1 Haouamine A (1) and B (2), and synthetic strategy
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a-hydroxy-b-amino ester 11 by b-lactam formation and
1,2-addition of anisyl Grignard 9 to azetidine-2,3-dione
derivative 10.

Our research commenced with the asymmetric prepara-
tion of a-hydroxy-b-amino acid derivative 11 by applica-
tion of Ellman’s diastereoselective Mannich reaction
using chiral sulfinamide.6 Commercially available phenyl-
acetaldehyde derivative 12 was condensed with chiral sul-
finamide 13 to give the corresponding sulfinyl imine 14,
which was subjected to Mannich reaction conditions with
glycolates 15. The diastereoselectivity was strongly de-
pendent on the choice of R group on the glycolates oxy-
gen. Thus, reaction of benzyl ether 15a provided an
inseparable mixture of four diastereomers (Table 1, entry
1). In contrast, Qin’s modification7 utilizing Boc-protect-
ed compound 15b gave the desired 16b as a single product
(entry 2).8

Having prepared a-hydroxy-b-amino acid derivative 16b
as a single diastereomer, we focused our efforts on con-
struction of the b-lactam-fused indane skeleton
(Scheme 3). Acidic removal of tert-butylsulfinyl and Boc
groups7 provided the corresponding aminoalcohol hydro-
chloride 17. Construction of b-lactam was carried out ac-
cording to the conventional method9 to give the N-TES-b-
lactam, which was then treated with KF to provide 18 in
96% ee.10 After N-benzylation and conversion to azeti-
dine 2,3-dione in two steps, m-anisyl group was intro-
duced by Grignard addition to give the tertiary alcohol 21
as a single isomer.11 The stage was set for the construction
of indane ring by Friedel–Crafts-type cyclization. We
found that conversion to the corresponding mesylate 22
and acidic treatment were crucial to promote smooth cy-
clization.12 Thus, upon treatment of 22 with triflic acid in
acetonitrile, the desired indane-fused b-lactam 23 was ob-

tained in 74% yield from tertiary alcohol 21.13 This meth-
odology was effective to construct the b-lactam-fused
indane skeleton having a quaternary carbon.14

We next turned our attention to examine the McMurry
coupling strategy for the construction of indenotetra-
hydropyridone ring. After removal of benzyl group under
Birch conditions, indane-fused b-lactam 23 was activated
with the Boc group to give 24. LiAlH4 reduction gave

Scheme 2 Retrosynthetic analysis
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Table 1 Diastereoselective Mannich Reaction

Entry R Yield (%)a drb

1 Bn 82 6:2:2:1c

2 Boc 80 –d

a Isolated yields.
b Determined by 1H NMR of the crude material.
c The stereoselectivity of the diastereomers was not determined.
d Single diastereomer.
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amino alcohol 25, which was condensed with acyl chlo-
ride 26. O-Acylation, followed by intramolecular acyl mi-
gration gave amide 27 after deprotection of Boc group.
Finally, TPAP oxidation gave aldehyde 6, a substrate for
the McMurry coupling reaction. To our delight, upon sub-
jection of aldehyde 6 to reductive conditions using a com-
bination of titanium tetrachloride and zinc–copper couple
in DME, the expected intramolecular McMurry coupling
took place to give the desired lactam derivative,15–17 al-
though the yield was unsatisfactory (Scheme 4).

Scheme 3 Construction of indane-fused b-lactam skeleton

In conclusion, synthetic studies on haouamine B were car-
ried out. Indenotetrahydropyridone derivative 5, which
would also be a potential intermediate of haouamine B
based on the Baran’s synthesis, was stereoselectively con-
structed through the quite unique indane-fused b-lactam
23, by highly diastereoselective Mannich reaction of sul-
finyl imine derivative, unprecedented Friedel–Crafts
cyclization on the b-lactam ring, and intramolecular Mc-
Murry coupling. Further extensive optimization of the
McMurry coupling and construction of the right-hand

segment consisting 3-aza[7]paracyclophane are currently
under investigation.
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