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Abstract—A series of 3,4- and 3,5-disubstituted phenyl-containing cyclobutenedione analogues were synthesized and evaluated as
CXCR2 receptor antagonists. Variations in the disubstitution pattern of the phenyl ring afforded new compounds with potent
CXCR2 binding affinity in the low nanomolar ranges. Moreover, two potent compounds 19 and 26 exhibited good oral pharma-
cokinetic profiles.
� 2008 Elsevier Ltd. All rights reserved.
The chemokine receptor CXCR2, a seven-transmem-
brane G-protein-coupled receptor, was cloned and iden-
tified in the early 1990s.1 Its natural ligands, interleukin-
8 (IL-8), granulocyte chemotactic protein-2 (GCP-2),
and other related CXC chemokines, bind with it to exert
a number of pathophysiological effects such as attrac-
tion and accumulation of neutrophils toward the sites
of inflammation.2 CXCR2 mouse gene knockout studies
show that there are elevated leukocytes and lymphocytes
without apparent pathogenic consequences, indicating
that CXCR2 is not required for normal physiology.3 In-
creased levels of CXCR2 and its ligand IL-8 have been
observed in humans with diseases such as arthritis, asth-
ma, and chronic obstructive pulmonary disease
(COPD).4 This suggests that the CXCR2 receptor and
IL-8 may play a pivotal role in these inflammatory dis-
orders. Therefore, antagonists of CXCR2 receptor could
be in principle used in the treatment of inflammatory
and related diseases.

CXCR2 antagonists have indeed attracted much atten-
tion as targets for small-molecule drug discovery in the
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last decade.5 Several structural classes have been identi-
fied to be potent inhibitors of the CXCR2 receptor
(Fig. 1), including quinoxaline 1,6 triazolethiol 2,7

N,N 0-diarylureas 3 and 4,8 cyanoguanidine 5,9 imidazol-
ylpyrimidine 6,10 and diaminocyclobutenedione 7.11

Among these, CXCR2 antagonists 3 and 48a disclosed
by GSK and antagonist 711a identified through our joint
research program have been progressed into the clinical
trials for COPD.

During the course of lead optimization leading to the
discovery of compound 7, it was observed that replace-
ment of the 5-methylfuryl group in 7 with phenyl and 3-
fluorophenyl in cyclobutenediones (8 and 9)11a also
showed quite potent CXCR2 receptor affinity in the
nanomolar ranges (Fig. 2). Based upon this observation,
we decided to explore the impact of disubstitution of the
phenyl ring on CXCR2 receptor binding and pharmaco-
kinetic properties in hopes of finding a non-furanyl can-
didate with development potential. Herein we report the
synthesis and preliminary structure–activity relation-
ships of a series of 3,4- and 3,5-disubstituted phenyl-
containing cyclobutenediones (10–29) as novel CXCR2
receptor antagonists.

Scheme 1 shows the synthesis of target compounds 26
and 27 from commercially available 3-bromo-5-fluoro-
toluene (30). Thus, lithiation of 30 with n-BuLi in
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Figure 1. CXCR2 receptor antagonists.
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Figure 2. Cyclobutenedione CXCR2 receptor antagonists.
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THF, followed by addition of DMF, readily furnished
the desired aldehyde 31 in 66% yield. Treatment of 31
with (R)-(�)-2-phenylglycinol in the presence of MgSO4

in THF and subsequent silylation with TMSCl gave rise
to the protected imine 32. Diastereoselective addition of
ethylmagnesium chloride or isopropylmagnesium chlo-
ride to 32 in THF and desilylation of the corresponding
adducts with 2.5 M H2SO4 solution provided the desired
amino alcohols 33a or 33b.12,13 Oxidative cleavage of
33a and 33b was accomplished with periodic acid in
the presence of MeNH2 in aqueous methanol to give
the chiral amines 34a and 34b, respectively. Finally,
reaction of 34a and 34b with the previously reported
cyclobutenedione intermediate 3511a afforded the target
compounds 26 and 27. Compounds 10–25 disclosed in
Tables 1 and 2 were synthesized from the corresponding
bromides or aldehydes in a similar manner as described
in Scheme 1.
The target compound 28, having a 3-cyano-5-methyl-
phenyl moiety, was synthesized as outlined in Scheme
2. Sequential monolithiation of 3,5-dibromotoluene
(36) with t-BuLi and formylation with DMF, followed
by protection, provided the acetal 37, which was sub-
jected to another lithiation and treatment with DMF
to give the monoprotected dialdehyde 38. Reaction of
38 with (R)-(�)-2-phenylglycinol and subsequent silyla-
tion smoothly afforded the intermediate 39. Diastereose-
lective nucleophilic addition of ethylmagnesium chloride
to 39 was followed by removal of both the acetal and the
silyl groups in the resulting adduct with 2.5 M H2SO4

solution to furnish the desired amino alcohol 40.12,13 Di-
rect conversion of the formyl group in 40 to the cyano
group was accomplished using ammonia and MnO2 in
the presence of MgSO4 in THF14 to give the desired ni-
trile 41 in 83% yield. Oxidative cleavage of 41 yielded the
chiral amine 42, which was reacted with the intermediate
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Scheme 1. Reagents and conditions: (a) n-BuLi, THF, �78 �C; then DMF; (b) (R)-(�)-2-phenylglycinol, MgSO4, THF; then TMSCl, Et3N, CH2C12.

(c) EtMgCl, THF, �20 �C, or i-PrMgCl, THF, �20 �C; then 2.5 M H2SO4; (d) H5IO6, MeNH2, MeOH, H2O, rt; (e) MeOH, DIEA, 65 �C, overnight.

Table 1. CXCR2 binding data of 3,4-disubstitutedphenyl analogues

N
H

OH
N

O

OO

N
H

R1

R3

R2

Compound R1 R2 R3 Ki
a (nM) Rat AUCb (lM h)

10 F F Et 28c NT

11 F OMe Et 5.2 6.37

12 F OMe i-Pr 1.5 0.3

13 F CF3 Et 19.4 NT

14 F CF3 i-Pr 13.9 NT

15 Me F Et 6.1c 1.1

16 OMe F Et 11.9 NT

17 OMe F i-Pr 16.0 NT

18 CF3 F Et 38.5 NT

a Receptor binding was conducted as described in Ref. 16. Data are

means of at least two independent determinations.
b Data were generated based on a 6-h study, po dosing (10 mg/kg),

n = 2. NT, not tested.
c The tested compounds were racemic.

Table 2. CXCR2 binding data of 3,5-disubstituted phenyl analogues

N
H

OH
N

O

OO

N
H

R1

R2

R3

Compound R1 R2 R3 Ki
a (nM) Rat AUCb (lM h)

19 F F Et 1.7 18.52

20 F F i-Pr 1.9 1.28

21 F F cy-Pr 4.5 NT

22 F CF3 Et 7.9 NT

23 F CF3 i-Pr 13.3 NT

24 Me CF3 Et 11.8 NT

25 Me CF3 i-Pr 4.4 NT

26 F Me Et 2.8 3.52

27 F Me i-Pr 1.0 2.29

28 Me CN Et 1.9 NT

29 F CN Et 1.7 NT

a Receptor binding was conducted as described in Ref. 16. Data are

means of at least two independent determinations.
b Data were generated based on a 6-h study, po dosing (10 mg/kg),

n = 2. NT, not tested.
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3511a to provide the target compound 28. Compound 29
was synthesized in a similar fashion from 3-bromo-5-
fluorobenzaldehyde.15

The CXCR2 binding activity was determined using a
Ba/F3-hCXCR2 overexpressing membrane binding as-
say.16 We first examined 3,4-disubstituted phenyl-con-
taining cyclobutenedione derivatives and the results
are summarized in Table 1. Attachment of the second
fluorine atom at the C4 position of the phenyl ring
(10) led to less binding potency as compared to com-
pound 9. Addition of methoxyl group at the C4 position
moderately improved CXCR2 binding affinity (11 and
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Scheme 2. Reagents and conditions: (a) (i) t-BuLi, THF, �78 �C; then DMF; (ii) ethylene glycol, p-TsOH H2O, C6H6, reflux; (b) t-BuLi, THF,

�78 �C; then DMF; (c) (R)-(�)-2-phenylglycinol, MgSO4, THF; then TMSCl, Et3N, CH2Cl2; (d) EtMgCl, THF, �20 �C; then 2.5 M H2SO4; (e)

MgSO4, MnO2, 2 M NH3 in i-PrOH, THF; (f) H5IO6, MeNH2, MeOH, H2O, rt; (g) MeOH, DIEA, 65 �C, overnight.
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12), whereas addition of the trifluoromethyl group at
that position led to a threefold loss in CXCR2 affinity
(13 and 14). When fluorine was switched to the C4 posi-
tion of the phenyl ring, attaching methyl at the C3 posi-
tion slightly improved CXCR2 affinity (15), while
introduction of methoxyl or trifluoromethyl substituent
at that position (16–18) markedly decreased the binding
potency. The 3,4-disubstitution pattern did not provide
a significant affinity increase from data presented in Ta-
ble 1.

Next, we turned to assess the effect of 3,5-disubstitution
of the phenyl ring on CXCR2 receptor binding activity.
As shown in Table 2, the 3,5-difluorophenyl group-con-
taining compound 19 displayed high binding affinity.
Replacement of the ethyl group at the benzylic site of
Table 3. Pharmacokinetic data of compounds 19, 26 and 7

Parameter 19

Rat Monkey

Dose, po (mg/kg) 10 3

Oral bioavailability (%) 19.1

t1/2 (h) 13

Mean residence time (h) 3.8

Oral AUC (0–24 h) (lM h) 8.8 3.1
the right-side amine in 19 with isopropyl or cyclopropyl
did not improve potency (20 and 21). Analogues 26 and
27 with a 3-fluoro-5-methylphenyl moiety showed excel-
lent affinity. However, introduction of the trifluoro-
methyl group (22 to 25) decreased CXCR2 binding
activity. Furthermore, the incorporation of the cyano
and methyl groups or the cyano group and fluorine at
the C3 and C5 positions of the phenyl ring (28 and 29)
yielded potent affinity for CXCR2 receptor.

Pharmacokinetic studies have been conducted with se-
lected compounds. As shown in Table 1, compound 12
displayed much lower oral exposure (AUC, 0.3 lM h)
in rapid rat PK tests than the clinical trial compound
7 (AUC, 49.0 lM h).11a Table 3 lists some PK data for
compounds 19, 26, and 7. Both new compounds 19
26 7

Rat Monkey Rat Monkey

10 3 10 3

34.1 33 18

5.5 7.8 23.3

1.8 3.4 2

18.1 5.6 22 2
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and 26 exhibited comparable or better oral bioavailabil-
ity and exposure (AUC) in full rat and rapid monkey
PK tests as compared to 7.

In summary, a series of 3,4- and 3,5-disubstituted phe-
nyl-containing cyclobutenedione analogues have been
synthesized and evaluated as CXCR2 receptor antago-
nists. Several new compounds have been identified to
possess high CXCR2 binding affinity with the low nano-
molar ranges. Two potent compounds 19 and 26 exhib-
ited good oral pharmacokinetic profiles. Their further
evaluation in animal pulmonary studies and other tests
will be reported in due course.
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