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Abstract: An intramolecular approach incorporating a Michael
addition followed by a palladium-mediated arylation of ketone
towards the synthesis of Amaryllidaceae alkaloid (+)-y-lycorane
was reported.
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The lycorine-type alkaloids, which are characterized by
the presence of the galanthan (tetracyclic pyrro-
lo[d,e] phenanthridine) ring system, are an important class
of natural productsisolated from the plants of the Amaryl-
lidaceae family.! Many members of this group of alka-
loids exhibit potent biologica activities including
antitumor,? antiviral and insect antifeedant activities.® The
pentacyclic structure as well as its interesting biological
activities havelong attracted the attention of numerousre-
search groups. Synthetic efforts directed towards lycorine
(1) and y-lycorane (2) have generated a great deal of cre-
ative total synthesis and awide variety of methodologies
(Figure 1).* Recent examples in the synthesis of lycorine-
type alkaloids were documented in Padwa's elegant in-
tramolecular [4+2] cycloaddition and rearrangement cas-
cade of furanyl carbamates,* Zard’ sradical cyclization of
xanthates® and Tomioka's nitro-Michael cyclization of
unsaturated esters.®

Lycorine (1) y-Lycorane (2)

Figurel Representative lycorine-type alkaloids

As part of our ongoing program in pursuit of efficient
while flexible strategy for the synthesis of Amaryllidace-
ae dkaloids, we recently disclosed a highly stereoselec-
tive aminocyclization approach towards the synthesis of
the core N-heterocyclic center for a number of natural al-
kaloids.” It appeared to us that lycorine-type akaloids
such aslycorine and y-lycorane were theimmediate target
by employing this aminocyclization protocol. As shown
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in our retrosythetic analysis in Scheme 1, one of the key
issues in our synthetic pathway is the palladium-mediated
arylation of ketone to afford the galathan ring system for
lycorine-type akaloids.
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Schemel Retrosythetic analysis of lycorine-type akaloids

Although palladium mediated arylation of ketones has
been well documented in the literature® and has the poten-
tial to be used for the synthesis of complex natural prod-
ucts, few methodologies involving this powerful reaction
has been devel oped towards the synthesis of natural prod-
ucts.® In order to demonstrate the efficiency of such anin-
tramolecular approach as depicted in Scheme?2, a
synthesistowards the less complicated lycorine-type aka
loid, namely the (£)-y-lycorane was initiated.

Starting from commercially available 2-(4-methoxyphe-
nyl)-ethylamine, a Birch reduction furnished the diene 4
in 98% yield. The diene 4 was then treated with 6-bro-
mopiperonal followed by reduction with NaBH, in etha-
nol afforded the secondary amine 5. After treatment with
4 N HCl in methanol at 35 °C, an intramolecular Michael
addition provided the octahydro-indol-6-one (6) in 80%
overall yield for the two reactions. It is noteworthy that
only cis-C,D-ring junction for the octahydro-indol-6-one
(6) was observed.'® The intramolecular arylation of com-
pound 6 was initially conducted in anhydrous THF with
Pd,(dba); and racemic BINAP in the presence of sodium
tert-butoxide. The reaction did proceed, however, in low
yield. To our delight, variation of the solvent to toluene
afforded the desire cyclization in 81% yield. The stereo-
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chemistry of this reaction is quite remarkable, cis-fused
B,C-ring junction was exclusively formed.'* The NOE
experiment for this compound was conducted and the
results were consistent with a cis-B,C,D-ring system.
In the literature,*? ketone 7 has already been converted
to ()-y-lycorane, therefore aformal synthesis of (+)-v-
lycorane was compl eted.
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Scheme2 Formal synthesis of (z)-y-lycorane

In summary, we have developed a concise method to-
wards the synthesis of (+)-y-lycorane. A convenient four
step-sequence leaded to the (+)-a-dihydrocaronone in an
overall 58% yield. Theintramolecular approach including
a Michadl addition followed by a palladium mediated
arylation of ketone demonstrated herein represents ahigh-
ly efficient while stereosel ective strategy and are valuable
for the preparation of lycorine related compounds. Syn-
thesis of lycorine by utilizing this protocol isin progress.
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