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ABSTRACT

Stereoselective convergent synthesis of a trans-fused 6-6-6-6-membered tetracyclic ether ring system including 4r- or 4â-hydroxy-5-methyl-
tetrahydropyran was achieved. The key reactions involve the acetylide-aldehyde coupling of two tetrahydropyrans, intramolecular hetero-
Michael cyclization of enone, stereoselective reduction of enone, hydroboration, intramolecular acetalization, and stereoselective reduction of
the acetal with Et3SiH−TMSOTf.

Marine polycyclic ethers, exemplified by brevetoxins, gam-
bieric acids, yessotoxin, ciguatoxins, maitotoxin, etc., have
attracted the attention of synthetic organic chemists as a result
of their unique and complex structures and potent biological
activities.1 The characteristic structural feature of these
natural products is atrans-fused polycyclic ether ring system.

Among the polycyclic ether rings, several tetrahydropyran
rings have a 4R- or 4â-hydroxyl-5-methyl group (Figure 1).

Although several convergent methods for the various ring
systems have been developed,2 convergent synthesis of a
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Figure 1. Partial structure of yessotoxin and gambieric acid
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polycyclic ether ring system including 4-hydroxy-tetra-
hydropyran has not been reported yet. We now report an
efficient strategy toward stereoselective convergent synthesis
of the trans-fused polycyclic ether system including 4-hy-
droxy-5-methyl-tetrahydropyran.

Our synthetic strategy for the convergent synthesis is
outlined in Scheme 1. Two tetrahydropyransi and ii would

be coupled by addition of the acetylene to the aldehyde. After
conversion to the ynoneiii , intramolecular hetero-Michael
cyclization could proceed to give the enoneiv. Then, after
conversion ofiv into the acetalv, Lewis acid catalyzed silane
reduction would afford the desired polycyclic ethervi.

With this prospect, our convergent synthesis began with
coupling of acetylene1a3 (R ) Bn) and aldehyde23 (Scheme
2). The reaction of the lithium acetylide, derived from1a,

with 2 smoothly proceeded to give the secondary alcohol
3a as a mixture of stereoisomers. The Swern oxidation of
the alcohol3a quantitatively furnished the required ynone
4a, corresponding toiii .

First, we examined an intramolecular hetero-Michael
addition of the ynone4a for the construction of enone6a,
corresponding to the key intermediateiv (Scheme 3). After

deprotection of the TBS group in4a with aqueous HCl in
MeOH, the cyclization of the ynone5 was attempted by
treatment with a base (NaH, Et3N, N-methylmorpholine, etc.),
but only the starting material5 was recovered. On the other
hand, treatment of4a with TBAF in THF effected depro-
tection of TBS and successive cyclization at room temper-
ature for 1 h, but the yield of6a was 43%.

Next, we investigated hetero-Michael addition using an
enone7 having aâ-methoxy group, expecting easier access
of the hydroxyl group to theâ-position (Scheme 4). The key
intermediate4b (R ) MPM) toward the enone7a was
synthesized from1b3 and2 by the same procedure as that
for 4a as shown in Scheme 2. Theâ-methoxy group was
introduced by treatment of4b with MeONa in MeOH to
give the enone7a in 92% yield (Scheme 4). After depro-
tecting the TBS group of7a with TBAF, cyclization of the
resulting alcohol7b was investigated. As expected, upon
treatment of7b with p-TsOH in toluene4 at 60°C, the desired
hetero-Michel reaction took place to give the enone6b in
63% yield from7a.

With the desired enone6b in hand, we next investigated
the stereoselective conversion into12 via the acetal11.
Reduction of6b with DIBAH in toluene proceeded smoothly
to give equatorial R-alcohol 8 (94%) as a single product.
Subsequent hydroboration of8 stereoselectively took place
from theR-side to afford a diol (85%), which was protected
as the di-TES ether9 in 89% yield. Deprotection of the MPM
group of 9 followed by Swern oxidadion gave ketone10.
Treatment of10 with p-TsOH in MeOH-CH2Cl2 at 55°C
effected the removal of the di-TES groups and cyclization
to give the desired methyl acetal11 in 74% yield (from9).
Finally, reduction of the acetal11 with Et3SiH-TMSOTf
proceeded smoothly to give the desiredtrans-fused 6-6-6-
6-membered tetracyclic ether12 as the sole product in 82%
yield.

Having completed the construction oftrans-fused 6-6-6-
6-membered tetracyclic ether12 having an equatorial
R-hydroxyl group, we next turned to the synthesis of the
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Scheme 3a

a Reagents and conditions: (a) aq HCl, MeOH, rt; (b) TBAF,
THF, rt (43% from4a).

Scheme 1. Synthetic Strategy

Scheme 2a

a Reagents and conditions: (a)1, t-BuLi, HMPA, THF, -78 °C;
2 in THF (88% for3a, 76% for3b); (b) (COCl)2, DMSO, CH2Cl2,
-78 °C; Et3N, -78 °C f rt (99% for 4a, 100% for4b).
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axial â-hydroxy isomer (Scheme 5). After the Swern
oxidation of12, reduction of the ketone13with L-Selectride
in THF at -78 °C proceeded smoothly to give only the
desiredâ-alcohol 14 in 91% yield from 12.5 The stereo-
structure of both tetracyclic ethers,12and14, was confirmed
by the 1H and 13C NMR and NOE analysis of the corre-
sponding acetates15 and 16, prepared from12 and 14,
respectively, by acetylation (Figure 2).

In conclusion, we have developed an efficient convergent
synthesis of atrans-fused 6-6-6-6-membered tetracyclic ether
ring system including 4R- or 4â-hydroxy-5-methyl-tetra-
hydropyran in a stereoselective manner. This strategy would
be widely applicable to efficient and stereoselective synthesis
of natural polycyclic ethers. Further studies along these lines
are currently in progress in our laboratory.
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Scheme 4a

a Reagents and conditions: (a) MeONa, MeOH, rt (92%); (b)
TBAF, THF, rt (83%); (c)p-TsOH‚H2O, toluene, 60°C (76%);
(d) DIBAH, toluene,-78 °C (94%); (e) BH3‚THF, THF, 0°C; 3
N NaOH, 30% H2O2, 0 °C (85%); (f) TESOTf, 2,6-lutidine, CH2Cl2,
0 °C (89%); (g) DDQ, CH2Cl2-H2O (10:1), 0°C; (h) (COCl)2,
DMSO, CH2Cl2, -78 °C; Et3N, -78 °C f rt; (i) p-TsOH‚H2O,
MeOH, CH2Cl2, 55°C (74% from9); (j) Et3SiH, TMSOTf, CH2Cl2,
0 °C (82%).

Scheme 5a

a Reagents and conditions: (a) (COCl)2, DMSO, CH2Cl2, -78
°C; Et3N, -78 °C f rt; (b) L-Selectride, THF,-78 °C (91% from
12).

Figure 2. NOE andJ value of15 and16.
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