Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Catalytic effect of SrTiO₃ on the dehydrogenation properties of LiAlH₄

M. Ismail ^{a, *}, N.A. Sazelee ^a, N.A. Ali ^a, S. Suwarno ^b

^a Energy Storage Research Group, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia ^b Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia

A R T I C L E I N F O

Article history: Received 6 September 2020 Received in revised form 2 October 2020 Accepted 5 October 2020 Available online 7 October 2020

Keywords: Lithium alanates Dehydrogenation properties Strontium titanate Catalytic effect

ABSTRACT

Lithium alanate (LiAlH₄) is regarded as one of the potential materials for on-board hydrogen storage applications because of its high hydrogen capacity. However, this advantage is restricted by several obstacles such as high decomposition temperature and slow desorption kinetics that deny its marketability. Hence, efforts such as decreasing the particle size by the mechanical milling technique and by adding dopants/catalysts have been investigated widely to overcome these drawbacks. In this work, the influences of strontium titanate (SrTiO₃) on the dehydrogenation properties of LiAlH₄ have been investigated for the first time. The onset decomposition temperature of the 10 wt% SrTiO₃-doped LiAlH₄ sample decreased from 145 °C to 80 °C in the first dehydrogenation step and from 178 °C to 120 °C in the second dehydrogenation step. For the desorption kinetic measurements at 90 °C, the 10 wt% SrTiO₃-doped LiAlH₄. The activation energies calculated by Kissinger analysis in the two-step dehydrogenation process of LiAlH₄ were lowered after the addition of SrTiO₃. From the X-ray diffraction analysis, we found that SrTiO₃ did not react during the mechanical milling and heating (desorption) processes. SrTiO₃ is believed to play a catalytic role by reducing the physical size of LiAlH₄ during the mechanical milling process thereby improving the dehydrogenation storage properties of LiAlH₄.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Currently, metal hydrides and complex hydrides attracts a great attention as a solid-state hydrogen storage medium [1,2]. Metal hydrides (especially MgH₂) shows an outstanding reversible desorb/absorb hydrogen meanwhile complex hydrides such as LiAlH₄ and NaBH₄ has a high hydrogen storage capacity [3–7]. Theoretically, LiAlH₄ and NaBH₄ can desorb 7.9 wt% and 10.6 wt% of H₂, respectively. This hydrogen amount fulfils the U.S. Department of Energy 2020 goals for on-board vehicle applications (4.5 wt% of hydrogen) [8]. Although LiAlH₄ and NaBH₄ can dsorb a promising characteristic as a solid-state hydrogen storage medium, its high desorption temperature and sluggish dehydrogenation kinetics hinder its wider applications.

To lower the decomposition temperature and improve the desorption kinetics of complex hydrides, several strategies have been carried out previously such as decreasing the particle sizes by mechanical milling [9,10], producing reactive hydride composites

* Corresponding author. E-mail address: mohammadismail@umt.edu.my (M. Ismail). (mixed with other hydride materials) [11–13], doping with catalysts/additives [14–16] and regeneration process by hydrolysis [17–21]. From the literature, doping with catalysts/additives is the most active approach for the modification of LiAlH₄ as a potential material for hydrogen storage [3,22]. Catalysts/additives such as metals [23–25], metal oxides [26–28], metal halides [29,30], carbon-based materials [31,32] and hard materials [33,34] have been used as doping agents in enhancing the dehydrogenation characteristics of LiAlH₄.

Hard and brittle additives, such as TiC and SiC, have been reported to act as surface catalysts for metal/complex hydrides [33,35,36]. The results showed that the catalysts did not react with the host material during the mechanical milling process and during the de/rehydrogenation process. Rafi-ud-din et al. [33] claimed that the desorption properties of LiAlH₄ had improved after milling with nano-TiC. The addition of hard and brittle nano-TiC reduces the particle sizes and creates larger surface areas for hydrogen to interact, thus improving the dehydrogenation characteristics of LiAlH₄. Furthermore, Ranjbar et al. [36] stated that using a hard material, SiC, the grain size of the MgH₂ could decrease and reduce the agglomeration of MgH₂ crystallites; thus, further enhancing the ab/desorption kinetic properties of the MgH₂–SiC composite.

Fig. 1. Thermal decomposition temperature of commercial LiAlH₄, 1 h milled LiAlH₄, and LiAlH₄-10 wt% SrTiO₃ sample.

Therefore, motivated by the above-mentioned strategies, it is desirable to study the effects of other hard materials on the dehy-drogenation properties of LiAlH₄.

Our previous studies have shown that SrTiO₃ is a promising catalyst for MgH₂ [37-39]. The results showed that the main catalytic role of the SrTiO₃ catalyst on MgH₂ is because of the hardness of SrTiO₃. From the X-ray diffraction (XRD) results, the SrTiO₃ phase was still unchanged after the mechanical milling and ab/desorption process, confirming that no reaction had occurred between MgH₂ and SrTiO₃. SrTiO₃ is believed to play a catalytic role by reducing the physical size of MgH₂ during the mechanical milling process. Inspired by these studies, in this study, SrTiO₃ was used as a catalyst to examine its influence on the hydrogen storage properties of LiAlH₄. It is reasonable to believe that SrTiO₃ could be an effective catalyst to lower the decomposition temperature and boost the dehydrogenation kinetics of LiAlH₄. According to the author's knowledge, this study is the first comprehensive work to examine the effect of the SrTiO₃ catalyst on the dehydrogenation behaviour of LiAlH₄.

2. Experimental details

All the chemicals in this work were used directly without any purification. LiAlH₄ powder (95% purity; Sigma-Aldrich) was milled with 10 wt% of SrTiO₃ (98% purity; Sigma-Aldrich) at 400 rpm for 1 h; the ratio of the steel balls to powder was about 30:1. The undoped LiAlH₄ was also milled mechanically using the same method for comparison purposes. All the preparation processes, such as weighing, were carried out in an atmosphere Ar-filled glovebox (Mbraun Unilab) to minimise oxidation.

The onset decomposition temperature and dehydrogenation kinetic measurements were examined using a Sieverts-type apparatus (Advanced Materials Corporation). To measure the onset decomposition temperature, a 300-mg sample was placed into the sample holder and heated from room temperature to 300 °C under vacuum at a heating rate of 5 °C/min. The dehydrogenation kinetic measurements were done at 90 °C under a hydrogen pressure of 0.1 MPa.

Differential scanning calorimetry (DSC) to investigate the thermal properties was carried out using the Mettler Toledo DSC/TGA under an Ar-flow atmosphere (30 mL/min). About 7 mg each of undoped and doped samples were placed into alumina crucibles and heated at various rates (15, 20, 25 and 30 °C/min) from room

Table 1

Comparison of onset decomposition temperature of LiAlH₄ doped with different catalysts.

System	Onset decomposi (°C)	Onset decomposition temperature (°C)	
	First stage	Second stage	
$LiAlH_4 + micro TiH_2$ [40]	90.0	150.0	
$LiAlH_4 + TiN$ [41]	90.0	140.0	
$LiAlH_4 + NbN [42]$	95.0	169.1	
$LiAlH_4 + nano Nb_2O_5 [43]$	95.0	130.0	
LiAlH ₄ + SrTiO ₃ [this work]	80.0	120.0	

temperature to 300 °C.

The phase confirmation of the samples was analysed by XRD (Rigaku MiniFlex X-ray diffractometer) with Cu–K α radiation. The Fourier-transform infrared (FTIR) spectra of the samples were recorded using an infrared (IR) Tracer-100 Shimadzu within the wave number ranging from 800 to 2000 cm⁻¹ with a spectral resolution of 4 cm⁻¹. The morphology of the undoped and doped samples was viewed by scanning electron microscopy (SEM; JEOL JSM–6350LA).

3. Result and discussions

Fig. 1 shows the thermal decomposition temperatures of the commercial LiAlH₄, 1-h milled LiAlH₄ and LiAlH₄-10 wt% SrTiO₃ samples. The commercial LiAlH₄ sample started to desorb hydrogen at 148 °C in the first dehvdrogenation step and at 180 °C in the second dehydrogenation step. After milling for 1 h, the onset decomposition temperature of LiAlH₄ reduced slightly to about 145 °C and 178 °C in the first and second dehydrogenation steps, respectively. After adding 10 wt% of SrTiO₃, the onset decomposition temperature of LiAlH₄ decreased dramatically to 80 °C and 120 °C in the first and second dehydrogenation steps, respectively. From the results, it is obvious that the onset decomposition temperature of LiAlH₄ decreased remarkably in both steps of dehydrogenation after the addition of 10 wt% SrTiO₃. For display the catalytic effect of SrTiO₃ on the onset decomposition of LiAlH₄, the comparison of LiAlH₄ doped with different catalysts is showed in Table 1.

The next investigation was to study the influences of SrTiO₃ on the dehydrogenation kinetics of LiAlH₄. The dehydrogenation kinetics of the commercial LiAlH₄, 1-h milled LiAlH₄ and LiAlH₄–10 wt% SrTiO₃ samples were examined at a fixed temperature of 90 °C as shown in Fig. 2. From the results, we can see that the dehydrogenation kinetics rate of LiAlH₄ was enhanced after the addition of 10 wt% SrTiO₃. The LiAlH₄–10 wt% SrTiO₃ sample desorbed approximately 3.0 wt% H₂ at 90 °C within 20 min whereas the commercial and 1-h milled LiAlH₄ samples desorbed below 0.5 wt% of hydrogen in the same time. The dehydrogenation kinetic measurements revealed that the 10 wt% SrTiO₃-doped LiAlH₄ sample displayed an average dehydrogenation kinetics rate seven times quicker than that of the undoped LiAlH₄ samples. The comparison of dehydrogenation kinetic of LiAlH₄ doped with different catalysts is listed in Table 2.

The impact of the catalyst on the thermal event of LiAlH₄ was further examined by DSC as shown in Fig. 3. As can be seen, the thermal properties of the 1-h milled LiAlH₄ sample showed four curves corresponding to two endothermic and two exothermic events. The first exothermic and endothermic event peaks at 137 °C and 166 °C refer to the reaction of surface hydroxyl impurities with LiAlH₄ and the melting of LiAlH₄, respectively. The second exothermic and endothermic event peaks at 190 °C and 243 °C correspond to the decomposition of LiAlH₄ (first step of

Fig. 2. Dehydrogenation kinetics of commercial LiAlH₄, 1 h milled LiAlH₄, and LiAlH₄-10 wt% SrTiO_3 sample.

dehydrogenation; Eq. (1)) and the decomposition of Li₃AlH₆ (second step of dehydrogenation; Eq. 2). After 10 wt% of SrTiO₃ was added, the number of peaks reduced to two, of which one was exothermic and the other was endothermic, and this occurred at a lower temperature. The exothermic peak (decomposition of LiAlH₄) occurred at 126 °C, while the endothermic peaks (decomposition of Li₃AlH₆) occurred at 233 °C. To examine the effect of SrTiO₃ addition on the activation energy (E_a) for hydrogen desorbed from LiAlH₄, different heating rates were measured using DSC. Fig. 4 shows the DSC curves for the 1-h milled LiAlH₄ and 10 wt% SrTiO₃-doped LiAlH₄ samples at several heating rates (15, 20, 25 and 30 °C/min).

The E_a values of the dehydrogenation process of the 1-h milled LiAlH₄ and LiAlH₄–10 wt% SrTiO₃ samples were obtained by applying the Kissinger equation [47] as follows:

$$\ln[\beta/T_p^2] = -E_a/RT_p + A \tag{1}$$

Thus, the E_a can be calculated from the slope in a plot of $\ln[\beta/T_p^2]$ versus $1000/T_p$ as shown in Fig. 5. As shown in the Kissinger plot, the E_a of the as-milled LiAlH₄ was 91 and 110 kJ/mol in the first and second dehydrogenation steps, respectively. After the addition of 10 wt% of SrTiO₃, the E_a of LiAlH₄ decreased notably. The E_a of the LiAlH₄–10 wt% SrTiO₃ sample was calculated to be 70 kJ/mol in the first step and 94 kJ/mol in the second step of dehydrogenation. Owing to the reduction of the E_a , the dehydrogenation properties of 10 wt% of SrTiO₃-doped LiAlH₄ were enhanced. Table 3 shows the apparent activation energy (E_a) of LiAlH₄ doped with different catalysts calculated by the Kissinger method.

Fig. 6 shows the powder morphology viewed by SEM for the commercial LiAlH₄, commercial SrTiO₃, 1-h milled LiAlH₄ and

Fig. 3. Differential scanning calorimetry profiles of 1 h milled LiAlH₄ and LiAlH₄-10 wt % SrTiO₃ sample (heating rate 30 °C/min).

LiAlH₄–10 wt% SrTiO₃ samples. For the commercial LiAlH₄ sample (Fig. 6(a)), the image shows 'block-shaped' particles. The particle sizes were estimated to be between 10 and 50 µm. Meanwhile, the commercial SrTiO₃ particles have a spherical morphology with an inconsistent size (their average size was about 50 μ m) as shown in Fig. 6(b). The images of LiAlH₄ after undergoing 60 min of ball milling showed agglomeration and an inhomogeneous distribution (their average size was $1-5 \mu m$) as can be seen in Fig. 6(c). Compared to commercial LiAlH₄, clearly, the size of the particles decreased after the milling process. After doping with SrTiO₃ (Fig. 6(d)), the particle size reduced dramatically and showed less agglomeration than undoped LiAlH₄. It is reasonable to believe that the reduction in particle size accounts for the improvement in the desorption properties of the SrTiO₃-doped LiAlH₄ sample. A previous study revealed that smaller particles and less agglomeration in the metal/complex hydride-catalyst system provided more grain boundaries and higher surface areas and benefited the diffusion path for hydrogen during the dehydrogenation process [27].

Fig. 7 illustrates the XRD patterns of the commercial SrTiO₃, commercial LiAlH₄, 1-h milled LiAlH₄ and LiAlH₄–10 wt% SrTiO₃ samples after 1 h of milling. The commercial LiAlH₄ sample showed that only LiAlH₄ phases were detected, as presented in Fig. 7(a). Besides, the results of the XRD spectra after the milling process of LiAlH₄, as shown in Fig. 7(b), revealed that only LiAlH₄ phases were detected, indicating the high stability of LiAlH₄ during the ball milling process. This phenomenon is in good agreement with our previous studies [50–52]. Fig. 7(c) shows the XRD results after the addition of SrTiO₃, in which the peaks corresponding to LiAlH₄ still exist. In addition, new peaks corresponding to Al could also be detected for the SrTiO₃-doped LiAlH₄ sample, demonstrating that

 Table 2

 Comparison of dehydrogenation kinetic of LiAlH4 doped with different catalysts.

System	Dehydrogenation temperature (°C)	Dehydrogenation time (min)	Hydrogen release (wt.%)
$LiAlH_4 + CoFe_2O_4$ [27]	90.0	20.0	1.4
$LiAlH_4 + ScCl_3$ [15]	150.0	20.0	1.8
$LiAlH_4 + NbN [42]$	130.0	25.0	1.2
$LiAlH_4 + NiFe_2O_4$ [28]	90.0	25.0	1.5
$LiAlH_4 + FeCl_2$ [44]	110.0	50.0	2.0
$LiAlH_4 + MnFe_2O_4$ [45]	90.0	20.0	1.0
$LiAlH_4 + K_2TiF_6$ [46]	90.0	20.0	2.6
$LiAlH_4 + SrTiO_3$ [this work]	90.0	20.0	3.0

Fig. 4. Differential scanning calorimetry profiles of (a) 1 h milled LiAlH4 and (b) LiAlH4-10 wt% SrTiO3 sample at different heating rates (15, 20, 25, and 30 °C/min).

LiAlH₄ decomposed slightly (Eq. (1)) during the mechanical milling process. Based on Eq. (1), the peaks of Li₃AlH₆ should have formed, but surprisingly no peak corresponding to Li₃AlH₄ was detected in the doped sample (Fig. 7(c)). This phenomenon is comparable to other studies in which TiF₃ and NbF₅-doped LiAlH₄ samples started decomposing during the milling process and no peak for Li₃AlH₆ could be detected from the XRD spectra [53,54]. In addition, SrTiO₃ peaks were detected, indicating that the additive does not react with the host material (LiAlH₄), similar to previous reports where SrTiO₃ phases were still stable after the mechanical milling and de/rehydrogenation processes [37–39]. The XRD results of commercial SrTiO₃ as shown in Fig. 7(d) indicate that the SrTiO₃ peaks.

FTIR analyses were carried out to confirm the existence of Li_3AlH_6 after the milling process of the $SrTiO_3$ -doped $LiAlH_4$ sample as displayed in Fig. 8. From the results, an extra absorbance peak is obvious at around 1400 cm⁻¹ for the $LiAlH_4$ –10 wt% $SrTiO_3$ sample (Fig. 8(c)). This IR absorption peak can indicate the presence of Li_3AlH_6 (Al–H stretching mode) [29]. For the commercial and 1-h milled $LiAlH_4$ samples, as displayed in Fig. 8(a) and (b), only IR absorption peaks correlating to $LiAlH_4$ appeared; Li–Al–H bending modes occurred at 800–900 cm⁻¹ and the Al–H stretching mode at 1600–1800 cm⁻¹ [46], and no IR absorption peak was observed at about 1400 cm⁻¹. The FTIR results confirm that slight decomposition of $LiAlH_4$ (Eq. (1)) occurred during the milling process, in accordance with the XRD results (Fig. 7(c)).

Fig. 9 shows the XRD pattern of the 10 wt% SrTiO₃-doped LiAlH₄

Table 3

Comparison of apparent activation energy (E_a) of LiAlH₄ doped with different catalysts.

System	Activation energy (E_a) (kJ/mol)	
	First stage	Second stage
$LiAlH_4 + K_2TiF_6$ [46]	78.20	90.80
$LiAlH_4 + Ti_3C_2$ [48]	79.81	99.68
$LiAlH_4 + FeCl_2$ [44]	81.48	105.01
$LiAlH4 + ScCl_3$ [15]	82.30	93.20
$LiAlH_4 + Co@C[49]$	95.36	115.60
LiAlH ₄ + SrTiO ₃ [this work]	70.00	94.00

sample after the complete dehydrogenation process at 250 °C (second step of dehydrogenation). As can be seen, the XRD pattern shows the LiH, Al and SrTiO₃ peaks; no peaks of LiAlH₄ and Li₃AlH₆ were detected. The presence of the LiH and Al peaks shows that the second step of the dehydrogenation process of LiAlH₄ has been completed (Eq. (1) and 2). The presence of the SrTiO₃ peaks proved that SrTiO₃ is hard to decompose and has not reacted with LiAlH₄ during the dehydrogenation process. In previous studies, we have shown that SrTiO₃ did not react with MgH₂ and Na₃AlH₆ during the ball milling and de/rehydrogenation processes [37–39].

Previous studies have revealed that the main catalytic role played by the additives or dopant in the LiAlH₄-catalyst system was as an *in-situ* active species formed during the milling or dehydrogenation process. The active species are believed to

Fig. 5. Kissinger plots of (a) the first step dehydrogenation and (b) the second step dehydrogenation for 1 h milled LiAlH₄ and LiAlH₄-10 wt% SrTiO₃ sample.

Fig. 6. SEM micrographs for (a) commercial LiAlH₄, (b) commercial SrTiO₃, (c) 1 h milled LiAlH₄, and (d) LiAlH₄-10 wt% SrTiO₃ sample.

Fig. 7. XRD pattern for (a) commercial LiAlH₄, (b) 1 h milled LiAlH₄, (c) LiAlH₄-10 wt% SrTiO₃ after 1 h ball-mill and (d) commercial SrTiO₃.

improve the dehydrogenation properties by acting as the active sites for the nucleation and creation of the dehydrogenation yield by reducing the diffusion length of the reaction ions [45,55]. In the current study, the XRD results show that SrTiO₃ does not decompose or react with LiAlH₄ during the ball milling and dehydrogenation processes. Therefore, we hypothesised that SrTiO₃ plays a catalytic role owing to its hardness. SrTiO₃ is reported to have a hardness of 6.0–6.5 Mohs [56] compared with 4.0 Mohs of LiAlH₄. Therefore, adding SrTiO₃ into LiAlH₄ minimised the agglomeration of particles, and thus, this facilitated the refinement of LiAlH₄ particles during the milling process. It was reported previously that smaller particles in metal/complex hydrides improve the sorption properties [57]. In this study, smaller particles and less

Fig. 8. FTIR pattern for (a) commercial LiAlH₄, (b) 1 h milled LiAlH₄ and (c) LiAlH₄-10 wt% SrTiO₃ after 60 min ball-mill.

agglomeration in the SrTiO₃-doped LiAlH₄ sample (Fig. 6(d)) provided higher surface areas (increased grain boundaries) and benefited the diffusion path for hydrogen during the dehydrogenation process [36]. The hardness of the catalyst confers positive effects by improving the dehydrogenation characteristics of LiAlH₄ when SrTiO₃ is added. However, further characterisation such as that using transmission electron microscopy, is needed to elucidate in more detail the precise role of SrTiO₃ in enhancing the dehydrogenation properties of the SrTiO₃-doped LiAlH₄ catalyst system.

4. Conclusion

In conclusion, we have demonstrated that SrTiO₃ is an excellent

Fig. 9. X-ray diffraction pattern of LiAlH_4-10 wt% SrTiO_3 sample after dehydrogenation at 250 $^\circ\text{C}.$

material to catalyse the desorption behaviours of LiAlH₄. The LiAlH₄-10 wt% SrTiO₃ sample starts to desorb H₂ at about 80 °C and 120 °C in the first and second dehydrogenation steps, respectively, reductions of about 65 °C and 58 °C compared to the milled LiAlH₄. For the desorption kinetic process at a fixed temperature of 90 °C, the LiAlH₄-10 wt% SrTiO₃ sample can release about 4.0 wt% of H₂ in 60 min compared to 0.3 wt% released by the pure ball milled LiAlH₄. Kissinger analysis showed that the E_a in the first and second dehydrogenation steps for pure ball milled LiAlH₄ decreased from 91 and 110 kJ/mol to 70 and 94 kJ/mol, respectively, by the addition of 10 wt% SrTiO₃. In the XRD spectra post ball milling for the doped sample, there are peaks matching Al, indicating that the addition of SrTiO₃ encourages the slight decomposition of LiAlH₄ during the milling process. The XRD pattern also showed that SrTiO₃ did not decompose or react with the host material during the milling and dehydrogenation processes. SrTiO3 is assumed to play a catalytic role by reducing the particle size of LiAlH₄ during the milling process. Small particles of LiAlH₄ will increase the grain boundaries and surface areas and consequently improve the dehydrogenation properties of LiAlH₄.

CRediT authorship contribution statement

M. Ismail: Supervision, Writing - original draft, Methodology, Formal analysis. **N.A. Sazelee:** Formal analysis, Writing - review & editing. **N.A. Ali:** Formal analysis, Writing - review & editing. **S. Suwarno:** Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Financial support from the Universiti Malaysia Terengganu through the Golden Goose Research Grant (VOT 55190) is greatly acknowledged.

References

[1] I.P. Jain, Hydrogen the fuel for 21st century, Int. J. Hydrogen Energy 34 (2009)

7368-7378.

- [2] I.P. Jain, P. Jain, A. Jain, Novel hydrogen storage materials: a review of lightweight complex hydrides, J. Alloys Compd. 503 (2011) 303–339.
- [3] L. Ouyang, K. Chen, J. Jiang, X.-S. Yang, M. Zhu, Hydrogen storage in light-metal based systems: a review, J. Alloys Compd. 829 (2020) 154597.
- [4] L. Ouyang, F. Liu, H. Wang, J. Liu, X.-S. Yang, et al., Magnesium-based hydrogen storage compounds: a review, J. Alloys Compd. 832 (2020) 154865.
- [5] N.A. Ali, N.H. Idris, M.F.M. Din, N.S. Mustafa, N.A. Sazelee, et al., Nanolayerlike-shaped MgFe₂O₄ synthesised via a simple hydrothermal method and its catalytic effect on the hydrogen storage properties of MgH₂, RSC Adv. 8 (2018) 15667–15674.
- [6] N.H. Idris, N.S. Mustafa, M. Ismail, MnFe₂O₄ nanopowder synthesised via a simple hydrothermal method for promoting hydrogen sorption from MgH₂, Int. J. Hydrogen Energy 42 (2017) 21114–21120.
- [7] N.H. Idris, A.S.K. Anuar, N.A. Ali, M. Ismail, Effect of K₂NbF₇ on the hydrogen release behaviour of NaAlH₄, J. Alloys Compd. 851 (2021) 156686.
- U.S. Department of Energy (Doe), Hydrogen storage targets for onboard lightduty vehicle. https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_ targets_onboard_hydro_storage_explanation.pdf, 2020.
 A. Andreasen, T. Vegge, A.S. Pedersen, Dehydrogenation kinetics of as-received
- [9] A. Andreasen, T. Vegge, A.S. Pedersen, Dehydrogenation kinetics of as-received and ball-milled LiAlH₄, J. Solid State Chem. 178 (2005) 3672–3678.
- [10] R.A. Varin, L. Zbroniec, Decomposition behavior of unmilled and ball milled lithium alanate (LiAlH₄) including long-term storage and moisture effects, J. Alloys Compd. 504 (2010) 89–101.
- [11] Y. Zhang, Q.-F. Tian, S.-S. Liu, L.-X. Sun, The destabilization mechanism and de/ re-hydrogenation kinetics of MgH₂-LiAlH₄ hydrogen storage system, J. Power Sources 185 (2008) 1514–1518.
- [12] Y. Yang, M. Gao, Y. Liu, J. Wang, J. Gu, et al., Multi-hydride systems with enhanced hydrogen storage properties derived from Mg(BH₄)₂ and LiAlH₄, Int. J. Hydrogen Energy 37 (2012) 10733–10742.
- [13] N.S. Mustafa, M. Ismail, Enhanced hydrogen storage properties of 4MgH₂ + LiAlH₄ composite system by doping with Fe₂O₃ nanopowder, Int. J. Hydrogen Energy 39 (2014) 7834–7841.
- [14] N.A. Ali, N.H. Idris, N.A. Sazelee, M.S. Yahya, F.A.H. Yap, et al., Catalytic effects of MgFe₂O₄ addition on the dehydrogenation properties of LiAlH₄, Int. J. Hydrogen Energy 44 (2019) 28227–28234.
- [15] Z. Cao, X. Ma, H. Wang, L. Ouyang, Catalytic effect of ScCl₃ on the dehydrogenation properties of LiAlH₄, J. Alloys Compd. 762 (2018) 73–79.
- [16] N.A. Sazelee, M.S. Yahya, N.H. Idris, M.F. Md Din, M. Ismail, Desorption properties of LiAlH₄ doped with LaFeO₃ catalyst, Int. J. Hydrogen Energy 44 (2019) 11953–11960.
- [17] Y. Zhu, L. Ouyang, H. Zhong, J. Liu, H. Wang, et al., Closing the loop for hydrogen storage: facile regeneration of NaBH₄ from its hydrolytic product, Angew. Chem. Int. Ed. 59 (2020) 8623–8629.
- [18] K. Chen, L. Ouyang, H. Zhong, J. Liu, H. Wang, et al., Converting H⁺ from coordinated water into H⁻ enables super facile synthesis of LiBH₄, Green Chem. 21 (2019) 4380–4387.
- [19] L. Ouyang, W. Chen, J. Liu, M. Felderhoff, H. Wang, et al., Enhancing the regeneration process of consumed NaBH₄ for hydrogen storage, Adv. Energy Mater. 7 (2017) 1700299.
- [20] Z.H. Tan, L.Z. Ouyang, J.M. Huang, J.W. Liu, H. Wang, et al., Hydrogen generation via hydrolysis of Mg₂Si, J. Alloys Compd. 770 (2019) 108–115.
- [21] Z. Tan, L. Ouyang, J. Liu, H. Wang, H. Shao, et al., Hydrogen generation by hydrolysis of Mg-Mg₂Si composite and enhanced kinetics performance from introducing of MgCl₂ and Si, Int. J. Hydrogen Energy 43 (2018) 2903–2912.
- [22] X. Yu, Z. Tang, D. Sun, L. Ouyang, M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications, Prog. Mater. Sci. 88 (2017) 1–48.
- [23] R.A. Varin, R. Parviz, The effects of the micrometric and nanometric iron (Fe) additives on the mechanical and thermal dehydrogenation of lithium alanate (LiAlH₄), its self-discharge at low temperatures and rehydrogenation, Int. J. Hydrogen Energy 37 (2012) 9088–9102.
- [24] R.A. Varin, L. Zbroniec, The effects of nanometric nickel (n-Ni) catalyst on the dehydrogenation and rehydrogenation behavior of ball milled lithium alanate (LiAlH₄), J. Alloys Compd. 506 (2010) 928–939.
- [25] Z. Xueping, L. Ping, A. Fuqiang, W. Guoqing, Q. Xuanhui, Effects of Ti and Fe additives on hydrogen release from lithium alanate, Rare Met. Mater. Eng. 37 (2008) 400–403.
- [26] Z. Li, P. Li, Q. Wan, F. Zhai, Z. Liu, et al., Dehydrogenation improvement of LiAlH₄ catalyzed by Fe₂O₃ and Co₂O₃ nanoparticles, J. Phys. Chem. C 117 (2013) 18343–18352.
- [27] Z. Li, F. Zhai, Q. Wan, Z. Liu, J. Shan, et al., Enhanced hydrogen storage properties of LiAlH₄ catalyzed by CoFe₂O₄ nanoparticles, RSC Adv. 4 (2014) 18989–18997.
- [28] P. Li, Z. Li, F. Zhai, Q. Wan, X. Li, et al., NiFe₂O₄ nanoparticles catalytic effects of improving LiAlH₄ dehydrogenation properties, J. Phys. Chem. C 117 (2013) 25917–25925.
- [29] J.R. Ares Fernandez, F. Aguey-Zinsou, M. Elsaesser, X.Z. Ma, M. Dornheim, et al., Mechanical and thermal decomposition of LiAlH₄ with metal halides, Int. J. Hydrogen Energy 32 (2007) 1033–1040.
- [30] L. Shenglin, M. Qiuhua, L. Heng, Z. Xueping, F. Xin, et al., Effect of F⁻¹ on the hydrogen release properties of NaAlH₄ and LiAlH₄, Rare Met. Mater. Eng. 43 (2014) 61–63.
- [31] C.-P. Hsu, D.-h. Jiang, S.-L. Lee, J.-L. Horng, M.-D. Ger, et al., Buckyball-, carbon nanotube-, graphite-, and graphene-enhanced dehydrogenation of lithium

M. Ismail, N.A. Sazelee, N.A. Ali et al.

aluminum hydride, Chem. Commun. 49 (2013) 8845–8847.

- [32] W.-C. Hsu, C.-H. Yang, W.-T. Tsai, Catalytic effect of MWCNTs on the dehydrogenation behavior of LiAlH₄, Int. J. Hydrogen Energy 39 (2014) 927–933.
- [33] Rafi-ud-din, L. Zhang, L. Ping, Q. Xuanhui, Catalytic effects of nano-sized TiC additions on the hydrogen storage properties of LiAlH₄, J. Alloys Compd. 508 (2010) 119–128.
- [34] Rafi-ud-din, X. Qu, P. Li, M. Ahmad, Z. Lin, Comparative catalytic effects of NiCl₂, TiC and TiN on hydrogen storage properties of LiAlH₄, Rare Met. 30 (2011) 27–34.
- [35] M.-Q. Fan, S.-S. Liu, Y. Zhang, J. Zhang, L.-X. Sun, et al., Superior hydrogen storage properties of MgH₂-10 wt.% TiC composite, Energy 35 (2010) 3417–3421.
- [36] A. Ranjbar, Z.P. Guo, X.B. Yu, D. Wexler, A. Calka, et al., Hydrogen storage properties of MgH₂-SiC composites, Mater. Chem. Phys. 114 (2009) 168–172.
- [37] M.S. Yahya, M. Ismail, Catalytic effect of SrTiO₃ on the hydrogen storage behaviour of MgH₂, J. Energy Chem. 28 (2019) 46–53.
- [38] M.S. Yahya, W.B. Lew, F.A. Halim Yap, M. Ismail, The catalytic effect of an inert additive (SrTiO₃) on the hydrogen storage properties of 4MgH₂-Na₃AlH₆, Int. J. Hydrogen Energy 43 (2018) 20801–20810.
- [39] M.S. Yahya, M. Ismail, Synergistic catalytic effect of SrTiO₃ and Ni on the hydrogen storage properties of MgH₂, Int. J. Hydrogen Energy 43 (2018) 6244–6255.
- [40] S.-S. Liu, Z.-B. Li, C.-L. Jiao, X.-L. Si, L.-N. Yang, et al., Improved reversible hydrogen storage of LiAlH₄ by nano-sized TiH₂, Int. J. Hydrogen Energy 38 (2013) 2770–2777.
- [41] L. Li, F. Qiu, Y. Wang, Y. Xu, C. An, et al., Enhanced hydrogen storage properties of TiN–LiAlH₄ composite, Int. J. Hydrogen Energy 38 (2013) 3695–3701.
- [42] L. Li, Y. Xu, Y. Wang, Y. Wang, F. Qiu, et al., NbN nanoparticles as additive for the high dehydrogenation properties of LiAlH₄, Dalton Trans. 43 (2013) 1806–1813.
- [43] Rafi-ud-din, Q. Xuanhui, L. Ping, L. Zhang, M. Ahmad, Hydrogen sorption improvement of LiAlH₄ catalyzed by Nb₂O₅ and Cr₂O₃ nanoparticles, J. Phys. Chem. C 115 (2011) 13088–13099.
- [44] J. Cai, L. Zang, L. Zhao, J. Liu, Y. Wang, Dehydrogenation characteristics of LiAlH₄ improved by in-situ formed catalysts, J. Energy Chem. 25 (2016)

868-873.

- [45] F. Zhai, P. Li, A. Sun, S. Wu, Q. Wan, et al., Significantly improved dehydrogenation of LiAlH₄ destabilized by MnFe₂O₄ nanoparticles, J. Phys. Chem. C 116 (2012) 11939–11945.
- [46] Z. Li, S. Liu, X. Si, J. Zhang, C. Jiao, et al., Significantly improved dehydrogenation of LiAlH₄ destabilized by K₂TiF₆, Int. J. Hydrogen Energy 37 (2012) 3261–3267.
- [47] H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (1957) 1702–1706.
- [48] Y. Xia, H. Zhang, Y. Sun, L. Sun, F. Xu, et al., Dehybridization effect in improved dehydrogenation of LiAlH₄ by doping with two-dimensional Ti₃C₂, Mater, Today Nano 8 (2019) 100054.
- [49] L. Li, Y. Wang, L. Jiao, H. Yuan, Enhanced catalytic effects of Co@C additive on dehydrogenation properties of LiAlH₄, J. Alloys Compd. 645 (2015) S468–S471. Supplement 1.
- [50] N.A. Ali, N. Sazelee, M.S. Yahya, M. Ismail, Influence of K₂NbF₇ catalyst on the desorption behavior of LiAlH₄, Front. Chem. 8 (2020) 457.
 [51] N.A. Sazelee, M.S. Yahya, N.A. Ali, N.H. Idris, M. Ismail, Enhancement of
- [51] N.A. Sazelee, M.S. Yahya, N.A. Ali, N.H. Idris, M. Ismail, Enhancement of dehydrogenation properties in LiAlH₄ catalysed by BaFe₁₂O₁₉, J. Alloys Compd. 835 (2020) 155183.
- [52] N.N. Sulaiman, M. Ismail, Catalytic effect of SrFe₁₂O₁₉ on the hydrogen storage properties of LiAlH₄, Int. J. Hydrogen Energy 42 (2017) 19126–19134.
- [53] S.-S. Liu, L.-X. Sun, Y. Zhang, F. Xu, J. Zhang, et al., Effect of ball milling time on the hydrogen storage properties of TiF₃-doped LiAlH₄, Int. J. Hydrogen Energy 34 (2009) 8079–8085.
- [54] M. Ismail, Y. Zhao, X.B. Yu, S.X. Dou, Effects of NbF₅ addition on the hydrogen storage properties of LiAlH₄, Int. J. Hydrogen Energy 35 (2010) 2361–2367.
- [55] P. Li, Q. Wan, Z. Li, F. Zhai, Y. Li, et al., MgH₂ dehydrogenation properties improved by MnFe₂O₄ nanoparticles, J. Power Sources 239 (2013) 201–206.
- [56] J.W. Anthony, R.A. Bideaux, K.W. Bladh, M.C. Nichols, Handbook of Mineralogy, Mineral Data Publ, Tucson, 1990.
- [57] A. Ranjbar, M. Ismail, Z.P. Guo, X.B. Yu, H.K. Liu, Effects of CNTs on the hydrogen storage properties of MgH₂ and MgH₂-BCC composite, Int. J. Hydrogen Energy 35 (2010) 7821–7826.