PRENYL BIBENZYLS FROM THE LIVERWORT RADULA KOJANA*

YOSHINORI ASAKAWA, KEIKO KONDO (NÉE K. TAKIKAWA), MOTOO TORI, TOSHIHIRO HASHIMOTO and SHUNICHI OGAWA

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770, Japan

(Received 30 April 1990)

Key Word Index-Radula kojana; Radulaceae; Jungermanniales; Hepaticae; prenyl bibenzyls; chromenes; benzofuran; bis(bibenzyls); 5-lipoxygenase and calmodulin inhibitory activity; synthesis; chemosystematics.

Abstract—Fourteen new bibenzyl derivatives have been isolated from the liverwort Radula kojana together with two previously known bis(bibenzyls) and their structures characterized by spectral and chemical evidence. Seven new bibenzyls, 3,5-dihydroxy-2-(3-methyl-2-butenyl)-, 3-methoxy-5-hydroxy-2-(3-methyl-2-butenyl)-, 3-hydroxy-5methoxy-2-(3-methyl-2-butenyl)- and 2-geranyl-3,5-dihydroxybibenzyls, 2,2-dimethyl-7-methoxy-5-(2-phenylethyl)-, 2,2-dimethyl-5-methoxy-7-(2-phenylethyl)- and 2-methyl-2-(4-methyl-3-pentenyl)-7-methoxy-5-(2-phenylethyl) chromenes have been synthesized from pinosylvin and its dimethyl ether. 3,5-Dihydroxy-2-(3-methyl-2-butenyl)- and 2geranyl-3,5-dihydroxybibenzyls showed 5-lipoxygenase and calmodulin inhibitory activity. Radula kojana belonging to the subgenus Odontoradula is chemically different from species of the subgenera Radula and Cladoradula as it produces chromene derivatives (six-membered) and the latter two genera elaborate dihydrooxepins (seven-membered) and benzofurans with a propenyl group (five-membered). Our chemical results support the modern classification of Radula species.

INTRODUCTION

Radula species of liverwort are rich sources of prenyl bibenzyls [1-6]. As part of a chemosystematic study [7, 8] and search for biologically active substances [9-12], we have investigated the chemical constituents of R. kojana and isolated 14 new bibenzyl derivatives along with the previously known two bis(bibenzyls) [6, 7]. In this paper, we wish to report the isolation, characterization and synthesis of new bibenzyls and their biological activity, and to discuss the chemosystematics of R. kojana.

RESULTS AND DISCUSSION

A combination of column chromatography on silica gel and Sephadex LH-20, and preparative TLC of the methanol extract of R. kojana resulted in the isolation of 14 bibenzyls, viz. 3,5-dihydroxy-2-(3-methyl-2-butenyl)-(1), 3-methoxy-5-hydroxy-2-(3-methyl-2-butenyl)- (2), 3hydroxy-5-methoxy-2-(3-methyl-2-butenyl)- (3), 2geranyl-3,5-dihydroxy- (5), 3-methoxy-4'-hydroxy-4-(3-methyl-2-butenyl)- (8), 3,5-dihydroxy-2-(2,3-epoxy-3-methylbutyl)- (9) and 3-hydroxy-5-methoxy-2-(3hydroxy- 3-methylbutyl) bibenzyls (10), 2,2-dimethyl-7hydroxy- 5-(2-phenylethyl) chromene (12) and its methyl ether (13), 2,2-dimethyl-5-hydroxy-7-(2-phenylethyl)-(14), 2,2-dimethyl-5-hydroxy-6-carboxy-7-(2-phenylethyl)-(16), 2(S)-2-methyl-2-(4-methyl-3-pentenyl)-7-hydroxy-5-(2-phenylethyl)- (18) and 2(S)-2-methyl-2-(4-methyl-3pentenyl)-6-carboxy-7-hydroxy-5-(2-phenylethyl) chro-

menes (20) and 6-hydroxy-4-(2-phenylethyl) benzofuran (22) together with two previously known bis-(bibenzyls), perrottetins E (24) and F (25) [6, 7]. The crude extract was also directly analysed by GC-MS to detect the presence of trans- β -farnesene, 2-hydroxycuparene, campesterol, stigmasterol and sitosterol.

The molecular formula, $C_{19}H_{22}O_2$ ([M]⁺ m/z 282.1637) of 1 was determined by high resolution mass spectrometry. The UV and IR spectra indicated the presence of a hydroxyl group (3600 cm⁻¹) and an aromatic ring (λ 230, 285 nm; 1620, 1590 cm⁻¹). Methylation of 1 with methyl iodide gave a dimethyl ether (4) $(C_{21}H_{26}O_2 [M]^+ m/z 310.1913; \delta 3.75, 3.79 each 3H, s),$ indicating the presence of two phenolic hydroxyl groups in 1. The presence of a non-substituted benzyl group was confirmed by the intense fragment ion at m/z 91 (84%) and the ¹H NMR signals at δ 7.18 (3H, m) and 7.28 (2H, m). The ¹H NMR spectrum (Table 1) of 1 contained the signals of a 2,2-dimethylallyl group (δ 1.72, 1.79 each 3H, s, 3.28, 2H, d, J = 6.4, 5.09, 1H, t, J = 6.4 Hz) and two metacoupled protons (δ 6.23, 6.26, each 1H, d, J = 2.4 Hz) and two benzylic methylenes ($\delta 2.83$, 4H, s). The above data indicated that 1 was a bibenzyl with two phenolic hydroxyls and one 2,2-dimethylallyl group. The substitution pattern of the benzene rings and the position of each functional group were confirmed by difference NOE experiments on 1 and 4. NOEs were observed between (i) benzylic methylene protons (H- α) and H-6, (ii) H- α and H-1' in 1 and between (i) H- α and H-6, (ii) H- α and H-1', (iii) H-4 and OMe-5, (iv) H-6 and OMe-5 and (v) H-4 and OMe-3 in 4. Thus, the structure of 1 was shown to be 3,5-dihydroxy-2-(3-methyl-2-butenyl)bibenzyl. The ¹³C NMR spectra of 1 and 4 supported this structure. All the carbon signals of 1 and 4 (Table 2) were assigned by the long range ¹H-¹³C 2D COSY NMR spectra and it

^{*}Part 39 in the series 'Chemosystematics of Bryophytes'. For Part 38, see ref. [25].

Н	-	2	3	4	5	6	7	8	6	10	12
5		- 		A MARKAN A				6.63 d (1.3)			
0 4 v	— 6.23 d (2.4)*	6.30 d (2.3)	6.31 d (2.6)	6.35 d (2.4)	6.23 d (2.5)	6.35 d (2.7)	6.34 d (2.7)		6.21 d (2.4)	 6.343 d (0.7)	(0.01) b 00.0 6.44 d (10.0)
n vo r	6.26 d (2.4)	6.26 d (2.3)	6.34 d (2.6)	6.31 d (2.4)	6.28 d (2.5)	6.31 d (2.7)	6.30 d (2.7)	(0.0) n CO.7 (0.1 dd (8.6, 1.3)	6.33 d (2.4)	6.341 d (0.7)	6.18 s
~ 8											— 6.19 s
1,	3.28 d (6.4)	3.29 d (6.4)	3.30 d (7.8)	3.32 d (6.6)	3.27 d (6.4)	3.32 d (6.3)	3.31 d (6.6)	3.28 d (7.2)	2.48 dd (16.5, 5.4 2.72 dd (16.5, 5.4	4) 2.67 t (7.4) 4)	1.40 s
, r,	5.09 t (6.4)	5.05 t (6.4)	5.11 t (7.8)	5.08 t (6.6)	5.08 t (6.4)	5.07 t (6.3)	5.11 t (6.6)	5.29 t (7.2)	3.72 t (5.4)	, 1.67 t (7.4)	1.40 s
0 A	1.72 s	1.66 s	1.73 s	1.66 s		2.00 m			— 1.24 s ^ª	1.28 s	
5'	1.79 s	1.74 s	1.80 s	1.75 s	2.02 m	2.00 m	2.04 m	1.73 s	1.29 s ^a	1.28 s	-
6'					5.03 t (6.4)	5.05 t (6.3)	5.04 t (6.6)	-			
7'		1			-			ļ	1	-	-
8			1		1.55 s	1.55 s	1.57 s	ļ		- All All All All All All All All All Al	-
9,		-			1.63 s	1.62 s	1.65 s				
10′	-	1			1.74 s	1.74 s	1.78 s	1		1	1
ø	2.83 s	2.83 s	2.85 m	2.86 s	2.77 brs	2.86 s	2.85 m	2.84 s	2.76 m	2.86 s	2.80 br s
β	2.83 s	2.86 s	2.85 m	2.86 s	2.77 br s	2.88 s	2.85 m	2.84 s	2.83 m	2.86 s	2.80 br s
2"6"	7.17 m	7.19 m	7.18 m	7.20 m	7.13 m	7.20 m	7.17 m	7.07 d (8.4)	7.14 m	7.20 m	7.17 m
3"5"	7.28 m	7.29 m	7.29 m	7.29 m	7.24 m	7.29 m	7.30 m	6.75 d (8.4)	7.26 m	7.29 m	7.28 m
4.	7.19 m	7.20 m	7.22 m	7.21 m	7.15 m	7.19 m	7.17 m		7.18 m	7.20 m	7.18 m
НО	4.80 br s	4.69 br s	5.19 s		5.71 br s	1	5.35 s	4.68 br s	5.20 br s	A	4.83 br s
	5.25 br s				6.12 br s						
3-OMe		3.78 s		3.79 s	1	3.79 s		3.79 s			
5-OMe			3.73 s	3.75 s		3.75 s	3.71 s		3.73 s	3.73 s	
6-OMe			1		-		_	ļ			
7-OMe	-			An observable				1. Second		*******	
CO ₂ Me						į	-		ļ		

*Coupling constants (J in Hz) are given in parentheses. *Assignments may be interchangeable in each vertical column.

Table 1. ¹H NMR (400 MHz) spectral data for compounds 1-10 and 12-23 (CDCl₃-TMS)

220

Y. ASAKAWA et al.

Н	13	14	15	16	17	18	19	20	21	22	23
5			- Marchard							7.47 d (2.2)	7.51 d (2.2)
3	5.50 d (10.0)	5.55 d (10.0)	5.51 d (10.0)	5.52 d (10.0)	5.63 d (10.0)	5.46 d (10.0)	5.46 d (10.0)	5.51 d (10.0)	5.52 d (10.0)	6.65 dd (2.2, 1.0)	6.67 dd (2.2, 1.0)
4	6.45 d (10.0)	6.59 d (10.0)	6.62 d (10.0)	6.68 d (10.0)	6.54 d (10.0)	6.47 d (10.0)	6.48 d (10.0)	6.52 d (10.0)	6.49 d (10.0)		
5	I	The second se	Ì	weather	ł		1	-		6.62 d (2.2)	6.70 d (2.2)
6	6.26 s	6.11 s	6.18 d (1.0)	I		6.16 d (2.4)	6.24 d (2.4)				
7	I			ļ				I		6.83 dd (2.2, 1.0)	6.90 br d (2.2)
8	6.27 s	6.30 s	6.33 d (1.0)	6.22 s	6.47 s	6.18 d (2.4)	6.26 d (2.4)	6.30 br d	6.31 s		
1′	1.41 s	1.42 s	1.41 s	1.43 s	1.43 s	1.66 m	1.67 m	1.66 m	1.67 m	1	
2'	1.41 s	1.42 s	1.41 s	1.43 s	1.43 s	2.08 m	2.09 m	2.05 m	2.09 m		[
3,						5.10 t (7.0)	5.10 t (7.0)	5.07 t (7.0)	5.10 t (7.0)		
4				I		ļ	I				
5'						1.58 s	1.58 s	1.57 s	1.58 s		
6'			-			1.66 s	1.66 s	1.65 s	1.67 s	1	1
7'		1		\$	[1.36 s	1.37 s	1.33 s	1.38 s		1
8,			1			ļ]			ŀ	ļ
9,						- Add Amount	surface series		ļ		1
10'	Ì			I				I	I		
ø	2.86 br s	2.77 m	2.81 m	3.18 m	2.83 m	2.83 s	2.85 br s	3.27 m	2.81 s	3.05 s	3.09 m
β	2.86 br s	2.86 m	2.87 m	2.85 m	2.83 m	2.83 s	2.85 br s	2.77 m	2.81 s	3.05 s	2.99 m
2"6"	7.18 m	7.17 m	7.18 m	7.17 m	7.18 m	7.17 m	7.18 m	7.13	7.20 m	7.20 m	7.20 m
3"5"	7.28 m	7.28 m	7.28 m	7.25 m	7.28 m	7.28 m	7.28 m	2	7.29 m	7.28 m	7.29 m
4"	7.18 m	7.18 m	7.19 m	7.17 m	7.19 m	7.19 m	7.19 m	7.29 m	7.20 m	7.20 m	7.20 m
НО	I	4.82 br s	-	I		4.89 br s	1			7.10 brs	
3-OMe		1		1							
5-OMe			3.76 s		3.80 s						ł
6-OMe		-	-			İ			1		3.83 s
7-OMe	3.73 s		1				3.73 s	ļ	3.79 s		
CO ₂ Me					3.90 s	-			3.89 s	1	

Table 1. Continued

221

C	1	7	e	4	N)	6	٢	6	10	12	13	14	15	16	17	18	19	20	21	77	23	
	142.1	142.0	141.8	142.0	142.0	142.0	144.7	142.4	141.9										1			
2	117.6	120.7	117.4	120.7	117.6	120.9	117.6	109.3	119.7	75.6	75.6	75.9	75.9	77.5	76.4	78.0	6.77	78.7	78.5	143.1	143.5	
3	155.7	158.7	155.7	158.4	155.9	158.5ª	155.7	155.4	155.3	127.9	127.9	128.5	128.1	127.6	130.1	127.0	126.9	127.8	127.7	111.5	111.5	
4	101.4	97.0	6.66	96.4	101.5	96.5	100.0	102.0	100.1	118.7	118.9	116.3	116.8	116.2	116.6	119.2	19.2	119.2	118.8	135.2	135.3	
5	154.4	154.3	158.6	158.4	154.4	158.4ª	158.5	153.7	158.5	139.1	138.8	151.1	155.1	158.3	154.0	139.0	138.7	140.8	136.1	104.7	104.8	
6	108.9	107.9	107.8	105.6	108.9	105.8	107.7	109.0	107.2	108.7	107.9	107.9	103.5	103.8	112.8	108.5	107.7	109.7	112.3	154.6	158.0	
7										155.9	160.0	143.5	143.4	147.8	141.4	154.9	60.0	153.7	157.3	95.8	93.6	
8			******	-	i	-	I		l	102.0	100.1	109.3	109.4	111.8	113.2	101.9	0.00	103.3	98.4	155.8	155.8	
6				-				I	1	154.6	154.5	153.9	153.6	160.5	155.0	155.9	54.8	159.5	155.8	119.4	120.1	
10						I	l			112.9	112.8	107.4	108.5	107.6	120.2	112.8 1	12.6	113.3	116.5			
١,	24.9	24.4	24.9	24.4	24.8	24.4	24.9	28.4	19.4	27.7	27.7	27.8	27.8	28.3	27.9	41.0	41.0	41.4	40.1		I	
2'	122.6	123.8 1	122.6	123.8	123.8	124.4	122.6	6.69	42.9	27.7	27.7	27.8	27.8	28.3	27.9	22.7	22.7	22.7	22.7	-	[
3, 1	134.2	130.7	134.3	130.5	138.1	134.2	137.7	76.3	71.9			1	1			124.2	124.2	123.9	124.0		I	
4	25.7	25.7	25.7	25.7	39.6	39.7	39.6	24.6	29.5	ļ	I					131.7	131.6	131.8	131.8	1	1	
S'	18.0	17.9	18.0	17.9	26.4	26.7	26.4	21.9	29.5							25.7	25.7	25.6	25.7			
6,			I		122.5	123.9	123.8		-					-	I	17.7	17.6	17.6	17.6		I	
7'				I	132.0	131.2	131.9		ł	I				-		26.2	26.2	26.7	26.3	1	ļ	
òć					25.7	25.7	25.6	1	-	ļ		I					I		I	1		
9'					17.7	17.7	17.7			I	-	-		ļ		1	I	I		I	ļ	
10′		-	Ι	I	16.2	16.3	16.2	[I	I	I		ļ			1	1				ł	
ø	35.7	35.2	35.9	35.5	35.7	35.6	35.9	34.5	35.5	34.4	34.6	37.4	37.6	38.0	36.1	34.4	34.6	31.8	32.2	35.2	35.4	
β	37.5	37.5	37.7	37.6	37.5	37.6	37.6	36.6	37.8	37.4	37.5	37.9	38.5	38.9	37.6	37.4	37.5	37.1	37.4	36.7	36.8	
1" I	141.7	142.0	141.8	141.6	141.7	141.8	141.7	141.7	141.4	141.6	141.6	141.7	141.8	142.0	141.6	141.6	(41.7	142.0	141.6	141.7	141.7	
2"6"	128.4	128.4	128.4	128.3	128.4	128.4	128.4	128.4	128.4	128.4	128.4	128.3	128.3	128.4	128.4	128.4	128.4	128.3	128.3	128.3	128.4	
3"5"	128.4	128.4	128.4	128.3	128.4	128.4	128.4	128.5	128.5	128.4	128.4	128.4	128.5	128.4	128.4	128.4	28.4	128.4	128.5	128.3	128.4	
4"	126.0	125.9	126.0	125.9	126.0	125.9	126.0	126.0	126.0	126.0	126.0	125.9	126.0	125.9	126.0	126.0	126.0	125.9	126.1	125.5	126.0	
3-OMe		55.6		55.4		55.7			A		I	-	I	I	I	I	ł		I		ł	
5-OMe		I	55.2	55.1	I	55.3	55.1		55.2	and the second second	un under Adult		55.6		52.1				1			
6-OMe		-	VIDENT				I			ļ	I			I	I			-	ļ	1	55.7	
7-OMe				I	I	I					55.2	-			-	ļ	55.2		52.2		I	
CO ₂ Me										1	1				63.1				55.9			
8			ł		I									175.5	68.5			163.1	169.0			
																						1
*All as	signmen	ts were (confirme	d by the	INEPT,	Der-Hr	and long	range 1	H-LOC C	osys.												
"Assign	ments n	nay be in	nterchan	geable ir	n each ve	rtical col	umn.															

Table 2. $^{13}\mathrm{C}\,\mathrm{NMR}$ (100 MHz) spectral data for 1–7, 9, 10 and 12–23 (CDCl_3–TMS)*

222

Y. ASAKAWA et al.

A high resolution mass spectrum established the molecular formula, $C_{20}H_{24}O_2$, for 2. Its ¹H NMR spectral data (Table 1) were quite similar to those of 1, except for the presence of one methoxyl group (δ 3.78, 3H, s) in place of a hydroxyl group in 1, suggesting that one of the two phenolic hydroxyl groups is methylated in 2. The

position of the methoxyl group at C-3 was established by the difference NOE examination of 2 and thereby the NOEs were observed between (i) H- α and H-6, (ii) H- α and H-1', (iii) H- α and H-2' and (iv) H-4 and OMe-3. Thus, the structure of 2 was determined to be 3-methoxy-5-hydroxy-2-(3-methyl-2-butenyl)bibenzyl. The structure (2) was conclusively confirmed by synthesis (see later).

Compound 3 possessed the same molecular formula $C_{20}H_{24}O_2$ as that of 2, and its ¹H and ¹³C NMR spectral patterns were almost identical to those of 2 with the difference of their chemical shifts, showing that 3 was 3-hydroxy-5-methoxy-2-(3-methyl-2-butenyl) bibenzyl. This assumption was confirmed by difference NOE experiments. NOEs were observed between (i) H-4 and OMe-5, (ii) H-6 and OMe-5, (iii) H- α and H-6 and (iv) H- α and H-2'. Furthermore, this structure was supported by the ¹³C NMR (Table 2) and its synthesis (see later).

Compound 5, $C_{24}H_{30}O_2$ ([M]⁺ 350.2229) had a hydroxyl group (3600 cm⁻¹) and an aromatic ring (λ 232, 265 nm; 1620, 1598 cm⁻¹). Treatment of 5 with methyl iodide gave a dimethyl ether (6), $C_{26}H_{34}O_2$ ([M]⁺ m/z 378.2554; δ 3.75, 3.79 each 3H, s), indicating the presence of two phenolic hydroxyl groups in 5. The ¹H and ¹³C NMR spectral data (Tables 1 and 2) of 5 and 6 resembled those of 1 and 4, except for the presence of three vinylic methyls, two additional allylic methylenes and one proton on a trisubstituted double bond, suggesting that 5 might be 2-geranyl-3,5-dihydroxybibenzyl. This assumption was further confirmed by a NOE experiment on 5 and 6. NOEs were observed between (i) H- α and H-6 and (ii) H- α and H-2' in 5 and between (i)H-6 and OMe-5, (ii) H-4 and OMe-5 and (iii) H-4 and OMe-3 in 6. Recently, Crombie et al. [13] predicted the presence of 2- and 4-geranyl-3,5-dihydroxybibenzyls (= o- and pcannabigerols) (5 and 43) in plants and synthesized them by geranylation of 3,5-dihydroxybibenzyl (41) with geraniol in the presence of *p*-toluene sulphonic acid and at the same time, pointed out that our previously reported 3,5-dihydroxy-4-geranylbibenzyl (43) isolated from R. complanata [7], R. javanica (= R. variabilis) [2] and R. tokiensis [4] should be revised to 2-geranyl-3,5dihydroxybibenzyl (5). We also synthesized 5 and 3,5dimethoxy-4-geranylbibenzyl (44) using a different prenylation method (see later) and carefully compared their spectral data with those of natural products and their methyl ethers. In fact, the natural geranyl bibenzyl isolated from the present and previously reported species was identical to 2-geranyl-3,5-dihydroxybibenzyl (5). More recently, we found that some Radula species collected in Ecuador produced both 2- and 4-geranylbibenzyls (5 and 43) [Asakawa, Y. and Kondo, K., unpublished results].

A minor compound 8, $C_{20}H_{24}O_2$ ([M]⁺ m/z 296) showed the presence of one methoxyl group ($\delta 3.79$, 3H, s), a p-hydroxybenzyl group [m/z 107 (79%); 6.75, 7.07 (each 2H, d, J=8.4 Hz)], a 1,3,4-trisubstituted benzene ring ($\delta 6.63$, 1H, d, J=1.3 Hz, 6.71, 7.03, each 1H, dd, J=8.6, 1.3 and d, J=8.6 Hz) with a 2,2-dimethylallyl group and two benzyl methylenes (Table 1). The position of the methoxyl and prenyl groups were determined by difference NOE measurement. NOEs were observed between (i) H- α and H-2, (ii) H- α and H-6, (iii) H- β and H-2", (iv) H- β and H-6" and (v) H-2 and OMe-3. The above data established that 8 was 3-methoxy-4'-hydroxy-4-(3methyl-2-butenyl)bibenzyl. The presence of 8 in R. oyamensis has been suggested by GC-MS [5]. The identity of the mass spectrum of 8 with that obtained from the GC- MS of the crude extract of *R. oyamensis* further supported the existence of 8 in *R. oyamensis*.

The ¹H NMR signal pattern of compound 9, $C_{19}H_{22}O_3$ ([M]⁺ m/z 298.1550), was similar to that of 1, except for the presence of a 2-methyl-2,3-epoxybutyl group (δ 1.24, 1.29, each 3H, s, 2.48, 2.72, each 1H, dd, J = 16.5, 5.4 Hz; δ 28.4 t, 69.9 d, 76.3 s), in place of a 2,2dimethylallyl group, suggesting that 9 was 3,5-dihydroxy-2-(2,3-epoxy-3-methylbutyl)bibenzyl. Oxidation of 1 with m-chloroperbenzoic acid afforded an epoxide, the spectral data of which were identical to those of the natural epoxide 9.

The ¹H and ¹³C NMR spectra of compound 10, $C_{20}H_{26}O_3$ ([M]⁺ m/z 314.1914) showed the same bibenzyl substitution pattern as that of 1-3. The presence of a methoxyl and a 2-hydroxy-2-methylbutyl groups was confirmed by the ¹H and ¹³C NMR signals (δ 1.28, 6H, s, 1.67, 2.67 each t, J = 7.4 Hz; δ 19.4, t, 42.9, t, 29.5, q, 71.9, s). A difference NOE experiment indicated the presence of NOEs between (i) H- α and H-1', (ii) H- α and H-2', (iii) H-4 and OMe-5 and (iv) H-6 and OMe-5. The above data suggested that 10 was 3-hydroxy-5-methoxy-2-(3hydroxy-3-methylbutyl)bibenzyl. This assumption was further confirmed by the following chemical reaction. Treatment of 10 with p-toluenesulphonic acid gave a chroman (11), $C_{20}H_{24}O_2$ ([M]⁺ m/z 296.1795; δ 1.30, 6H, s) and a dehydrated product whose spectral data were identical to those of 3.

The high resolution mass spectrometry established the molecular formula, $C_{19}H_{20}O_2$ ([M]⁺ m/z 280.1459), for 12. That compound 12 was a bibenzyl derivative with a non-substituted benzyl group and 1,2,4-trisubstituted benzyl group was confirmed by the ¹H NMR (δ 7.17, 3H, m; 7.28, 2H, m; 6.18, 6.19, 1H, br s, 2.80, 4H, br s) and by the ¹³C NMR spectrum (Table 2). Methylation of 12 with methyl iodide afforded a monomethyl ether (13), $C_{20}H_{22}O_2$ ([M]⁺ m/z 294.1610), which was also isolated from the same species. The UV and ¹H NMR spectra further showed the presence of a 2,2-dimethyl chromene moiety in 12 since absorption bands were observed at λ 305 and 312 nm in UV and chemical shifts at δ 5.50, 6.44 (each 1H, d, J = 10.0 Hz) and 1.40 (6H, s) [14, 15], together with the higher field carbon signal ($\delta 102.0 d$, C-8). On the basis of the above data, 12 and 13 are suggested to be 2,2-dimethyl-5-(2-phenylethyl)-7hydroxychromene and its 7-methyl ether, respectively. This presumption was further proved by the measurement of the difference NOE of 13 and thereby NOEs were observed between (i) H- α and H-4, (ii) H- α and H-6, (iii) H-6 and OMe-7 and (iv) H-8 and OMe-7. The chromene (13) was further synthesized to establish the structure (12) (see later).

The molecular formula, $C_{19}H_{20}O_2$ ([M]⁺ m/z 280.1443), of 14 was identical to that of 12 and its spectral data indicated the presence of a 2,2-dimethylchromene group [14, 15], a 2-phenylethyl group and a 1,2,3,5tetrasubstituted benzene ring (Tables 1 and 2). Methylation of 14 with methyl iodide gave a monomethyl ether (15), $C_{20}H_{22}O_2$ ([M]⁺ m/z 294.2609; $\delta 3.76$, 3H, s), indicating the presence of one phenolic hydroxyl group. The similarity of the ¹H and ¹³C NMR spectra of 14 and 15 with those of 12 and 13 suggested that 14 and 15 were 2,2dimethyl-5-hydroxy-7-(2-phenylethyl)chromene and its methyl ether. This was further supported by the measurement of the difference NOE of 15 and thereby NOEs were observed between (i) H-6 and OMe-5, (ii) H- α and H-6 and (iii) H- α and H-8. Conclusive evidence for structure 14 was obtained by the synthesis of 15 (see later).

Compound 16, $C_{20}H_{20}O_4$ ([M]⁺ m/z 324.1357) obtained from the polar fraction had a hydrogen bonded carboxylic group (3600-3400, 1640 cm⁻¹; δ 175.5, s). Methylation of 16 with methyl iodide gave a methyl ester (17), ($C_{22}H_{24}O_4$ ([M]⁺ m/z 352.1656); δ 3.80, 3H, s, OMe, 3.90, 3H, s, CO₂Me). The NMR signal pattern (Tables 1 and 2) of 16 and 17 resembled those of the chromenes 14 and 15, suggesting that 16 contained the carboxylic group at C-6 of 14. This hypothesis was further proved by the presence of difference NOEs between (i) H- α and H-8 in 16 and between (i) H- α and H-8 and (ii) H-4 and OMe-5 in 17. On the basis of the above data, 16 is established to be 2,2-dimethyl-5-hydroxy-6-carboxy-7-(2-phenylethyl)chromene.

Compound 18, $C_{22}H_{28}O_2$ ([M]⁺ m/z 348.2115), was an unstable liquid which gradually polymerized to become a brown oil at room temperature. Methylation of 18 with methyl iodide afforded a monomethyl ether (19), $C_{25}H_{30}O_2$ ([M]⁺ m/z 362.2256; δ 3.73, 3H, s), indicating the presence of one phenolic hydroxyl group in 18. The ¹H NMR signal pattern of 18 was similar to that of 12, except for the presence of two sp³ methylenes, two vinyl methyls and one proton on a trisubstituted double bond, in place of one of two tertiary methyl groups, suggesting that 18 was a chromene derivative formed by cyclization between the hydroxyl group at C-3 and C-3' of 2-geranyl-3,5-dihydroxybibenzyl (5). This assumption was further confirmed by the presence of a base peak at m/z 265 corresponding to $[M-C_6H_{11}]^+$ [16, 17] and by the ¹³C NMR spectrum (Table 2). The substitution pattern and the position of the phenolic hydroxyl group at C-7 and the 2-phenylethyl group at C-5 were established by the presence of difference NOEs between (i) H- α and H-4, (ii) H- α and H-6, (iii) H-6 and OMe-7 and (iv) H-8 and OMe-7 in 19. The absolute configuration of C-2' in 18 and 19 was established to be S by the presence of positive Cotton effects at 262 nm in 18 and 271 nm in 19, in their CD spectra [15]. Consequently, 18 was 2(S)-2-methyl-2-(4-methyl-3-pentenyl)-7-hydroxy-5-(2-phenylethyl) chromene. The methyl ether (19) was synthesized from 6 by dehydrogenation with DDQ (see later). Crombie et al. [13] have synthesized (\pm) -o-cannabichromene (18) and its p-isomer by base catalysed chromenylation of 3,5dihydroxybibenzyl (41) with citral by heating. The spectral data of the natural product (18) were identical to those of synthetic o-cannabichromene.

Compound 20, $C_{25}H_{28}O_4$ ([M]⁺ m/z 392.1977), was obtained as a liquid from the polar fraction. It was very unstable and again gradually decomposed to give a brown oil. The IR spectrum of 20 indicated the presence of a hydrogen bonded carboxyl group (3500-3100; 1635 cm⁻¹; δ 163.1, s). Compound 20 when treated with methyl iodide gave a carbomethoxy derivative (21), $C_{27}H_{32}O_4$ ([M]⁺ m/z 420.2302; δ 3.89, 3H, s; δ 169.0, 55.9 each s) with a methoxyl group (δ 3.79, 3H; δ 52.2, s). The above data showed that the carboxyl and phenolic hydroxyl groups were placed at an ortho position. The ¹H and ¹³C NMR spectra of 20 and 21 were similar to those of the chromenes (18 and 19), except for the absence of one aromatic proton signal. The above spectral and chemical evidence indicated that compound 20 was a chromene carboxylated at C-6 of 18. Conclusive evidence for this assumption was obtained by the presence of the NOEs between (i) H- α and H-4 and (ii) H-8 and OMe-7 in

21. The absolute configuration at C-2' was also determined as S since the CD spectra of 20 and 21 showed positive Cotton effects at 250.5 nm in 20 and 275 nm in 21 [15]. Thus, 2(S)-2-methyl-2-(4-methyl-3-penten-yl)-6-carboxy-7-hydroxy-5-(2-phenylethyl)chromene is given as 20.

The final compound 22, $C_{16}H_{14}O_2$ ([M]⁺ m/z238.1015), possessed a hydroxyl group (3580 cm^{-1}) , an aromatic ring (1620, 1600 cm⁻¹), a non-substituted benzyl group (m/z 91 (base); δ 7.20, 3H, m, 7.28, 2H, m), two benzylic methylenes (δ 3.05, 4H, s) and meta-coupled protons (δ 6.62, 1H, d, J = 2.2, 6.83, 1H, dd, J = 2.2, 1.0 Hz), one of which showed long range coupling (J = 1.0 Hz). Methylation of 22 with methyl iodide gave a monomethyl ether (23), $C_{17}H_{16}O_2$ ([M]⁺ m/z 252.1137; δ 3.83, 3H, s; δ 55.7, s), showing the presence of one phenolic hydroxyl group in 22. One of the two oxygens of 22 was suggested to be the ether oxygen atom since neither a carbonyl nor a hydroxyl absorption band was observed in the IR spectrum of 23. The ¹H NMR spectral data of 22 and 23 and decoupling experiments of 22 showed the presence of a 4,6-disubstituted benzofuran; irradiation of the doublet and $\delta 7.47$ (J = 2.2, H-2) caused the double doublet at $\delta 6.65$ (J = 2.2, 1.0 Hz, H-3) to collapse to a doublet (J = 1.0 Hz). Irradiation of the double doublet at $\delta 6.83$ (J = 2.2, 1.0 Hz, H-7) caused the doublet at $\delta 6.62 (J = 2.2, H)$ 5) and the double doublet at $\delta 6.65$ (J = 2.2, 1.0, H-3) to collapse to a singlet and a doublet (J = 1.0 Hz), respectively, indicating long range coupling between H-3 and H-7. Conclusive evidence of the substitution pattern of each benzene ring and the position of each functional group on the benzofuran ring were provided by the presence of NOEs between (i) H-5 and OMe-6, (ii) H-7 and OMe-6 and (iii) H- α and H-5. Thus, the structure of 22 is elucidated as 6-hydroxy-4-(2-phenylethyl)benzofuran.

Syntheses of prenyl bibenzyls 1-3

We focused on pinosylvin (26) and pinosylvin monomethyl ether (27) obtained from the higher plant, Alnus sieboldiana (Betulaceae) [18] to synthesize 1-3 and 5. Stilbene derivatives (26 and 27) are obtained from male buds of A. sieboldiana in high yield. The stilbene (27) was hydrogenated in the presence of 10% Pd-C to give 3-hydroxy-5-methoxybibenzyl (29). The methanol solution of 29 was treated with 28% sodium methoxide in methanol and the reaction mixture was prenylated with 2,2-dimethylallylbromide to give prenylated products which were purified by column chromatography on silica gel to afford 3-hydroxy-5-methoxy-2-(3-methyl-2-butenyl) bibenzyl (3) (34.9%), 3-hydroxy-5-methoxy-4-(3methyl-2-butenyl)bibenzyl (30) (27.2%), 3-hydroxy-2,4-di (3-methyl-2-butenyl)bibenzyl (32) (2.2%) and 3-(2,2-dimethylallyloxy)-5-methoxybibenzyl (34) (6.8%), respectively (Scheme 1). Compound 3 was also prepared from 29 by the following method (Scheme 2). The dihydrostilbene (29) was treated with 3-chloro-3-methyl-1-butyne in the presence of potassium carbonate to give the etherated product (36), which was hydrogenated in the presence of Pd-BaSO₄ to afford a dihydro product (37), followed by heating at 140° in xylene to furnish 3 (10.4%) and 30 (11.7%). Treatment of 37 with silica gel at room temperature also gave 3 (13.5%) and 30 (17.8%). These two synthetic routes for 3 produced byproducts and the yield of 3 was low. To improve the above synthetic methods, the regioselective introduction of a prenyl group to C-2

Scheme 1. Synthesis of prenyl bibenzyls from stilbene derivative 27.

(1) CH $\equiv C - C(Me)_2 Cl$ (2) H₂/Pd-BaSO₄/quinoline (3) xylene/140° or (4) S₁O₂, n-C₆H₁₄ + C₆H₆, room temp.

Scheme 2. Synthesis of prenyl bibenzyls from stilbene derivative 29.

for 27 was carried out as follows (Scheme 3). The 3,5dimethoxybibenzyl (28) obtained from 29 by methylation with methyl iodide was brominated with N-bromosuccinimide (NBS) to give a monobromide (38) (79.5%) and a dibromide (39) (6.4%). The former bromide (38) was treated with *n*-butyl lithium (*n*-BuLi) and then prenylated with 2,2-dimethylallyl bromide to afford 3,5-dimethoxy-2-methyl-2-butenyl)- (4) (58%) which was also prepared from 3 by methylation with methyl iodide, and 3,5dimethoxybibenzyl (28) (38%). Treatment of 4 with BBr₃

 $Me_2C == CH(CH_2)_2C(Me) == CHCH_2Br$

Scheme 3. Synthesis of prenyl bibenzyls from stilbene derivative 28.

gave a demethyl product (1) (19.8%) and a chroman derivative (40) (67%) which was formed from 1 (Schemes 3 and 4). On the other hand, 4 was treated with NaH in the presence of ethanethiol (EtSH) to yield two mono demethyl products (2) (28.0%) and 3 (34.4%). Furthermore, the reaction of 3 with NaH in EtSH and hexamethylphosphoric triamide (HMPA) gave 1 (52.5%) and the deprenylated product, 41 (17.8%) (Scheme 4). Compound 1 was also prepared from 26. Hydrogenation of 26 gave a dihydro derivative (41) which was treated with sodium methoxide and 2,2-dimethylallylbromide to afford 1 (21.6%), and two 2,2-dimethylchromans (40) (17.9%) and 42 (17.2%), respectively (Scheme 5).

Synthesis of 5 and 44

Compound 29 was treated with geranylbromide in the presence of sodium methoxide to give 2-geranyl-3hydroxy-5-methoxybibenzyl (7) (29.7%), 3-hydroxy-5methoxy-4-geranylbibenzyl (31) (21.8%), 3-hydroxy-5methoxy-2,4-digeranylbibenzyl (33) (6.1%) and 3geranyloxy-5-methoxybibenzyl (35) (6.7%), respectively (Scheme 1). In order to obtain 2-geranyl-3,5-dimethoxybibenzyl (6), 28 was treated with NBS, followed by prenylation with geranylbromide in n-BuLi to furnish 6 (58.5%) which was also obtained from 7 by methylation with methyl iodide (Scheme 3). Compound 7 was then treated with EtSNa in HMPA to yield 2-geranyl-3,5dihydroxybibenzyl (5) (61.2%) and a dealkyl product (41) (14.8%) (Scheme 5). Compound 28 was treated with n-BuLi and geranylbromide to give 4-geranyl-3,5dimethoxybibenzyl (44) which was also prepared from 31 by methylation (Scheme 3).

Synthesis of 13, 15 and 19

3-Hydroxy-5-methoxy-2-(3-methyl-2-butenyl)bibenzyl (3) was treated with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in benzene to give 2,2-dimethyl-7-methoxy-5-(2-phenylethyl)chromene (13) (36.3%) (Scheme 6). The same treatment of 3-hydroxy-5-methoxy-4-(3-methyl-2-butenyl)bibenzyl (30) and 2-geranyl-3hydroxy-5-methoxybibenzyl (7) as described above gave 2,2-dimethyl-5-methoxy-7-(2-phenylethyl)chromene (15) (62.3%) and 2-methyl-2-(4-methyl-3-pentenyl)-7-methoxy-5-(2-phenylethyl)chromene (19) (72.9%) (Scheme 6). The spectral data of the synthetic bibenzyls (1-3, 5, 13, 16 and 19) were identical to those of the natural products. The structures of all intermediates and byproducts during the course of the syntheses of the natural bibenzyls were established by analyses of their spectral data (UV, IR, ¹H and ¹³C NMR, ¹H-¹H, ¹H-¹³C and long range ¹H-¹³C NMR and difference NOE, mass spectrometry) and elemental analyses.

The Radulaceae are taxonomically divided into three subgenera: Radula, Cladoradula and Odontoradula [19]. Previously, we studied the chemical constituents of species belonging to the Radula and Cladoradula and reported that the former produced characteristic bibenzyls with a dihydrooxepin skeleton (seven-membered ring) and the latter elaborated bibenzyls with a fivemembered ring, together with 2-prenyl-3,4,5-trihydroxybibenzyls [1-5, 7]. The present species belonging to the Odontoradula biosynthesized the bibenzyls with a 2,2dimethylchromene skeleton (six-membered ring), along with 2-prenyl-3,5-dihydroxybibenzyls. These chemical differences among the three genera support the modern classification of the Radulaceae [19]. Almost all the compounds isolated from Radula species are bibenzyl derivatives and the presence of terpenoids is extremely rare. These data also support that the Radulaceae is a very isolated family in the Jungermanniales [19]

Prenyl bibenzyl derivatives possess antimicrobial and antifungal properties [20-23]. Compounds 1 and 5 showed 5-lipoxygenase (50% at 10^{-6} mol in 1 and 11% at 10^{-6} mol in 5) and calmodulin inhibitory activity (ID₅₀ 4.9 µg ml⁻¹ in 1 and 4.0 µg ml⁻¹ in 5).

(1) BBr_{3} , -78° to -40° (2) E_1SN_a/DMF , 170° (3) $E_1SN_a/HMPA$, 180° Scheme 4. Synthesis of prenyl bibenzyls from compound 4.

Scheme 5. Synthesis of prenyl bibenzyls from compound 26.

EXPERIMENTAL

Mps: uncorr. Solvents used for spectral measurements were TMS-CDCl₃ [¹H NMR (400 MHz); ¹³C NMR (100 MHz)]; EtOH (UV); MeOH (CD and $[\alpha]_D$); CHCl₃ (IR), unless otherwise stated. CHCl₃-MeOH (1:1) was used for Sephadex LH-20 CC. TLC, GC and GC-MS were carried out as previously reported [24].

Plant material. R. kojana Steph. was collected in Kainan-cho, Todoroki, Tokushima in April 1985 and identified by Dr M. Mizutani and Y.A. A voucher specimen is deposited in The Institute of Pharmacognosy, Tokushima Bunri University.

Extraction and isolation. Air-dried R. kojana (237 g) was extracted with MeOH for 1 month. The resultant MeOH extract evapd in vacuo gave a green oil (15.1 g). A small amount of the crude extract was analysed by TLC, GC and GC-MS to detect the presence of trans- β -farnesene, 2-hydroxycuparene, campe-, stigma- and sitosterol. The remaining material (15.05 g)

was chromatographed on silica gel using a C₆H₆-EtOAc gradient to give 5 frs. Fr. 1 (C₆H₆ 100%, 1.289 g) was further chromatographed on silica gel using a *n*-hexane- C_6H_6 gradient to give chromene (13) (55.8 mg). Fr. 2 (2% EtOAc, 705 mg) was rechromatographed on Sephadex LH-20 and then silica gel using C_6H_6 and purified by prep. TLC (*n*-hexane-EtOAc, 4:1) to afford bibenzyls (2) (5.3 mg), 3 (6.5 mg), 8 (1.9 mg), 9 (16 mg), 14 (7.3 mg) and 18 (17.8 mg). Fr. 3 (5-10% EtOAc, 8.818 g) was further chromatographed on Sephadex LH-20 and then on silica gel using a C_6H_6 -EtOAc gradient to afford bibenzyls 1 (4.600 g), 5 (400 mg) and 22 (12 mg). Fr. 4 (20-50% EtOAc, 2.063 g) was rechromatographed on Sephadex LH-20 and then on silica gel using the same solvent system as described above and further purified by prep. TLC (C6H6-EtOAc, 4:1 or 9:1) to afford 1 (16.0 mg), 9 (39 mg), 10 (14 mg), 16 (22 mg), 20 (6 mg), 24 (16 mg) [5, 7] and 25 (8 mg) [5, 7]. Fr. 5 (EtOAc 100%, 4.3148 g) was also chromatographed on Sephadex LH-20, but no bibenzyls were isolated.

Compound 1. Mp 91.5–92.5° (from cyclohexane). UV λ_{max} nm (log ϵ): 215 (4.37), 230sh (4.03), 285 (3.44). IR ν_{max} cm⁻¹: 3600, 1620, 1595, 1495, 1450, 1370, 1130, 1040, 840, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 282.1637, C₁₉H₂₂O₂ requires 282.1620; EIMS m/z (rel. int.): 282 [M]⁺ (99), 227 (100), 225 (73), 191 (39), 177 (33), 149 (40), 91 (84).

Compound 2. Mp 63–64° (from *n*-hexane). UV λ_{max} nm (log ε): 218 (4.36), 230sh (4.20), 282.5 (3.60). IR ν_{max} cm⁻¹: 3600, 2940, 1602, 1595, 1462, 1080, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 296.1774, C₂₀H₂₄O₂ requires 296.1776; EIMS *m/z* (rel. int.): 296 [M]⁺ (74), 281 (8), 240 (29), 239 (100), 205 (12), 191 (33), 163 (22), 137 (10), 105 (13), 91 (38). Compound 3. Mp 40–41° (from *n*-hexane). UV λ_{max} nm (log ε): 215 (4.40), 230sh (4.06), 280 (3.47), 287.5 (3.75). IR ν_{max} cm⁻¹: 3600, 2950, 1618, 1585, 1495, 1450, 1140, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 296.1772, C₂₀H₂₄O₂ requires 296.1776; EIMS *m/z* (rel. int.): 296 [M]⁺ (100), 281 (8), 265 (17), 241 (77), 240 (29), 239 (71), 238 (9), 205 (26), 191 (37), 163 (25), 147 (29), 137 (29), 105 (16), 91 (62).

Compound 5. Mp 57–58° (from *n*-hexane). UV λ_{max} nm (log ϵ): 216 (4.40), 232sh (4.04), 285 (3.58). IR ν_{max} cm⁻¹: 3600, 1620, 1598, 1492, 1450, 1130, 835, 822, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 350.2229 C₂₄H₃₀O₂ requires 350.2246; EIMS *m/z* (rel. int.): 350 [M]⁺ (15), 265 (69), 227 (100), 225 (32), 189 (26), 105 (35), 91 (82), 69 (26). The ¹H and ¹³C NMR spectral data of 5 were identical to those of synthetic *o*-cannabigerol [13].

Compound 8. ¹H NMR (Table 1). EIMS *m/z* (rel. int.): 296 [M]⁺ (82), 241 (12), 239 (28), 180 (100), 107 (79).

Compound 9. Mp 90–91° (from Et₂O-cyclohexane). UV λ_{max} nm (log ε): 214 (4.32), 229sh (4.00), 280 (3.42), 287 (3.43). IR ν_{max} cm⁻¹: 3600, 2980, 1620, 1598, 1495, 1488, 1450, 1130, 1060, 1025, 1005, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 298.1550 C₁₉H₂₂O₃ requires 298.1569; EIMS *m/z* (rel. int.): 298 [M]⁺ (74), 265 (7), 227 (100), 225 (7), 207 (14), 91 (43).

Compound 10. Mp 97–98° (from *n*-hexane). UV λ_{max} nm (log ϵ): 214 (4.38), 230 (4.06), 280 (3.50), 287 (3.52). IR ν_{max} cm⁻¹: 3600, 2960, 1610, 1585, 1495, 1330, 1190, 1140, 1048, 960, 900, 830, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 314.1914, C₂₀H₂₆O₃ requires 314.1882; EIMS *m/z* (rel. int.): 314 [M]⁺ (12), 296 (37), 241 (100), 205 (36), 91 (43).

Compound 12. UV λ_{max} nm (log ε): 217 (4.29), 235 (4.11), 280 (3.73), 287 (3.74), 305 (3.56), 317 (3.52). IR ν_{max} cm⁻¹: 3550, 1610, 1580, 1490, 1448, 1135, 1125, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 280.1466, C₁₉H₂₀O₂ requires 280.1463; EIMS *m/z* (rel. int.): 280 [M]⁺ (21), 265 (100), 189 (7), 174 (31), 91 (10).

Compound 13. UV λ_{max} nm (log ε): 218 (4.30), 233 (4.21), 243 (4.04), 277 (3.77), 287 (3.78), 306 (3.57), 316 (3.53). IR ν_{max} cm⁻¹: 3000, 2980, 2850, 1608, 1490, 1140, 1120, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 294.1610, C₂₀H₂₂O₂ requires 294.1620; EIMS *m/z* (rel. int.): 294 [M]⁺ (21), 279 (100), 203 (7), 188 (29), 91 (9).

Compound 14. UV λ_{max} nm (log ε): 230 (4.31), 280 (3.94), 290 (3.91). IR v_{max} cm⁻¹: 3590, 2950, 2900, 1620, 1575, 1570, 1240, 1109, 1050, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 280.1443, C₁₉H₂₀O₂ requires 280.1463; EIMS *m/z* (rel. int.): 280 [M]⁺ (16), 265 (100), 189 (9), 174 (41), 91 (11).

Compound 16. Mp $122-123^{\circ}$ (from *n*-hexane-CHCl₃). UV λ_{max} nm (log ϵ): 207 (4.16), 248 (4.25), 290 (3.56), 330 (3.39). IR ν_{max} cm⁻¹: 3600-3400, 2980, 2930, 1640, 1618, 1565, 1495, 1465, 1452, 1372, 1265, 1122, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 324.1357, C₂₀H₂₀O₄ requires 324.1361; EIMS *m/z* (rel. int.): 324 [M] ⁺ (2), 309 (20), 291 (17), 265 (8), 150 (38), 122 (29), 105 (45), 104 (41), 91 (100), 77 (31), 51 (16).

Compound 18. UV λ_{max} nm (log ε): 220 (4.34), 237 (4.26), 245 (4.10), 280 (3.79), 288 (3.80), 307.5 (3.66), 318 (3.62). IR ν_{max} cm⁻¹: 3600, 2930, 1612, 1585, 1451, 1140, 1130, 692. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 348.2115, C₂₄H₂₈O₂ requires 348.2090; EIMS *m*/*z* (rel. int.): 348 [M]⁺ (7), 333 (4), 265 (100), 174 (21), 91 (13): [α]_D + 21.4° (c 0.14); CD: $\Delta \varepsilon_{262 \text{ nm}}$ + 0.6, $\Delta \varepsilon_{295 \text{ nm}}$ + 0.3 (c 1 98 × 10⁻³ mol 1⁻¹).

Comound 20. UV λ_{max} nm (log ε): 213 (4.39), 247 (4.11), 290 (3.64), 325 (3.34). IR ν_{max} cm⁻¹: 3600, 3500–3100, 2920, 1635, 1600, 1492, 1450, 1370, 1250, 1150, 1140, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 392.1977, C₂₃H₂₈O₄ requires 392.1988; EIMS *m/z* (rel. int.): 392 [M]⁺ (1), 333 (8), 265 (100), 174 (41), 149 (13), 91 (11), 69 (6), 57 (6), 44 (6), 41 (8). [α]_D + 26.8° (c

0.047). CD: $\Delta \varepsilon_{206 \text{ nm}} - 2.0$, $\Delta \varepsilon_{250 5 \text{ nm}} + 1.3$, $\Delta \varepsilon_{280 \text{ nm}} + 1.1$.

Compound 22. Mp 217–218° (from MeOH–Et₂O, 1:1). UV λ_{max} nm (log ε): 219 (4.36), 249 (4.09), 262 (4.05), 289 (3.89), 295 (3.72). IR v_{max} cm⁻¹: 3580, 2910, 1620, 1600, 1490, 1132, 1105, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 238.1015, C₁₆H₁₄O₂ requires 238.0993; EIMS *m*/*z* (rel. int.): 238 [M]⁺ (35), 147 (100), 91 (23), 65 (10).

Methylation of 1. To compound 1 (20 mg) in Me₂CO (10 ml) was added MeI (0.1 ml) in the presence of K₂CO₃ (50 mg). Workup gave a diMe ether (4) (19 mg). UV λ_{max} nm (log e): 214 (4.42), 232sh (4.06), 282 (3.47). IR v_{max} cm⁻¹: 1609, 1590, 1463, 1455, 1310, 1200, 1148, 1082, 1055, 695. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 310.1913, C₂₁H₂₆O₂ requires 310.1933; EIMS *m/z* (rel. int.): 310 [M]⁺ (69), 295 (13), 255 (13), 254 (32), 253 (100), 242 (15), 219 (18), 205 (51), 151 (20), 105 (18), 91 (23).

Methylation of 5. Compound 5 (57 mg) was treated in the same manner described above to afford a diMe ether (6) (43 mg). UV λ_{max} nm (log ϵ): 216 (4.44), 230sh (4.12), 279 (3.49), 285 (3.48). IR ν_{max} cm⁻¹: 2940, 1609, 1590, 1490, 1462, 1455, 1421, 1342, 1282, 1200, 1148, 1085, 1070, 1055, 820, 695. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 378.2554, C₂₆H₃₄O₂ requires 378.2559; EIMS *m/z* (rel. int.): 378 [M] ⁺ (36), 309 (20), 255 (100), 254 (25), 253 (46), 151 (28), 121 (12), 105 (40), 91 (25), 69 (19), 57 (6).

Dehydration of 10. To compound 10 (10 mg) in C_6H_6 (3 ml) was added p-TsOH (1 ml) and the soln refluxed for 40 min. Work-up gave a residue which was purified by prep. TLC (*n*-hexane-EtOAc, 4:1) to afford the starting material 10 (1 mg), 3 (1 mg) and 11 (4 mg). Compound 11. UV λ_{max} nm (log ε): 212.5 (4.27), 230sh (3.81), 280 (3.12), 287.5 (3.13). IR ν_{max} cm⁻¹. 2930, 1610, 1580, 1480, 1378, 1315, 1138, 1114, 1045, 690. ¹H NMR (90 MHz): δ 1.30 (6H, s), 1.76 (2H, t, J = 6.8 Hz), 2.55 (2H, t, J = 6.8), 2.84 (4H, s), 3.74 (3H, s, OMe), 6.26 (1H, d, J = 2.6), 6.38 (1H, d, J = 2.6), 7.24 (5H, m). HRMS: found: 296.1795, $C_{20}H_{24}O_2$ requires 296.1776; EIMS m/z (rel. int.): 296 (69), 241 (100), 239 (17), 205 (20), 191 (11), 163 (10), 137 (16), 105 (7), 91 (27).

Methylation of 12. Compound 12 (5 mg) was treated with MeI as described above to give a monoMe ether (2 mg) whose spectral data were identical to those of the natural chromene (13).

Methylation of 14. Compound 14 (3 mg) was also methylated with MeI as described above to give a monoMe ether (15) (3 mg). Mp 31–32° (from *n*-hexane). UV λ_{max} nm (log ε): 230 (4.30), 281 (3.97), 290 (3.95). IR ν_{max} cm⁻¹: 2940, 1615, 1570, 1461, 1450, 1423, 1370, 1120, 1100, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 294.1609, C₂₀H₂₂O₂ requires 294.1620; EIMS *m/z* (rel. int.): 294 [M]⁺ (13), 279 (100), 203 (3), 188 (28), 91 (7).

Methylation of 16. Compound 16 (4 mg) was treated in the same manner as described above to give a Me ester (17) (5 mg). UV λ_{max} nm (log ε): 214 (4.29), 237 (3.84), 273 (3.84), 283 (3.82), 307 (3.44), 313 (3.33). IR ν_{max} cm⁻¹: 2940, 1720, 1609, 1560, 1450, 1320, 1280, 1235, 1149, 1111, 1055, 970, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 352.1656, C₂₂H₂₄O₄ requires 352.1675; EIMS *m/z* (rel. int.): 352 [M]⁺ (13), 337 (100), 321 (4), 261 (5), 231 (13), 91 (3).

Methylation of **18**. Treatment of **18** (3 mg) with MeI as described above gave a monoMe ether (19) (2 mg). UV λ_{max} nm (log ε): 219 (4.28), 227 (4.26), 235 (4.23), 277 (3.76), 287 (3.75), 307 (3.63), 317 (3.57). IR ν_{max} cm⁻¹: 2930, 1610, 1570, 1490, 1450, 1141, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 362.2251, C₂₅H₃₀O₂ requires 362.2246; EIMS *m/z* (rel. int.): 362 [M]⁺ (6), 347 (5), 279 (100), 188 (18), 91 (3). [α]_D + 828° (*c* 0.005). CD: $\Delta \varepsilon_{271 nm}$ +9.8, $\Delta \varepsilon_{300 nm}$ +8.0 (*c* 1.38 × 10⁻⁴ mol1⁻¹).

Methylation of 20. Compound 20 (2.7 mg) was methylated with MeI as described above to afford a monoMe ether (21) (2.3 mg). UV λ_{max} nm (log ε): 212.5 (4.29), 219 (4.33), 227 (4.32), 234 (4.31), 242 (4.21), 292 (3.63), 307 (3.61), 320 (3.53). IR ν_{max} cm⁻¹: 2824, 1724, 1600, 1434, 1375, 1365, 1275, 1190, 1144, 995, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 420.2302, $C_{27}H_{32}O_4$ requires 420.2301; EIMS *m/z* (rel. int.): 420 (6), 389 (3), 337 (100), 305 (5), 231 (12), 188 (4), 91 (9), 69 (5). $[\alpha]_D + 125.8^{\circ}$ (c 0.024). CD: $\Delta \varepsilon_{201 nm} - 2.0$, $\Delta \varepsilon_{219.5 nm} + 0.3$, $\Delta \varepsilon_{275 nm} + 1.2$ (c 5.7 × 10⁻⁴ mol1⁻¹).

Methylation of **22**. Treatment of **22** (7.2 mg) with MeI as described above yielded a monoMe ether **(23)** (3.6 mg). UV λ_{max} nm (log ε): 218 (4.34), 249 (4.04), 261 (4.02), 286 (3.64), 294 (3.61). IR ν_{max} cm⁻¹: 2920, 1618, 1600, 1490, 1450, 1420, 1298, 1140, 1118, 1038, 690. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 252.1137, C₁₇H₁₆O₂ requires 252.1150; EIMS m/z (rel. int.): 252 [M]⁺ (36), 161 (100), 118 (18), 91 (14).

Oxidation of 1. Compound 1 (15 mg) was dissolved in $CHCl_3$ (3 ml) and then *m*-chloroperbenzoic acid (MCPBA) (15 mg) was added. The reaction mixt. was stirred at room temp. for 2 hr, the resulting product filtered to remove excess MCPBA and *m*-chlorobenzoic acid, and the filtrate treated in the usual manner to give a residue which was purified by prep. TLC to give an epoxide (5 mg) whose spectral data were identical to those of the natural epoxybibenzyl (9).

Isolation of pinosylvin (26) and pinosylvin monoMe ether (27). Fresh male buds of Alnus sieboldiana Matsum. (11.7 kg) collected at Naruto, Tokushima in February 1986 were extd with MeOH (201 \times 2). The MeOH ext (248 g) was chromatographed on silica gel (800 g) and eluted with a *n*-hexane–EtOAc gradient. The 30% EtOAc-*n*-hexane eluant gave a residue (36 g) which was subjected to Sephadex LH-20 CC to yield pinosylvin monoMe ether (27) (18.92 g) as white crystals [18]. The 50% EtOAc-*n*-hexane eluant gave a residue (11.2 g) which was chromatographed on Sephadex LH-20 to give pinosylvin (26) (7.85 g) as lemon yellow crystals [18].

Catalytic reduction of 27. Compound 27 (9.2 g) was hydrogenated over 10% Pd-C (2 g) in EtOAc (50 ml) at room temp. for 2 hr with stirring. After removal of catalyst, the filtrate was concd in vacuo. The residue (9.25 g) was chromatographed on Sephadex LH-20 to afford dihydropinosylvin monoMe ether (29) (8.95 g, 96.4%) as an oil. IR v_{max} cm⁻¹: 3400, 1615, 1600, 1495, 1455, 1340, 1190, 1150, 1055. ¹H NMR: δ 2.76, 2.83 (each 2H, m, H- α and H- β), 3.64 (3H, s, OMe), 6.27, 6.28, 6.30, (each 1H, dd, J = 2.2, 2.2 Hz, H-2, H-4 and H-6), 7.08–7.24 (5H, m). HRMS: found: 228.1166, C₁₅H₁₆O₂ requires 228.1150; EIMS m/z (rel. int.): 228 [M]⁺ (100), 138 (11), 137 (100), 91 (55).

Reaction of 29 with NaOMe and 2,2-dimethylallylbromide. To a soln of 29 (1.432 g) in dry MeOH (10 ml) was added 28% NaOMe-MeOH soln (1.4 ml). The resultant soln was stirred at room temp. for 30 min and evapd to dryness in vacuo. The residual brown crystals were suspended in dry C_6H_6 (10 ml) and evapd again to remove traces of H₂O. The residue was again suspended in dry C₆H₆ (15 ml), to which was added 2,2-dimethylallylbromide (860 mg).' The mixt. was vigorously stirred at 50-55° for 30 min and then poured into ice-H₂O and extracted with EtOAc. The EtOAc layer was successively washed with 1 M HCl, H₂O, dried over MgSO₄ and evapd to give an oil (2.25 g) which was chromatographed on silica gel using a n-hexane-EtOAc gradient. The eluant with 2% EtOAc-n-hexane was evapd to give an oil (305 mg) which was further chromatographed on silica gel (C_6H_6 -n-hexane, 1:1) to yield 32 (51 mg; 2.2%) and 34 (126 mg; 6.8%). The eluant with 5% EtOAc-nhexane was evapd to yield 30 (515 mg; 27.2%). The eluant with 6% EtOAc-n-hexane gave 3 (660 mg; 34.9%) as white crystals. Evapn of the eluant with 10% EtOAc-n-hexane gave 29 (289 mg; 20.2%).

Compound 30. UV λ_{max}^{meOH} nm (log ϵ): 219 (4.35), 272.5 (3.13). IR ν_{max}^{neat} cm⁻¹: 3450, 2925, 2850, 1615, 1590, 1510, 1495, 1420, 1340, 1220, 1155, 1080. ¹H NMR: δ 1.73, 1.80 (each 3H, s), 2.83, 2.90 (4H, m), 3.37 (2H, d, J = 6.8 Hz), 3.76 (3H, s), 5.23 (1H, t, J = 6.8 Hz), 6.28 (1H, br s), 6.35 (1H, br s), 7.17–7.30 (5H, m). ¹³C NMR: δ17.8, 25.8 (each q, C-4' and C-5'), 22.2 (t, C-1'), 37.7, 38.0 (t, C-α and C-β), 55.7 (q, OMe), 103.7 (d, C-2), 108.8 (d, C-6), 113.0 (s, C-4), 122.4 (d, C-2'), 125.9 (d, C-4'') 128.3, 128.4 (d, C-2'', C-3'', C-5'' and C-6''), 133.6 (s, C-3'), 141.2, 141.8 (s, C-1 and C-1''), 155.0 (s, C-5), 157.9 (s, C-3). HRMS: found: 296.1792, $C_{20}H_{24}O_2$ requires 296.1776; EIMS m/z (rel. int.): 296 [M]⁺ (100), 281 (31), 241 (98), 209 (10), 205 (62), 163 (10), 137 (12), 105 (16), 91 (30).

Compound 32. IR ν_{max}^{next} cm⁻¹: 3475, 2925, 1615, 1585, 1495, 1455, 1420, 1210, 1165, 1105. ¹H NMR: δ 1.17, 1.72, 1.79, 1.80 (each 3H, s), 2.86 (4H, m), 3.33 (2H, d, J = 6.6 Hz), 3.37 (2H, d, J = 7.1 Hz), 3.74 (3H, s), 5.12 (1H, t, J = 6.6 Hz), 5.22 (1H, t, J = 7.1 Hz), 5.43 (1H, br s, OH), 6.28 (1H, s), 7.19–7.30 (5H, m). ¹³C NMR: δ 17.8, 18.0, 25.7, 25.8 (each q), 22.5, 25.2, 35.9, 37.9 (each t), 104.4 (d), 113.6, 118.5, (each s), 122.5, 123.3, 125.9, 128.3, 128.4 (each d), 132.9, 133.5, 138.6, 142.0, 153.8, 155.8 (each s). HRMS: found: 364.2393, C₂₅H₃₂O₂ requires 364.2403; EIMS *m/z* (rel. int.): 364 [M]⁺ (100), 309 (27), 308 (36), 307 (21), 293 (60), 273 (10), 265 (22), 259 (11), 253 (33), 241 (10), 217 (62), 203 (31), 175 (20), 91 (67), 69 (18).

Compound 34. IR v_{max}^{max} cm⁻¹: 2925, 1595, 1460, 1450, 1375, 1340, 1285, 1190, 1145, 1055, 1035, 820, 690. ¹H NMR: δ 1.72, 1.78, (each 3H, s), 2.87 (4H, m), 3.72 (3H, s), 4.43 (2H, d, J = 6.8 Hz), 5.47 (1H, t, J = 6.8 Hz), 6.33, 6.35 (3H, m), 7.17–7.29 (5H, m). ¹³C NMR: δ 18.1, 25.8 (each q), 37.6, 38.2 (each t), 55.1 (q), 64.6 (t), 98.5 (d), 106.5, 107.1 (each d), 119.7, 125.8, 128.3, 128.4 (each d), 137.9, 141.6, 144.0, 159.9, 160.6 (each s). HRMS: found: 296.1800, C₂₀H₂₄O₂ requires 296.1776; EIMS m/z (rel. int.) 296 [M]⁺ (5), 229 (14), 228 (100), 165 (25), 137 (79), 91 (36), 69 (18).

Reaction of 29 with NaOMe and geranylbromide. To a soln of 29 (2.30 g) in dry MeOH (20 ml) was added 28% NaOMe-MeOH (2.14 ml). The reaction mixt. was stirred at room temp. for 30 min. The resultant mixt. was treated in the same manner as described in the reaction of 29 with 2,2dimethylallylbromide to give a residue to which was added geranylbromide (2 g). The mixt. was then vigorously stirred at $50-55^{\circ}$ for 30 min and then poured into ice-H₂O and extd with C_6H_6 . The C_6H_6 layer was treated in the same manner as described above to afford an oil (2.95 g) which was chromatographed on silica gel using a *n*-hexane-EtOAc gradient to furnish 33 (306 mg, 6.1%), 35 (247 mg, 6.7%), 31 (7.99 mg; 21.8%), 7 (1.089 g; 29.7%) and starting material (29) (735 mg; 31.9%), respectively.

Compound 7. UV λ_{max} nm (log ε): 210 (4.75), 283.5 (4.00). IR ν_{max}^{nest} cm⁻¹: 3450, 2925, 1615, 1590, 1495, 1440, 1435, 1195, 1135, 1050, 825. ¹H and ¹³C NMR (Tables 1 and 2). HRMS: found: 364.2413, C₂₅H₃₂O₂ requires 364.2423; EIMS *m/z* (rel. int.): 364 [M]⁺ (31), 279 (48), 241 (100), 239 (28), 137 (16), 105 (23), 91 (20).

Compound 31. UV λ_{max} nm (log ε): 211.5 (4.71), 271 (3.81). IR ν_{max}^{BB} cm⁻¹: 3450, 2920, 1615, 1590, 1450, 1420, 1205, 1160, 1090, 1070. ¹H NMR: δ 1.58 (3H, s), 1.66, 1.79 (each 3H, s), 2.06 (4H, m), 2.84 (4H, m), 3.38 (2H, d, J = 7.3 Hz), 3.74 (3H, s), 5.05, 5.23 (each 1H, t, J = 7.3 Hz), 5.32 (1H, br s, OH), 6.26, 6.35 (each 1H, d, J = 1.5 Hz), 7.16–7.29 (5H, m). ¹³C NMR: δ 16.1, 15.7 (each q), 22.1 (t), 25.6 (q), 26.5, 37.4, 37.7, 39.7 (each t), 55.7 (q), 103.6, 108.9 (each d), 112.8 (s), 122.1, 124.0, 125.9, 128.3, 128.4 (each d), 131.8, 137.8, 141.2, 141.8, 155.4, 157.8 (each s). HRMS: found: 364.2389, C₂₅H₃₂O₂ requires 364.2375; EIMS m/z (rel. int.): 364 [M]⁺ (15), 295 (20), 279 (15), 242 (23), 241 (100), 123 (5), 105 (17), 91 (16).

Compound 33. UV λ_{max} nm (log ε): 212.5 (4.78), 283 (3.79). IR ν_{max}^{KBe} cm⁻¹: 3450, 1900, 1615, 1580, 1492, 1450, 1370, 1315, 1205, 1105, 810, 740, 690. ¹H NMR: 1.57, 1.58 (each 3H, s), 1.64, 1.67, 1.78, 1.80 (each 3H, s), 2.06 (8H, m), 2.86 (4H, m), 3.34 (2H, d, J = 5.9 Hz), 3.40 (2H, d, J = 6.6 Hz), 3.74 (3H, s), 5.05, 5.97 (each

1H, t, J = 6.2 Hz), 5.14, 5.23 (each 1H, t, J = 6.6 Hz), 5.44 (1H, br s, OH), 6.29 (1H, s), 7.17–7.30 (5H, m). ¹³C NMR: 16.1, 16.3, 17.7, 18.0 (each q), 22.4, 25.0 (each t), 25.7 (q), 26.5, 35.9, 37.8, 39.7, 39.8 (each t), 55.7 (q), 104.3 (d), 113.7, 118.7 (each s), 122.4, 123.3, 124.1, 125.9, 128.4, 131.6 (each d), 136.4, 137.2, 138.6, 142.0, 154.0, 155.8 (each s). HRMS: found: 500.3642, $C_{35}H_{48}O_2$ requires 500.3648; EIMS m/z (rel. int.): 500 [M]⁺ (2), 405 (11), 307 (6), 203 (10), 91 (88), 69 (100).

Compound **35.** UV λ_{max} nm (log ϵ): 210 (4.70), 276 (3.81). IR ν_{max}^{neat} cm⁻¹: 2920, 1595, 1450, 1430, 1342, 1190, 1145, 1055, 1035, 820, 690. ¹H NMR: δ 1.61, 1.68, 1.73 (each 3H, s), 2.11, 2.88 (4H, m), 3.74 (3H, s), 4.47 (2H. d, J = 6.6 Hz), 5.10, 5.48 (each 1H, t, J = 6.6 Hz), 6.34, 6.36 (1H, d, J = 2.2 Hz), 6.71–7.29 (5H, m). ¹³C NMR: δ 16.7, 17.7, 25.7 (each q), 26.3, 37.7, 38.2, 39.6 (t), 55.2 (q), 64.8 (t), 98.6 (d), 106.5, 107.2, 119.5, 123.8, 125.9, 128.3, 128.4 (each d), 131.8, 141.1, 141.7, 144.0, 160.0, 160.7 (each s). HRMS: found: 364.2407, C_{2.5}H_{3.2}O₂, 364.2402; EIMS m/z (rel. int.): 364 [M]⁺ (1), 229 (16), 228 (76), 167 (16), 148 (29), 137 (96), 105 (23), 99 (21), 91 (100).

Treatment of 29 with 2-chloro-2-methyl-1-butyne. To 29 (1.067 g) in Me₂CO (30 ml) was added KI (0.15 g) K_2CO_3 (1.57 g) and 2-chloro-2-methyl-1-butyne (1.52 g) and the reaction mixt. refluxed at 80° with stirring for 43 hr. After filtration, evapn of solvent, the product was extracted with Et₂O, washed with H₂O, 10% NaOH and evapd to give a residue (1.06 g) which was chromatographed on silica gel (*n*-hexane–EtOAc gradient) to afford 36 (919.1 mg). ¹H NMR (90 MHz): δ 1.62 (6H, s), 2.54 (4H, s), 3.74 (3H, s). EIMS *m*/*z* (rel. int.): [M]⁺ 294 (5), 279 (100), 137 (32), 91 (13).

Hydrogenation of 36. Compound 36 (102.0 mg) in EtOAc (10 ml) was hydrogenated in the presence of Pd-BaSO₄ (41.5 mg) and quinoline (0.3 ml) until 1 mol H₂ was absorbed. After removal of catalyst, the filtrate was dried over MgSO₄ and the solvent evapd to give a residue (95.3 mg) which was chromatographed on silica gel (*n*-hexane-EtOAc gradient) to afford 37 (86.8 mg, 84.5%). IR v_{max} cm⁻¹: 2925, 1600, 1450, 1250, 1090, 1000. ¹H NMR (90 MHz): $\delta 1.35$ (6H, s), 2.78 (4H, s), 5.50 (1H, dd, J = 9.0, 2.0 Hz). EIMS m/z (rel. int.): 296 [M]⁺ (45), 294 (11), 280 (16), 279 (100), 229 (25), 228 (27), 188 (35), 137 (38), 91 (27).

Claisen rearrangement reaction of **37**. Compound **37** (72 mg) in xylene (0.5 ml) was sealed in a tube which was heated at 130° for 16 hr. The reaction mixt. was chromatographed on silica gel (*n*-hexane-EtOAc gradient) to give Claisen rearrangement products which were purified by prep. TLC (*n*-hexane-EtOAc, 4:1) to furnish **3** (5.5 mg, 10.4%) and **30** (6.2 mg, 11.7%).

Treatment of 37 with silica gel. To 37 (292 mg) in 10% *n*-hexane– C_6H_6 (15 ml) was added silica gel (50 g) and the mixt. allowed to stand for 12 hr. After removal of silica gel and solvent evapd, the residue was chromatographed on silica gel (*n*-hexane–EtOAc gradient) to afford 3 (29.8 mg, 13.5%) and 30 (39.3 mg, 17.8%), respectively.

Methylation of **29**. To a soln of **29** (3.1 g) in dry Me₂CO (40 ml) was added MeI (8.5 ml) and K₂CO₃ (18.8 g). Work-up as usual gave 3,5-dimethoxybibenzyl **(28)** (2.90 g). IR ν_{max}^{neat} cm⁻¹: 2925, 2825, 1600, 1460, 1425, 1195, 1145, 1055, 820, 690. ¹H NMR (90 MHz): δ 2.83 (4H, m), 3.50 (6H, s), 6.27 (3H, s), 7.13 (5H, m), ¹³C NMR (22.5 MHz): 37.6, 38.2 (each t), 55.2 (q), 98.0, 106.6, 125.9, 128.3, 128.4 (each d), 141.7, 144.1, 160.8 (each s). HRMS: found: 242.1307, C₁₆H₁₈O₂ requires 242.1307; EIMS m/z (rel. int.): 242 (100), 227 (5), 165 (9), 152 (25), 151 (67), 91 (43).

Bromination of **28** with N-bromosuccinimide (NBS). To a soln of **28** (2.514 g) in dry DMF (10 ml) was added NBS (1.85 g). The resultant soln was stirred for 12 hr and poured into ice-cold H_2O and extd with CH_2Cl_2 . The ext. was dried over MgSO₄ and evapd in vacuo to give an oil (2.85 g), which was chromatographed on silica gel (n-hexane-EtOAc gradient) to afford 2bromo-3,5-dimethoxybibenzyl (38) (2.651 g, 79.5%) and 2,6dibromo-3,5-dimethoxybibenzyl (39) (250 mg, 6.0%).

Compound 38. UV λ_{max}^{heOH} nm (log ε): 210 (4.49), 282.5 (3.27). IR ν_{max}^{KBr} cm⁻¹: 3025, 2925, 2825, 1590, 1450, 1320, 1195, 1160, 1085, 1065, 1020, 820, 690. ¹H NMR: δ 2.88, 3.00 (4H, m), 3.71 (each 3H, s), 6.31, 6.34 (each 1H, d, J = 2.7 Hz), 7.18–7.29 (5H, m). ¹³C NMR: δ 35.9, 38.8 (each t), 55.2, 56.1 (q), 97.6 (d), 104.6 (s), 106.8, 125.8, 128.2, 128.4 (each d), 141.3, 142.7, 156.7, 159.4 (each s); EIMS m/z (rel. int.): 322 ([M]⁺ + 2) (33), 320 [M]⁺ (33), 242 (17), 241 (100), 231 (31), 229 (34), 135 (22), 91 (43). Anal. Calcd for C₁₆H₁₇O₂Br; C, 59.82; H, 5.33; found: C, 55.66; H, 5.28.

Compound **39**. UV λ_{max}^{mcOH} nm (log ε): 212.5 (4.50), 272.5 (3.59), 292.5 (3.61). IR v_{max}^{KBr} cm⁻¹: 2925, 1572, 1450, 1425, 1325, 1205, 1075, 1040, 940, 790, 740, 685. ¹H NMR: 2.82 (2H, m), 3.33 (2H, m), 3.90 (3H, s), 6.43 (1H, s), 7.22–7.36 (5H, m). ¹³C NMR: 34.1, 39.7 (t), 56.6 (q), 95.4 (d), 105.5 (s), 126.1, 128.4 (each d), 141.5, 142.0, 156.0 (s). EIMS m/z (rel. int.): 402 ([M]⁺ +4) (17), 400 ([M]⁺ +2) (32), 398 [M]⁺ (17), 318 (22), 316 (19), 311 (10), 309 (21), 307 (11), 241 (17), 240 (100), 239 (14), 222 (11), 215 (13), 213 (12), 91 (37). Anal. Calcd for C₁₆H₁₆O₂Br₂; C, 48.03; H, 4.03; found: C, 48.44, H, 4.21.

Reaction of 38 with n-butyl lithium and 2,2-dimethylallylbromide. To a soln of 38 (300 mg) in dry Et₂O (10 ml) was added 1.6 M BuL₁ soln (0.8 ml). The resultant soln was refluxed under Ar for 1 hr, and then 2,2-dimethylallylbromide (150 mg) in dry Et₂O (2 ml) added dropwise for 10 min. After stirring for 1 hr at 40°, the reaction mixt. was poured into ice-cold H₂O and extracted with EtOAc. The extract was washed with H₂O, dried over MgSO₄. Evapn of solvent gave an oil which was chromatographed on silica gel (C₆H₆-EtOAc, 3:7) to afford 4 (168 mg, 58.1%) and 28 (78 mg, 38%).

Reaction of **38** with BuLi and geranylbromide. To a soln of **38** (350 mg) in dry Et_2O (10 ml) was added 1.6 ml BuLi (1 ml). The resulting mixt, was stirred under Ar for 1 hr at room temp, and then geranylbromide (300 mg) in dry Et_2O (5 ml) was added dropwise for 10 min. The reaction mixt, was refluxed for 1 hr with stirring. Treatment of the mixt, in the same manner described above gave a crude oil which was chromatographed on silica gel (C_6H_6 -EtOAc, 3:7) to afford **6** (241 mg, 58.5%) and **28** (74 mg, 28.1%).

Reaction of 28 with BuLi and geranylbromide. To a soln of 28 (200 mg) in dry Et_2O (20 ml) was added 1.6 M BuLi soln (0.5 ml). The mixt. was refluxed under Ar for 5 hr and a soln of geranylbromide (215 mg) in dry Et_2O (2 ml) was added dropwise for 3 min. The crude oil after treatment of the mixt. in the same manner as described above, was purified by prep. TLC (C_6H_6 -n-hexane, 1:1) to give 3,5-dimethoxy-4-geranyl bibenzyl (44) 135 mg, 43.3%) and starting material (28) (85 mg, 42.5%).

Compound 44. UV $\lambda_{max}^{\text{MEON}}$ nm (log ε): 217.5 (4.49), 271 (3.14). IR ν_{max}^{neal} cm⁻¹: 2920, 1602, 1585, 1450, 1415, 1160, 1110. ¹H NMR: δ 1.57, 1.64, 1.75 (each 3H, s), 1.94, 2.04 (each 2H, m), 2.89 (2H, m), 3.32 (2H, d), 3.76 (6H, s), 5.07 (1H, t, J = 5.6 Hz), 5.19 (1H, t, J = 7.1 Hz), 6.35 (2H, s), 7.17–7.30 (5H, m). ¹³C NMR: δ 16.0, 17.6 (q), 22.0 (t), 25.7 (q), 26.8, 38.0, 38.5, 39.9 (each t), 55.9 (q), 104.3 (t), 116.1 (s), 123.1, 124.6, 125.9, 128.3, 128.5 (each d), 131.0, 134.3, 140.6, 141.9, 158.0 (each s). HRMS: found: 378.2553, C₂₆H₃₄O₂ requires 378.2559; EIMS m/z (rel. int.): 378 [M]⁺ (11), 309 (26), 256 (19), 255 (100), 105 (18), 91 (12).

Methylation of synthetic 3. Compound 3 (40 mg) was methylated with MeI (1 ml) to give 4 (37 mg, 88.3%).

Methylation of synthetic 7. Compound 7 (38 mg) was methylated with MeI (0.8 ml) to give 6 (31 mg, 78.5%).

Methylation of 31. Compound 31 (60 mg) was treated in the same manner as described above to afford 44 (58 mg, 93.1%).

Reaction of 3,5-dimethoxy-2-(3-methyl-2-butenyl)bibenzyl (4) with BBr₃. To a soln of 4 (250 mg) in dry CH_2Cl_2 (10 ml) was

added BBr₃ (0.25 ml) at -78° with stirring. After stirring for 2 hr at -10° to 0° , Et₃N (1 ml) was added to the reaction mixt. The resultant soln was poured into icc-cold H₂O and extracted with CHCl₃. The CHCl₃ layer was washed with H₂O, dried over MgSO₄, and concd *in vacuo* to give an oil (298 mg) which was chromatographed on silica gel (EtOAc-*n*-hexane, 1:9) to furnish 3,5-dihydroxy-2-(3-methyl-2-butenyl)bibenzyl (1) (45 mg, 19.8%) and 2,2-dimethyl-7-hydroxy-5-(2-phenylethyl) chroman (40) (152 mg, 67.0%).

Compound 40. IR $\nu_{\text{max}}^{\text{east}}$ cm⁻¹: 3375, 2975, 2925, 1620, 1610, 1595, 1490, 1450, 1340, 1320, 1265, 1150, 1130, 1110, 1035, 1020, 1000. ¹H NMR: δ 1.25 (6H, s), 1.70, 2.47 (each 2H, t, J = 6.8 Hz), 2.75 (4H, m), 6.10 (1H, br s, OH), 6.23, 6.31 (each 1H, d, J = 2.4 Hz), 7.12–7.26 (5H, m). ¹³C NMR: δ 19.2 (t), 26.5 (q), 32.9 (t), 34.5, 36.4 (each t), 73.8 (s), 102.0, 108.1 (each d), 111.5 (s), 128.2, 128.3 (each d), 141.7, 141.8 (each s). HRMS: found: 282.1613, C₁₉H₂₂O₂ 282.1607; EIMS m/z (rel. int.): 282 [M]⁺ (85), 227 (100), 225 (30), 191 (23), 149 (16), 123 (13), 91 (43).

Reaction of 4 with sodium thioethoxide (EtSNa). To a suspension of 60% NaH (52 mg) in dry DMF (1 ml) was added a soln of EtSH (92 mg) in dry DMF (2 ml) under Ar at room temp. with stirring. After stirring for 5 min, a soln of 4 (77 mg) in dry DMF (1 ml) was added and the mixt. refluxed for 3 hr at 170–180°. The reaction mixt. was poured into ice-H₂O and extd with Et₂O. The Et₂O layer was successively washed with 1 M HCl, H₂O and dried over MgSO₄ and concd *in vacuo* to give a residue (87 mg), which was subjected to prep. TLC (*n*-hexane–EtOAc, 4:1) to give two natural bibenzyls (2) (18 mg, 28.1%) and (3) (22 mg, 34.4%), respectively.

Reaction of 3 with EtSNa. To a suspension of 60% NaH (165 mg) in dry hexamethylphosphoramide (HMPA) (2 ml) was added a soln of EtSH (0.4 ml) in HMPA (2 ml) under Ar at room temp. After stirring for 10 min, a soln of 3 (98 mg) in HMPA (2 ml) was added and the mixt. refluxed for 5 hr at 170–180°. The reaction mixt. was treated in the same manner as described above to give a residue (238 mg) which was chromatographed on silica gel (*n*-hexane–EtOAc gradient) to afford 1 (37 mg, 52.8%) and 3,5-dihydroxybibenzyl (41) (12 mg, 17.7%).

Compound 41. IR ν_{max}^{neat} cm⁻¹: 3350, 1295, 1600, 1450, 1320, 1300, 1140, 965. ¹H NMR: $\delta 2.71$ (4H, m), 6.16 (1H, br s), 6.22 (2H, br s), 7.06–7.22 (5H, m). ¹³C NMR: $\delta 37.1$, 37.5 (each t), 100.7, 108.4, 125.9, 128.3, 128.4 (each d), 141.5, 145.1, 156.2 (each s). EIMS m/z (rel. int.): 214 [M]⁺ (75), 123 (52), 91 (100).

Reaction of 3,5-dihydroxybibenzyl (41) with NaOMe and 2,2dimethylallylbromide. To a soln of 41 (1.6 g), which was obtained from 26 (1.75 g) by hydrogenation, in dry MeOH (15 ml) was added 28% NaOMe-MeOH soln (1.5 ml). The resultant soln was stirred for 30 min at room temp. and evapd to drypess in vacuo to give brown crystals which were suspended in dry C_6H_6 (20 ml) and evapd again to remove traces of H_2O . The residue was again suspended in dry C₆H₆ (30 ml) to which was added 2,2-dimethylallylbromide (1.23 g). The mixt. was vigorously stirred at 50-55° for 30 min and then poured into ice-H₂O and extd with EtOAc. The EtOAc layer was washed successively with 1 M HCl, H₂O, dried over MgSO₄ and evapd in vacuo to give an oil (1.75 g) which was chromatographed on silica gel (nhexane-EtOAc gradient) to afford 2,2-dimethyl-5-hydroxy-7-(2phenylethyl)chroman (42) (363 mg, 17.2%), its isomer (40) (377 mg, 17.9%), the natural bibenzyl (1) (456 mg, 21.6%) and starting bibenzyl (41) (486 mg, 30.4%), respectively.

Reaction of 7 with EtSNa. To a suspension of 60% NaH (61 mg) in dry HMPA (3 ml) was added a solution of EtSH (0.08 ml) in HMPA (1 ml) under Ar at room temp. with stirring. After stirring for 10 min, a soln of 7 (63.8 mg) in HMPA (3 ml) was added. The reaction mixt. was treated in the same manner as described above to give a residue (278 mg) which was chromato-

graphed on silica gel (*n*-hexane-EtOAc gradient) to yield the natural 2-geranyl-3,5-dihydroxybibenzyl (5) (15.1 mg, 24.6%) and 41 (7.1 mg, 18.9%).

Synthesis of 13. To compound 3 (44.6 mg) in dry C_6H_6 (25 ml) was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (50 mg) and the mixt. refluxed for 45 min. Excess DDQ was filtered off and the filtrate evapd *in vacuo* to give an oil which was purified by prep. TLC (*n*-hexane-EtOAc, 10:1) to afford the natural chromene (13) (16.1 mg, 36.3%).

Synthesis of 15. Compound 30 (52.5 mg) was treated in the same manner as described above to afford a residue (38.0 mg) which was purified by prep. TLC to yield the monoMe ether (15) (32.5 mg, 62.3%) of the natural chromene (14).

Synthesis of 19. Compound 7 (91 mg) was treated in the same manner as described above to give a residue (152 mg) which was purified by prep. TLC (*n*-hexane–EtOAc, 4:1) to yield the monoMe ether (19) (66 mg, 72.9%) of the natural chromene (18). Synthetic 19. $[\alpha]_{D}\pm0^{\circ}$ (CHCl₃; c 2.07). All mps, UV, IR, ¹H and ¹³C NMR, HRMS and EIMS of the synthetic natural products and their derivatives were identical to those of the natural bibenzyls and their derivatives. All the structures of the intermediates and byproducts during the course of the synthesis of the natural bibenzyls and their derivatives were established by analysis of their spectral data and elemental analyses.

Acknowledgements—We thank Prof. L. Crombie (Department of Chemistry, The University of Nottingham, U.K.) for useful information about prenyl bibenzyls. Thanks are given to Dr M. Mizutani (Hattori Botanical Laboratory, Nichinan, Japan) for identification of the liverwort. We are also indebted to Otsuka Pharmaceutical Co. for bioassay on 5-lipoxygenase and calmodulin. This work was supported in part by a Grant-in-Aid for Cancer Research from the Ministry of Health and Welfare.

REFERENCES

- 1. Asakawa, Y., Toyota, M. and Takemoto, T. (1978) Experientia 34, 971.
- Asakawa, Y., Toyota, M. and Takemoto, T. (1978) Phytochemistry 17, 2005.
- Asakawa, Y., Kusube, E., Takemoto, T. and Suire, C. (1978) *Phytochemistry* 17, 2115.
- Asakawa, Y., Takeda, R., Toyota, M. and Takemoto, T. (1981) Phytochemistry 20, 858.
- 5. Asakawa, Y., Takikawa, K., Toyota, M. and Takemoto, T. (1982) Phytochemistry 21, 2481.
- Toyota, M., Tori, M., Takikawa, K., Shiobara, Y., Kodama, M. and Asakawa, Y. (1985) *Tetrahedron Letters* 26, 6097.
- 7. Takikawa, K., Tori, M. and Asakawa, Y. (1989) J. Hattori Bot. Lab. 67, 365.
- Hashimoto, T., Tori, M. and Asakawa, Y. (1989) Phytochemistry 28, 3377.
- Asakawa, Y. (1982) in Progress in the Chemistry of Organic Natural Products (Herz, W., Grisebach, H. and Kirby, G. W., eds), Vol. 42, p. 1. Springer, Wien.
- 10. Asakawa, Y. (1988) in Studies in Natural Products Chemistry Vol. 2 (Rahman, A., ed.), p. 277. Elsevier, Amsterdam.
- Asakawa, Y. (1989) Physiology and Biochemistry of Development of Bryophytes (Chopra, R. N. and Bhatla, S. C., eds). CRC Press, Florida (in press).
- Asakawa, Y. (1989) in Annual Proceedings of Phytochemical Society of Europe (Zinsmeister, H. D. and Mues, R., eds). Oxford University Press, Oxford (in press).
- Crombie, L. W., Crombie, W. M. L. and Firth, D. F. (1988) J. Chem. Soc. Perkin Trans 1 1263.

- 14. Bandaranayake, W. B., Crombie, L. and Whiting, D. A. (1971) J. Chem. Soc. (C) 804.
- 15. Tanaka, N., Wada, H., Murakami, T., Sahashi, N. and Ohmoto, T. (1986) Chem. Pharm. Bull. 34, 3727.
- Claussen, U., Spulak, F. V. and Korte, F. (1986) *Tetrahedron* 22, 1477.
- 17. Crombie, L. and Ponsford, R. (1971) J. Chem. Soc. (C) 796.
- 18. Asakawa, Y. (1971) Bull. Chem. Soc. Jpn 44, 2761.
- 19. Yamada, K. (1979) J. Hattori Bot. Lab. 45, 201.
- 20. Mitscher, L. A., Park, Y. H., Al-Shamma, A., Hudson, P. B. and Haas, T. (1981) Phytochemistry 20, 781.
- 21. Mitscher, L. A., Rao, G. S. R., Veysoglu, T. and Drake, S. (1983) Phytochemistry 22, 573.
- 22. Asakawa, Y. (1984) Rev. Latinoam. Quim. 14, 109.
- Gollapudi, S. R., Telikepalli, H., Keshavarz-Shokri, A., Velde, D. V. and Mitscher, L. A. (1989) *Phytochemistry* 28, 3556.
- 24. Asakawa, Y., Matsuda, R., Tori, M. and Hashimoto, T. (1988) Phytochemistry 27, 3861.
- 25. Asakawa, Y., Lin, X., Tori, M. and Kondo, K. (1990) *Phytochemistry* 29, 2597.