Eremosides A-C, New Iridoid Glucosides from *Eremostachys loasifolia*

by Bakhat Ali^a), Rashad Mehmood^a), Uzma Rasheed Mughal^a), Abdul Malik*^a), Muhammad Safder^a), Riaz Hussain^a), Muhammad Imran^a), and Rasool Bakhsh Tareen^b)

a) International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan

(phone: +92-21-4824926; fax: +92-21-4819018-9; e-mail: abdul.malik@iccs.edu)

Eremosides A-C (1-3), three new iridoid glucosides, were isolated from the AcOEt-soluble fraction of the EtOH extract of the whole plant of *Eremostachys loasifolia*, along with buddlejoside B (4), 10-O-benzoylcatalpol (5), and pakiside A (6) reported for the first time from this species. The structures of these compounds were elucidated by spectroscopic data including 2D-NMR, FAB-MS, ESI-MS, as well as by acid and basic hydrolyses.

Introduction. – The genus *Eremostachys* (Lamiaceae) comprises 80 species as herbs which are mainly distributed in Russia and Afghanistan [1]. Out of these, eight species have so far been found in Pakistan [2]. The literature survey of the genus *Eremostachys* revealed that apart from essential oils [3], fatty acids [4], flavonoids [5–7], phenylethanoid glucosides [7], iridoids [8], and diterpenes [9] have so far been reported. Some of these showed antidepressant, antioxidant, and antibacterial activities [6–8]. One of the species of the genus *Eremostachys* is *E. loasifolia* BENTH which grows in S. E. Iran, Pakistan, and N. W. India [2]. Previously, two flavonoids and 6,7-dihydroxycoumarin have been reported by us from this species [5]. The fact that no systematic phytochemical or pharmacological studies have so far been carried out with *E. loasifolia* prompted us to carry out further phytochemical investigation of this species. As a result, we herein report the isolation and structural elucidation of three new iridoid glucosides, named eremosides $A - C^1$) (1–3; *Fig.*), along with buddlejoside B (4), 10-*O*-benzoylcatalpol (5), and pakiside A (6), reported for the first time from the genus *Eremostachys*.

Results and Discussion. – The EtOH extract of the whole plant of *E. loasifolia* was suspended in H₂O and successively partitioned into hexane-, CHCl₃-, AcOEt-, and BuOH-soluble fractions. Separation of the AcOEt-soluble fraction by column-chromatographic techniques provided compounds **1**–**6**.

Eremoside A¹) (1) was obtained as a colorless gummy solid. The molecular formula $C_{24}H_{33}O_{14}$ was deduced from the quasimolecular-ion peak in the HR-FAB-MS (m/z 545.1850 ([M+H]⁺)). The IR spectrum revealed the absorption bands of OH (3402 – 3245 cm⁻¹), ester C=O (1709 cm⁻¹), C=C (1645 cm⁻¹), and aromatic moieties (1602,

b) Department of Botany, University of Balochistan, Sariab Road, Quetta, Pakistan

¹⁾ Arbitrary atom numbering; for systematic names, see Exper. Part.

Figure. Eremosides A (1), B (2), and C (3) and compounds 4-6; isolated from Eremostachys loasifolia

1540, and 1500 cm⁻¹). The UV spectrum showed absorption bands at $\lambda_{\rm max}$ 204, 216, 229, 266, and 296 nm. In the EI-MS, the fragment peaks at m/z 382 and 379 resulted from the loss of a hexose and a dimethoxybenzoyl moiety, respectively, and the presence of a dimethoxybenzoyl moiety was also confirmed by the base peak at m/z 165. The ¹³C-NMR and DEPT spectra ($Table\ 1$) showed 24 signals comprising two Me, two CH₂, and 15 CH groups, and five quaternary C-atoms. The olefinic C-atoms resonated at $\delta(C)$ 141.2 and 102.2, which are characteristic of an iridoid [10]. This was confirmed by the ¹H-NMR spectrum ($Table\ 1$) which showed characteristic signals of olefinic H-atoms at $\delta(H)$ 6.45 (dd, J = 6.2, 1.6 Hz, H–C(3)) and 5.37 (dd, J = 6.2, 4.4 Hz, H–C(4)). Further signals in the ¹H- and ¹³C-NMR spectra confirmed the presence of an iridoid skeleton, along with hexose and veratroyl (= 3,4-dimethoxybenzoyl) moieties. The larger coupling constant (J = 7.8 Hz) of the anomeric H-atom allowed us to assign the β -configuration to the hexose moiety. Acid hydrolysis of 1 gave an aglycone which could not be worked up due to the paucity of material. The glycone could be identified as D-glucose by the sign of its optical rotation ([α] $_{20}^{25}$ = +52) and the comparison of the

Table 1. ¹H- and ¹³C-NMR Data (500 and 125 MHz, resp.; C₅D₅N) and Important HMBC Features of Compounds 1 and 2¹). δ in ppm, J in Hz.

(6) (6) (7) (7) (7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	 δ(C) HMBC 95.2 C(3), C(9), C(1") 141.2 C(1), C(4), C(5) 102.2 C(3), C(5), C(9) 35.9 C(1), C(3), C(4), C(6), C(9) 81.3 C(4), C(5), C(7), C=O 85.2 C(5), C(6), C(8), C(10) 81.1 - 43.2 C(1), C(4), C(5), C(7) 66.7 C(7), C(8), C(9) 	5.52 (d, J = 9.5) 6.40 (dd, J = 6.0, 1.6) 5.09 (dd, J = 6.0, 4.5) 2.50 - 2.53 (m) 4.75 (br. d, J = 7.9) 4.03 (br. s) - 2.64 (dd, J = 9.5, 7.6) 5.06 (d, J = 13.2) 4.07 (c)	94.1 C(3), C(9), C(1") 140.8 C(1), C(4), C(5) 102.0 C(3), C(5), C(9) 37.5 C(1), C(3), C(4), C(6), C(9) 86.1 C(4), C(5), C(7), MeO 63.5 C(5), C(6), C(8), C(10) 65.1 – 42.7 C(1), C(4), C(5), C(7), C(8)
(6) xyb (7) (7) (7) (7)	C(3), C(9), C(1") C(1), C(4), C(5) C(3), C(5), C(9) C(1), C(3), C(4), C(6), C(9) C(4), C(5), C(7), C=0 C(5), C(6), C(8), C(9), C(10) - C(1), C(4), C(5), C(7), C(8) C(7), C(8), C(9) C(7), C(8), C(9)	5.52 $(d, J = 9.5)$ 6.40 $(dd, J = 6.0, 1.6)$ 5.09 $(dd, J = 6.0, 4.5)$ 2.50 - 2.53 (m) 4.75 $(m, d, J = 7.9)$ 4.03 (m, s) - 2.64 $(dd, J = 9.5, 7.6)$ 5.06 $(d, J = 13.2)$ 4.90 $(d, J = 13.2)$	94.1 C(3), C(9), C(1") 140.8 C(1), C(4), C(5) 102.0 C(3), C(5), C(9) 37.5 C(1), C(3), C(4), C(6), C(9) 86.1 C(4), C(5), C(7), MeO 63.5 C(5), C(6), C(8), C(9), C(10) 65.1 - 42.7 C(1), C(4), C(5), C(7), C(8)
$\begin{array}{c} xyb \\ (6) \\ (7) \\ (7) \\ (8) \\ (14) \\ $	C(1), C(4), C(5) C(3), C(5), C(9) C(1), C(3), C(4), C(6), C(9) C(4), C(5), C(7), C=0 C(5), C(6), C(8), C (9), C(10) - C(1), C(4), C(5), C(7), C(8) C(7), C(8), C(9)	6.40 $(dd, J = 6.0, 1.6)$ 5.09 $(dd, J = 6.0, 4.5)$ 2.50 - 2.53 (m) 4.75 $(br. d, J = 7.9)$ 4.03 $(br. s)$ - 2.64 $(dd, J = 9.5, 7.6)$ 5.06 $(d, J = 13.2)$ 4.90 $(d, J = 13.2)$	140.8 C(1), C(4), C(5) 102.0 C(3), C(5), C(9) 37.5 C(1), C(3), C(4), C(6), C(9) 86.1 C(4), C(5), C(7), MeO 63.5 C(5), C(6), C(8), C(9), C(10) 65.1 – 42.7 C(1), C(4), C(5), C(7), C(8)
$\frac{(6)}{xyb}$ $\frac{xyb}{(4')}$	C(3), C(5), C(9) C(1), C(3), C(4), C(6), C(9) C(4), C(5), C(7), C=0 C(5), C(6), C(8), C (9), C(10) - C(1), C(4), C(5), C(7), C(8) C(7), C(8), C(9)	5.09 $(dd, J = 6.0, 4.5)$ 2.50 - 2.53 (m) 4.75 $(br. d, J = 7.9)$ 4.03 $(br. s)$ - 2.64 $(dd, J = 9.5, 7.6)$ 5.06 $(d, J = 13.2)$, 4.90 $(d, J = 13.2)$	102.0 C(3), C(5), C(9) 37.5 C(1), C(3), C(4), C(6), C(9) 86.1 C(4), C(5), C(7), MeO 63.5 C(5), C(6), C(8), C(9), C(10) 65.1 – 42.7 C(1), C(4), C(5), C(7), C(8)
$\frac{(6)}{xxyb}$ $\frac{(3)}{(4)}$	C(1), C(3), C(4), C(6), C(9) C(4), C(5), C(7), C=O C(5), C(6), C(8), C (9), C(10) - C(1), C(4), C(5), C(7), C(8) C(7), C(8), C(9)	2.50–2.53 (m) 4.75 (br. d , J = 7.9) 4.03 (br. s) – 2.64 (dd , J = 9.5, 7.6) 5.06 (d , J = 13.2), 4.90 (d , J = 13.2)	37.5 C(1), C(3), C(4), C(6), C(9) 86.1 C(4), C(5), C(7), MeO 63.5 C(5), C(6), C(8), C(9), C(10) 65.1 – 42.7 C(1), C(4), C(5), C(7), C(8)
xyb (6) (7) (8)	C(4), C(5), C(7), C=0 C(5), C(6), C(8), C (9), C(10) - C(1), C(4), C(5), C(7), C(8) C(7), C(8), C(9)	4.75 (br. d , $J = 7.9$) 4.03 (br. s) - 2.64 (dd , $J = 9.5$, 7.6) 5.06 (d , $J = 13.2$), 4.90 (d , $J = 13.2$)	86.1 C(4), C(5), C(7), MeO 63.5 C(5), C(6), C(8), C(9), C(10) 65.1 – 42.7 C(1), C(4), C(5), C(7), C(8)
(6) (7) (8) (1) (1) (2) (3)	C(5), C(6), C(8), C (9), C(10) - C(1), C(4), C(5), C(7), C(8) C(7), C(8), C(9)	4.03 (br. s) - 2.64 $(dd, J = 9.5, 7.6)$ 5.06 $(d, J = 13.2)$, 4.90 $(d, J = 13.2)$	63.5 C(5), C(6), C(8), C(9), C(10) 65.1 – 42.7 C(1), C(4), C(5), C(7), C(8)
$\begin{array}{c} (6) \\ xyb \\ (4) \\ (4) \\ (6) \\$	- C(1), C(4), C(5), C(7), C(8) C(7), C(8), C(9)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	65.1 – 42.7 C(1), C(4), C(5), C(7), C(8)
(6) (7) (4/) (4/) (3/) (6) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	C(1), C(4), C(5), C(7), C(8) C(7), C(8), C(9)	2.64 (dd, J = 9.5, 7.6) 5.06 (d, J = 13.2), 4.90 (d, J = 13.2)	42.7 C(1), C(4), C(5), C(7), C(8)
(6) (7) (4') (4')	C(7), C(8), C(9)	5.06 (d, J = 13.2), $4.90 (d, J = 13.2)$	
(6) (7) (4') (4')		4.90 (d, J = 13.2)	63.5 C(7), C(8), C=0
(6) xybee (7) (4') (20)	(6), (6)	2 17 (6)	C(7), C(8), C=0
(3') (4') cose:		(3)	58.8 C(6)
(3') (4') cose:			
(3') (4') :ose:	122.2 –	I	122.5 -
(3') (4') (4')	113.9 $C(1')$, $C(3')$, $C(4')$, $C(6')$, $C=0$ 7.76 $(d, J=1.8)$	7.76 (d, J = 1.8)	112.9 C(1'), C(3'), C(4'), C(6'), C=O
(3') (4') :ose:	149.7 –	I	149.1 –
(3') (4') cose:	153.8 –	I	153.8 -
(3') (4') cose:	112.6 C(1'), C(3'), C(4'), C(6')	6.96(d, J = 8.5)	110.9 C(1'), C(3'), C(4'), C(6')
(3') (4') 50se:	C(1'), C(2'), C(4'), C(5'), C=O	7.86 (dd, J = 8.5, 1.8)	123.9 C(1'), C(2'), C(4'), C(5'), C=O
(3') (4') :ose:	ı	I	166.0 -
(4') :ose:	55.7 C(3')	3.70 (s)	56.0 C(3')
sose:	55.4 C(4')	3.67 (s)	55.6 C(4')
_	99.8 C(1), C(2")	5.51(d, J=7.9)	98.8 C(1), C(2")
	74.7 C(1"), C(3")	4.10-4.13 (m)	74.0 C(1"), C(3")
H-C(3'') 4.00-4.03 (m)	78.7	3.98-4.00 (m)	78.2 C(2''), C(4'')
H-C(4'') 4.21 – 4.24 (m)	71.0	4.13-4.16 (m)	70.1 $C(3''), C(5'')$
H-C(5'') 4.28-4.30 (m)	77.9	4.25-4.28 (m)	77.5 C(1"), C(4"), C(6")
$CH_2(6'')$ 4.51, 4.32 (2d, each $J = 11.9$)		4.48, 4.30 (2d, each J = 12.0)	61.5 C(4"), C(5")

retention time of its Me_3Si ether with a standard in the gas chromatogram (GC). The basic hydrolysis of **1** provided veratric acid and an iridoid glucoside which could be identified as paulownioside (=(1S4aR,5S,6S,7aS)-1,4a,5,6,7,7a-hexahydro-5,6,7-trihydroxy-7-(hydroxymethyl)cyclopenta[c]pyran-1-yl β -D-glucopyranoside) by comparison of its physical and NMR data with those reported in [11]. In the HMBC spectrum, the anomeric H-atom at δ (H) 5.54 showed 3J correlation with C(1) (δ (C) 95.2) allowing us to assign the glucosyloxy moiety to C(1). The O–CH proton at δ (H) 4.90 showed 3J correlations with C(4) (δ (C) 102.2), C(8) (δ (C) 81.1), as well as with the C=O C-atom at δ (C) 166.1, revealing the attachment of the (3,4-dimethoxybenzoyl)oxy moiety at C(6). Other HMBC, 1H , 1H -COSY, and HMQC data were in complete agreement with the assigned structure of eremoside A (**1**) as 6-O-(3,4-dimethoxybenzoyl)paulownioside (*Fig.*).

Eremoside B¹) (2) was obtained as a colorless gummy solid. The molecular formula was deduced as $C_{25}H_{33}O_{13}$ by HR-FAB-MS showing the quasimolecular-ion peak at m/z 541.1945 ($[M+H]^+$). The IR and UV spectra were similar to those of 1. In the EI-MS, the key fragment peaks at m/z 378 and 375 resulted from the loss of a hexose moiety and dimethoxybenzoyl group, respectively. The presence of a dimethoxybenzoyl moiety was also revealed by a base peak at m/z 165.

The ¹³C-NMR and DEPT spectra (*Table 1*) showed 25 signals comprising three Me, two CH₂, and 15 CH groups, and five quaternary C-atoms. The ¹³C-NMR spectrum was similar to that of 1, except for an additional signal of a MeO group at $\delta(C)$ 58.8, the slight downfield shift of an O-CH C-atom at $\delta(C)$ 86.1, and the upfield shift of the CH₂O at δ (C) 63.5, an O–CH at δ (C) 63.5, and the quaternary C-atom at δ (C) 65.1. The ¹H-NMR spectrum (*Table 1*) showed the iridoid olefinic H-atoms at $\delta(H)$ 6.40 (*dd*, J = 6.0, 1.6 Hz, H-C(3)) and 5.09 (dd, J = 6.0, 4.5 Hz, H-C(4)). Further signals in the NMR spectrum (Table 1) showed the presence of an iridoid skeleton with veratroyl and hexose moieties. The larger coupling constant (J = 7.9 Hz) of the anomeric H-atom allowed us to assign the β -configuration to the hexose moiety. Acid hydrolysis of 2 gave a glycone which could be identified as D-glucose by the sign of its optical rotation $([\alpha]_D^{23} = +53)$ and by comparing the retention time of its Me₃Si ether with a standard in the GC. The basic hydrolysis of 2 provided veratric acid and an iridoid glucoside, the latter being identified as methyl catalpol (=(1aS,1bS,2S,5aR,6S,6aS)-1a,1b,2,5a,6,6ahexahydro-1a-(hydroxymethyl)-6-methoxyoxireno[4,5]cyclopenta[1,2-c]pyran-2-yl β -D-glucopyranoside) by comparison of its physical and NMR data with those reported in [12]. In the HMBC experiment, the anomeric H-atom at $\delta(H)$ 5.51 showed ³J correlation with C(1) (δ (C) 94.1) confirming the presence of the sugar moiety at C(1). The CH₂O protons at δ (H) 5.06 and 4.90 showed 2J correlation with C(8) (δ (C) 65.1) and ${}^{3}J$ correlation with the C=O C-atom at δ (C) 166.0, revealing the attachment of the (3,4-dimethoxybenzoyl)oxy group at C(10). The MeO group at δ (H) 3.47 showed a HMBC cross-peak with C(6) (δ (C) 86.1), indicating the MeO group to be located at C(6). Other HMBC, ¹H, ¹H-COSY, and HMQC data were in complete agreement with the assigned structure of eremoside B (2) as 10-O-(3,4-dimethoxybenzoyl)-6-Omethylcatalpol (Fig.).

Eremoside C^1) (3) was also obtained as a colorless gummy solid. The molecular formula was determined as $C_{48}H_{58}O_{25}$ by HR-ESI-MS showing a quasimolecular-ion peak at m/z 1057.3151 ($[M + Na]^+$). The IR and UV spectra were similar to that of 2.

The broad-band and DEPT ¹³C-NMR (Table 2) spectra showed 24 well-resolved signals comprising two Me, two CH₂, and 15 CH groups, and five quaternary C-atoms. The ¹³C-NMR spectrum was similar to that of 2, except for the absence of one of the three MeO groups and the downfield shift of C(10) to δ (C) 67.7. The ¹H-NMR spectrum (Table 2) was also similar to that of 2, except for the absence of one of the three MeO groups. The NMR data showed close agreement, to that reported for 6-O-veratroylcatalpol (= '6-O-veratroyl cataposide', (1aS,1bS,2S,5aR,6S,6aS)-6-[(3,4-dimethoxybenzoyl)oxy]-1a,1b,2,5a,6,6a-hexahydro-1a-(hydroxymethyl)oxireno[4,5]cyclopenta[1,2-c]pyran-2-yl β -D-glucopyranoside) in [13], except for the downfield signal of C(10) (δ (C) 67.7) which suggested the attachment of two monomeric units through an ether linkage. The dimeric structure was corroborated by the HR-ESI-MS and the elemental analysis. The EI-MS showed a fragment at m/z 362 which was due to the loss of one of the monomer unit along with the remaining hexose moiety. Elimination of H₂O from this peak gave another fragment at m/z 344. The dimethoxybenzoyl moiety was also confirmed by the base peak at m/z 165. The downfield shift of both the C(10) signals indicated the attachment of the monomer units through an ether linkage. The absence of a free OH group at C(10) of the aglycone was finally confirmed by dissolving compound 3 in D_2O/C_5D_5N and repeating the ESI-MS which now gave an $[M+Na]^+$ peak at m/z 1065 due to deuterium exchange of eight OH groups of the glucose moieties. On the basis of these evidences, a dimeric structure was assigned to eremoside C (3) as shown in the *Figure*.

Table 2. ${}^{1}H$ - and ${}^{13}C$ -NMR Data (500 and 125 MHz, resp.; (D₆)DMSO) of Compound 3. δ in ppm, J in Hz.

	$\delta(\mathrm{H})$	$\delta(C)$		$\delta(\mathrm{H})$	$\delta(C)$
Aglycone:			β-D-Glucose:		
H–C(1a,1b)	5.14 (d, J = 9.8)	92.9	H–C(1"a,1"b)	4.72 (d, J = 8.0)	98.8
H-C(3a,3b)	6.45 (dd, J = 6.3, 1.7)	141.0	H-C(2''a,2''b)	3.12-3.17 (m)	74.5
H-C(4a,4b)	4.93 (dd, J = 6.3, 4.6)	101.2	H-C(3''a,3''b)	3.00-3.05 (m)	76.2
H-C(5a,5b)	2.57 - 2.60 (m)	36.9	H-C(4''a,4''b)	$3.17 - 3.21 \ (m)$	71.3
H-C(6a,6b)	5.10 (br. $d, J = 8.0$)	85.0	H-C(5''a,5''b)	3.04-3.08 (m)	78.0
H-C(7a,7b)	3.70 (br. s)	63.4	$CH_2(6''a,6''b)$	3.75 (dd, J = 12.1, 5.0),	62.8
C(8a,8b)	_	65.3		$3.41 \; (dd, J = 12.1, 2.5)$	
H-C(9a,9b)	2.47 - 2.50 (dd, J = 9.8, 7.8)	42.4			
CH ₂ (10a,10b)	5.00 (d, J = 13.5),	67.7			
	3.92 (d, J = 13.5)				
Dimethoxybenzoy	yl (= veratroyl):				
C(1'a,1'b)	_	121.8			
H-C(2'a,2'b)	7.46 (d, J = 1.8)	111.5			
C(3'a,3'b)	_	149.1			
C(4'a,4'b)	_	153.0			
H-C(5'a,5'b)	7.10 (d, J = 8.4)	111.0			
H-C(6'a,6'b)	7.64 (dd, J = 8.4, 1.8)	123.9			
aC=O, bC=O	_	165.5			
MeO-C(2'a,2'b)	3.84 (s)	55.9			
MeO-C(3'a,3'b)	3.86 (s)	55.6			

The known compounds were identified as buddlejoside B (4) [14], 10-O-benzoylcatalpol (5) [15], and pakiside A (6) [16] by comparison of their physical and spectral data with those reported in the literature.

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂; 230–400 mesh; *E. Merck*, Darmstadt, Germany). TLC: SiO₂ 60- F_{254} plates (*E. Merck*, Darmstadt, Germany). GC: Schimadzu gas chromatograph (GC-9A); 3% OV-1 silanized Chromosorb-W column; column temp. 180°; injection port and detector temp. 275 – 300°; flow rate 35 ml/min; flame-ionization detector. Optical rotations: Jasco-P-2000 polarimeter. UV Spectra: Hitachi-UV-3200 spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: Jasco-302-A spectrometer; in KBr; \tilde{v} in cm⁻¹. NMR Spectra: Bruker-AMX-500 instrument; δ in ppm rel. to Me₄Si as internal standard, J in Hz. EI-MS: Finnigan-MAT-312 mass spectrometer. HR-FAB-MS: Jeol-JMS-HX-110 mass spectrometer, glycerol as matrix. HR-ESI-MS: QSTAR-XL spectrometer; in m/z (rel. %). Elemental analysis: Perkin–Elmer 2400 series II CHN/S.

Plant Material. The whole plant material of Eremostachys loasifolia BENTH (Lamiaceae) (20 kg) was collected from the Ziarat Valley of the Balochistan Province, Pakistan, in April 2005, and identified by R. B. Tareen, plant taxonomist, Department of Botany, University of Balochistan, Quetta, where a voucher specimen has been deposited with the herbarium (voucher No. el. Rbt. 01. 2005).

Extraction and Isolation. The shade-dried whole plant material (20 kg) was chopped, ground, and extracted with EtOH (3×20 l, 10 d each) at r.t. The combined EtOH extract was concentrated to yield a residue (500 g), which was suspended in H₂O (1.0 l) and successively partitioned into hexane- (130 g), CHCl₃- (100 g), AcOEt- (60 g), and BuOH-soluble (80 g) fractions. The AcOEt-soluble subfraction (60 g) was subjected to CC (60 g), hexane, hexane/CHCl₃, CHCl₃, and CHCl₃/MeOH in increasing order of polarity). The fraction obtained with CHCl₃/MeOH 9.9:0.1 (1.2 g) was resubjected to CC (600 g), CHCl₃/MeOH). The fraction obtained with CHCl₃/MeOH 9.8:0.15 was further purified by prep. TLC (CHCl₃/MeOH 9.5:0.5): 10.5 (10.5 mg) and 10.5 (10.5 mg). The fraction obtained with CHCl₃/MeOH 10.5 (10.5 mg) was resubjected to CC (10.5 mg). The fraction obtained with CHCl₃/MeOH 10.5 (10.5 mg) was triturated with MeOH, and the residue was resubjected to CC (10.5 cHCl₃/MeOH 10.5 (10.5 mg) and 10.5 (10.5 mg), from the head and tail fractions, resp. The fraction obtained with CHCl₃/MeOH 10.5 (10.5 mg), from the head and the residue was resubjected to CC (10.5 cHCl₃/MeOH 10.5 (10.5 mg).

Eremoside A (=6-O-(3,4-Dimethoxybenzoyl)paulownioside = [(1S,4aR,5S,6S,7S,7aS)-1-(β-D-Glucopyranosyloxy)-1,4a,5,6,7,7a-hexahydro-6,7-dihydroxy-7-(hydroxymethyl)cyclopenta[c]pyran-5-yl 3,4-Dimethoxybenzoate = (1S,4aR,5S,6S,7S,7aS)-5-[(3,4-Dimethoxybenzoyl)oxy]-6,7-dihydroxy-7-(hydroxymethyl)cyclopenta[c]pyran-1-yl β-D-Glucopyranoside; 1): Colorless gummy solid. [α]_D²³ = -12 (c = 0.20, MeOH). IR (KBr): 3402 – 3245, 1709, 1645, 1602, 1540, 1500. UV (MeOH): 204 (2.1), 216 (2.0), 229 (3.4), 266 (2.9), 296 (4.1). ¹H- and ¹³C-NMR: *Table 1*. EI-MS: 382 (10, [M – Glc]+), 379 (9, [M – dimethoxybenzoyl]+), 364 (21, [M – Glc – H₂O]+), 216 (22), 201 (25), 181 (65), 165 (100). HR-FAB-MS (pos.): 545.1850 ([M + H]+, C_{24} H₃₃O⁺₁₄; calc. 545.1870).

Eremoside B (=10-O-(3,4-Dimethoxybenzoyl)-6-O-methylcatalpol = [(1a\$,1b\$,2\$,5a\$R,6\$,6a\$)-2-(β-D-Glucopyranosyloxy)-1b,5a,6,6a-tetrahydro-6-methoxyoxireno[4,5]cyclopenta[1,2-c]pyran-1a(2H)-yl]methyl 3,4-Dimethoxybenzoate = (1a\$,1b\$,5a\$R,6\$,6a\$)-1a-[[(3,4-Dimethoxybenzoyl)oxy]methyl]-1a,1b,2,5a,6,6a-hexahydro-6-methoxyoxireno[4,5]cyclopenta[1,2-c]pyran-2-yl β-D-Glucopyranoside; **2**): Colorless gummy solid. [α] $_{\rm D}^{\rm S}$ = -102 (c = 0.18, MeOH). IR (KBr): 3437 – 3405, 1705, 1638, 1606, 1542, 1503. UV (MeOH): 207 (2.3), 217 (1.9), 232 (3.8), 263 (3.1), 298 (4.2). $^{\rm 1}$ H- and $^{\rm 13}$ C-NMR: Table 1. EI-MS: 378 (8, [M – Glc] $^{+}$), 375 (12, [M – dimethoxybenzoyl] $^{+}$), 360 (17, [M – Glc – H₂O] $^{+}$), 345 (10), 212 (15), 197 (25), 181 (70), 165 (100). HR-FAB-MS (pos.): 541.1945 ([M + H] $^{+}$, $C_{\rm 25}$ H₃₃O $_{13}^{+}$; calc. 541.1921).

Eremoside C (= Bis(6-O-veratroylcatalpol-10-yl) Ether = (1a\$,1'a\$,1b\$,1'b\$,2\$,2'\$,5aR,5'aR,6\$,6'\$,6a\$,6'a\$)-1a,1'a-[Oxybis(methylene)]bis[6-[(3,4-dimethoxybenzoyl)oxy]-1a,1b,2,5a,6,6a-hexahydro-oxireno[4,5]cyclopenta[1,2-c]pyran-2-yl β -D-Glucopyranoside]; **3**): Colorless gummy solid. [α] $_{0}^{25}$ = -79 (c = 0.08, MeOH). IR (KBr): 3425 – 3401, 1707, 1635, 1605, 1539, 1500. UV (MeOH): 205 (2.0), 218 (2.1),

231 (4.1), 262 (2.8), 296 (3.9). 1 H- and 13 C-NMR: *Table* 2. EI-MS: 362 (12, $[M-monomer-Glc]^{+}$), 344 (10, $[M-monomer-Glc-H_{2}O]^{+}$), 181 (85), 165 (100). HR-ESI-MS: 1057.3151 ($[M+Na]^{+}$, $C_{48}H_{58}O_{25}Na^{+}$; calc. 1057.3165). Anal. calc. for $C_{48}H_{58}O_{25}$ (1034.96): C 55.72, H 5.64, O 38.64; found C 55.70, H 5.65, O 38.65.

Acid Hydrolysis of 1 and 2. A soln. of 1 (3.0 mg) in MeOH (5 ml) and ln HCl (2 ml) was refluxed for 4 h and then concentrated. The residue was treated with H₂O and extracted with AcOEt. The aq. phase was concentrated to obtain the sugar residue which could be identified as D-glucose by the sign of its optical rotation ($[a]_D^{23} = +52$, c = 0.02, MeOH). It was further confirmed by comparing the retention times t_R of its Me₃Si ethers (α -anomer t_R 3.7 min, β -anomer t_R 5.1 min) with a standard sample in GC. The preparation of the Me₃Si ethers and subsequent GC analysis was carried out according to [17]. The aglycone was a mixture of products which could not be worked up due to the paucity of material. The glycone obtained from compound 2 ($[\alpha]_D^{23} = +53$, c = 0.03, MeOH) could be identified as D-glucose by using the same procedure.

Alkaline Hydrolysis of 1 and 2. A soln. of 1 (4 mg) in 0.5% NaOH soln. (2 ml) was heated at 60° for 50 min. Then, the mixture was neutralized with 0.2% HCl soln. and subjected to CC (polyamide, CHCl₃/MeOH). Elution with CHCl₃/MeOH 9.6:0.4 provided a pure compound which crystallized from EtOH, melted at $180-182^{\circ}$, and could be identified as *veratric acid* by comparison of physical and spectral data with those reported in the literature. Elution with CHCl₃/MeOH 9.7:0.3 provided the deacetylated iridoid glucoside ($[a]_{25}^{25}=-65$ (c=2.5, MeOH)), which was identified as *paulownioside* by comparison of physical and NMR spectral data with those reported in [11]. In the case of compound 2 (4 mg), a similar protocol provided *veratric acid* and an iridoid glucoside (m.p. $212-213^{\circ}$; $[a]_{20}^{20}=-173$ (c=0.02, EtOH)), which was indentified as *catalpol* by comparison of its physical and spectral data with those reported in [18].

REFERENCES

- [1] X.-W. Li, I. C. Hedge, in 'Flora of China', Science Press (Beijing) and Missouri Botanical Garden Press, St. Louis, Missouri, Vol. 17, p. 50.
- [2] A. Radcliffe-Smith, in 'Flora of Pakistan', Eds. E. Nasir, I. Ali, Shamim Printing Press, Karachi, 1986, Vol. 192, pp. 1 and 224.
- [3] K. Javidnia, R. Miri, M. Soltani, A. R. Khosravi, J. Essent. Oil Res. 2008, 20, 226; M. N. Navaei, M. Mirza, Flavour Fragrance J. 2006, 21, 645.
- [4] S. D. Gusakova, A. U. Umarov, Chem. Nat. Compd. 1976, 12, 645.
- [5] U. R. Mughal, I. Fatima, A. Malik, R. B. Tareen, J. Asian Nat. Prod. Res. 2010, 12, 328.
- [6] M. Nisar, S. Khan, A. Dar, W. Rehman, R. Khan, I. Jan, Afr. J. Biotechnol. 2011, 10, 1696.
- [7] A. Delazar, S. D. Sarker, M. Shoeb, Y. Kumarasamy, L. Nahar, H. Nazemiyeh, *Iran. J. Pharm. Res.* 2004, 3, 24; I. Calis, A. Güvenc, M. Armagan, M. Koyuncu, C. H. Gotfredsen, S. R. Jensen, *Nat. Prod. Commun.* 2008, 3, 117.
- [8] M. Modaressi, A. Delazar, H. Nazemiyeh, F. Fathi-Azad, E. Smith, M. M. Rahman, S. Gibbons, L. Nahar, S. D. Sarker, *Phytother. Res.* 2009, 23, 99.
- [9] A. Delazar, M. Modarresi, H. Nazemiyeh, F. Fathi-Azad, L. Nahar, S. D. Sarker, *Nat. Prod. Commun.* 2008, 3, 873; A. Delazar, M. Modarresi, M. Shoeb, L. Nahar, R. G. Reid, Y. Kumarasamy, R. R. T. Majinda, S. D. Sarker, *Nat. Prod. Res.* 2006, 20, 167.
- [10] C. A. Boros, F. R. Stermitz, J. Nat. Prod. 1990, 53, 1055.
- [11] C. Adriani, C. Bonini, C. Iavarone, C. Trgolo, J. Nat. Prod. 1981, 44, 739.
- [12] R. B. Duff, J. S. D. Bacon, C. M. Mundie, V. C. Farmer, J. D. Russell, A. R. Forrester, *Biochem. J.* 1965, 96, 1
- [13] K. C. Joshi, L. Prakash, L. B. Singh, Phytochemistry 1975, 14, 1441.
- [14] I. Ahmad, N. Afza, I. Anis, A. Malik, I. Fatima, Azhar-ul-Haq, R. B. Tareen, Heterocycles 2004, 36, 1875
- [15] Í. Çaliş, H. Kirmizibekmez, D. Taşdemir, C. M. Ireland, Chem. Pharm. Bull. 2002, 50, 678.
- [16] B. Ali, I. Fatima, A. Malik, Z. Ahmed, Helv. Chim. Acta 2004, 93, 2245.

- [17] S. Hara, H. Okabe, K. Mihashi, *Chem. Pharm. Bull.* 1987, 35, 501.
 [18] J. M. Bobbitt, D. W. Spiggle, S. Mahboob, H. Schmid, W. von Philipsborn, *J. Org. Chem.* 1966, 31, 500; J. M. Bobbitt, H. Schmid, T. B. Africa, *J. Org. Chem.* 1961, 26, 3090.

Received August 9, 2011