DOI: 10.1002/adsc.201000495

Pyridine-Directed Organolithium Addition to an Enol Ether

Jingyue Yang^a and Gregory B. Dudley^{a,*}

^a Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, U.S.A. Fax: (+1)-850-644-8281; phone: (+1)-850-644-2333; e-mail: gdudley@chem.fsu.edu

Received: June 25, 2010; Revised: October 10, 2010; Published online: December 5, 2010

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201000495.

Abstract: A previously reported anionic rearrangement of benzyl 2-pyridyl ethers can now be accessed by a distinct and unusual mechanism: addition of alkyllithium reagents to α -(2-pyridyloxy)-styrene triggers an anionic rearrangement to afford tertiary pyridyl carbinols. The process is explained by invoking a contra-electronic, pyridine-directed carbolithiation of the enol ether π -system.

Keywords: anionic rearrangement; contra-electronic carbolithiation; electron transfer; enol ethers; pyridine; reactive intermediates

In this update, we present indirect evidence of a unique and unexpected carbolithiation of an enol ether [pyridyl ether **1**, Eq (1)],^[1] in which organolithium nucleophiles^[2] add *inter*-molecularly across the electron-rich alkene in a manner opposite to the normal polarization preferences of an enol ether (contra-electronically).^[3] This observation provides insight into the unusual behavior of highly reactive species^[4,5] and reveals an alternative entry into our reported anionic rearrangement of benzyloxypyridines [Eq (2)].^[6]

The observation is as follows: addition of 1.3 equivalents of *n*-butyllithium to a solution of α -pyridyloxystyrene **1** in THF provides an 84% yield of tertiary pyridyl carbinol **2a** [Eq. (1)]. To explain this, one must account for (i) C–C bond formation at the β carbon of the enol ether, and (ii) migration of the pyridyl group from oxygen to the α -carbon.

Given that directed metallation of benzyl pyridyl ethers triggers an anionic rearrangement to give tertiary pyridyl carbinols [e.g., Eq (2)],^[6] the simplest explanation^[7] involves carbolithiation of enol ether **1** $\{\mathbf{1}\rightarrow [\mathbf{Ia}], \text{Eq. }(1)\}$.

The presumed carbolithiation $(1 \rightarrow [Ia])$ is the first example to the best of our knowledge of the enol ether π -system reacting with an electron-rich (nucleophilic) reagent.^[1] Moreoever, the nucleophilic attack occurs at the more electron-rich terminus of the enol ether.^[8,9]

The contra-electronic organolithium addition to **1** proceeded to the exclusion of alternative potential reaction pathways [Eq (3) and Eq. (4)]. Namely, pyridine-directed carbolithiation could be envisioned to occur in alignment with the polarization of enol **1**, but the expected products of such a process [**4** and **5**, Eq. (3), arising from β -elimination of the lithium alkoxide] could not be detected. Another "reasonable" reaction process would be for the alkyllithium reagent

3438

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Adv. Synth. Catal. 2010, 352, 3438-3442

No dipole-aligned carbolithiation

to attack the electron-deficient pyridine ring [addition at C-2, followed by elimination of the enolate, Eq. (4)]. Although nucleophilic aromatic substitutions at the 2-position of pyridine are well known, no such products are observed in this process.

The central importance of the 2-pyridyloxy group in directing the alkyllithium addition to 1 is supported by the control experiments shown in Eq. (5), Eq. (6) and Eq. (7). Although carbolithiation of styrene derivatives is known,^[10] this is *not* an example of a phenyl substitutent overriding the normal reactivity profile of an enol ether. The 2-pyridyloxy group, not the phenyl, controls the regioselectivity of the process: n-butyllithium reacts with stilbene derivative 8 to produce tertiary alcohol 9 [i.e., by the addition/rearrangement process, cf. Eq. (1)] to the exclusion of 10, the expected product of regioisomeric addition and elimination [cf. Eq. (3)]. 4-Pyridyloxy analogue 11, in which pyridine complexation does not produce a proximity effect, does not undergo the same addition/rearrangement process [Eq. (6)]. Instead, starting material is recovered along with small amounts of products derived from addition of n-butyllithium to

The 2-pyridyloxy group, not phenyl, directs the regioselective carbolithiation

The 4-pyridyloxy group does not direct carbolithiation

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

 α -Methoxystyrene is unreactive under these conditions

the 2-position of pyridine. Likewise and as expected, α -methoxystyrene^[11] (13) is completely unreactive under these conditions [Eq. (7)].

These data, coupled with our earlier report [*cf.* Eq. (2)],^[6] support the reaction pathway outlined in Eq. (1): pyridine-directed addition of *n*-butyllithium to enol ether **1** triggers anionic rearrangement of the resulting α -(2-pyridyloxy)benzyllithium, [**Ia**]. The question is: Why does the apparently contra-electronic addition pathway predominate? Given that addition to enol ether **1** occurs, why does the *n*-butyl group attack the β -carbon and not the α -carbon, which would generate a primary organolithium intermediate {[**II**], Eq. (3)} and trigger facile β -elimination of lithio-acetophenone?

In considering reasonable mechanisms for this unusual addition/rearrangement sequence $(1\rightarrow 2)$, we favour a process in which carbolithiation $(1 \rightarrow [I])$, Scheme 1) leads directly into the previously reported anionic rearrangement^[6] ([**I**] \rightarrow **2**). To explain the apparently contra-electronic carbanion addition, it is helpful to invoke the electron-transfer properties of highly reactive organolithium nucleophiles.^[12] Precomplexation between the lithium reagent and the pyridine nitrogen ([IV], Scheme 1) produces the proximity effect^[13] necessary for directed carbolithiation, which is thermodynamically favourable.^[14] We postulate that carbolithiation of enol ether 1 may involve rate-determining electron-transfer to produce a transient enol ether radical anion [V], followed almost instantaneously by radical recombination to [I]. The observed regioselectivity would then be consistent with radical recombination $([V] \rightarrow [I])^{[15]}$ guided by sterics and/or proximity effects. Pyridyloxylithium [I] undergoes anionic rearrangement, as described previously.^[6]

 α -Pyridyloxystyrene **1** was prepared as shown in Scheme 2. Oxidation of monoglyme and addition of phenylmagnesium bromide to the resulting aldehyde provided benzyl alcohol derivative **15**, which was converted into pyridyl ether **16** using nucleophilic aromatic substitution of 2-chloropyridine.^[16] LDA-promoted elimination of 2-methoxyethanol from **16**^[17] provides α -pyridyloxystyrene **1**.

A brief screening of organolithium nucleophiles revealed a correlation between organolithium reactivity and reaction efficiency (Table 1). Methyllithium reacted with $\mathbf{1}$ along the presumed carbolithiation and anionic rearrangement pathway to give $\mathbf{2b}$ in 84% yield (entry 1), which is comparable to the 84% yield observed in the reaction of $\mathbf{1}$ with *n*-butyllithium

Scheme 1. Postulated mechanism: alkyllithium addition $(1 \rightarrow [I])$ triggers an anionic rearrangement^[6] $([I] \rightarrow 2)$.

Scheme 2. Preparation of α -(2-pyridyloxy)styrene (1).

Table 1. Scope of the nucleophilic addition to α -pyridyloxy-styrene 1.^[a]

	1.3 e	quiv. < R–Li > ► THF, r.t.	HO N R 2
Entry	< R–Li >	Product	Yield
1	Me–Li	2b (R = Me)	84%
2	(MeMgBr)	2b (R = Me)	0% ^[b]
3	<i>n</i> -Bu–Li	2a (R = <i>n</i> -Bu)	84%
4	<i>s</i> -Bu–Li	2c (R = <i>s</i> -Bu)	86%
5	<i>t</i> -Bu–Li	2d (R = <i>t</i> -Bu)	97%
6	Ph–Li	2e (R = Ph)	75%
7	L-Selectride	2f (R = H)	—% ^[c]

^[a] Styrene **1** in THF treated with organometallic reagent at room temperature under nitrogen.

^[b] No reaction.

^[c] ¹H NMR spectroscopic analysis of the crude reaction mixture revealed a complex mixture of products, including starting material and acetophenone [*cf.* Eq (4)].

(entry 3). Methylmagnesium bromide, on the other hand, was unreactive under similar conditions (entry 2). The more reactive secondary and tertiary butyllithium isomers produced higher yields of tertiary alcohol product:[^{18]} *s*-BuLi, 86%, entry 4; *t*-BuLi, 97%, entry 5. Reaction of **1** with phenyllithium, which is less nucleophilic than most alkyllithium reagents, gave rise to alcohol **2e** in a relatively modest 75% yield (entry 6), and the hydride reagent produced a mixture of products including acetophenone (**6**), which presumably arises from hydride addition to pyridine at C-2 [*cf.* Eq. (4)].

In summary, organolithium addition to an enol ether has been observed within the context of a previously reported anionic rearrangement of lithiated benzyl pyridyl ethers.^[6] Specifically, pyridine-directed, contra-electronic addition of reactive alkyllithium reagents to α -(2-pyridyloxy)-styrene (1) triggers the anionic rearrangement to provide tertiary pyridyl carbinols. We postulate a mechanism in which the organolithium reagent attacks 1 in a dipole-opposed (contraelectronic) fashion, perhaps *via* a single electron transfer mechanism, with the carbanionic moiety reacting at the more electron-rich terminus of the enol ether. Further exploration of this novel reaction pathway will be reported in due course.

Experimental Section

 α -Pyridyloxystyrene **1** (20 mg, 1 equiv.) was dissolved in 1 mL of dry THF under nitrogen at room temperature and *n*-butyllithium (1.3 equiv.) was added dropwise. The reaction mixture was stirred overnight (or until TLC analysis of the reaction mixture showed complete consumption of the enol ether), then diluted with H₂O (5 mL) and extracted with EtOAc (4×5 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, concentrated under vacuum, and purified on silica gel to obtain 1-phenyl-1-pyridylhexanol (**2a**); yield: 84%.

Calculations were performed at the B3LYP 6-31+G(d,p) level, for results, see Figure 1 and Figure 2.

Figure 1. Calculated π -bond polarization (*in italics*) and selected net atomic charges (in **bold**) for 2-pyridyloxystyrenes **1**, complex **[IV]**, and α -methoxystyrene **(13)**.

Figure 2. Relative energies calculated for [IV], [I], and [VII].

Acknowledgements

We thank the FSU Research Foundation (GAP Award) for generous financial support and the FSU High Performance Computing group for assistance with the calculations.

References

 To the best of our knowledge, carbolithiation of an enol ether has not been observed previously. For selected examples of directed carbolithiation of other types of electron-rich alkenes, see: a) A.-M. L. Hogan, D. F. O'Shea, J. Org. Chem. 2007, 72, 9557 (ortho-aminostyrenes); b) J. G. Peters, M. Seppi, R. Frohlich, B. Wibbeling, D. Hoppe, Synthesis 2002, 381 (enol carbamates); c) B. Cottineau, I. Gillaizeau, J. Farard, M.-L. Auclair, G. Coudert, Synlett 2007, 1925 (enol carbamates); d) C. Unkelbach, C. Strohmann, J. Am. Chem. Soc. 2009, 131, 17044 (vinylsilanes); e) R. L. Funk, G. L. Bolton, K. M. Brummond, K. E. Ellestad, J. B. Stallman, J. Am. Chem. Soc. 1993, 115, 7023 (alkoxyacetylenes); f) J. Clayden, M. Donnard. J. Lefranc, A. Minassi and D. J. Tetlow, J. Am. Chem. Soc. **2010**, 132, 6624 (vinyl ureas).

- [2] a) Organolithium compounds/solvated electrons, (Ed.: N. M. Alpatova), Springer-Verlag, New York, Berlin, 1987; b) The Chemistry of Organolithium Compounds, (Ed.: B. J. Wakefield), Pergamon Press, Oxford, New York, 1974.
- [3] *The Chemistry of Alkenes*, (Ed.: S. Patai), Interscience Publishers, London, New York, **1964**, Vol. 1.
- [4] Carbolithiation of ethylene, see: a) P. D. Bartlett, S. Friedman, M. Stiles, J. Am. Chem. Soc. 1953, 75, 1771;
 b) P. D. Bartlett, S. J. Tauber, W. P. Weber, J. Am. Chem. Soc. 1969, 91, 6362.
- [5] Intramolecular carbolithiation (cyclization) reactions of electron-rich alkenes are less unusual, although no less noteworthy. For reviews, see: a) W. F. Bailey, T. V. Ovaska, in: Advances in Detailed Reaction Mechanisms, Vol. 3, (Ed.: J. M. Coxon), JAI Press, Greenwich, CT, 1994, pp 251–273; b) M. J. Mealy, W. F. Bailey, J. Organomet. Chem. 2002, 646, 59; c) J. Clayden, Organolithiums: Selectivity for Synthesis Pergamon Press, New York, 2002, pp 293–335; recent papers: d) W. F. Bailey, X. L. Jiang, Tetrahedron 2005, 61, 3183; e) I. Coldham, K. N. Price, R. E. Rathmell, Org. Biomol. Chem. 2003, 1, 2111.
- [6] J. Yang, G. B. Dudley, J. Org. Chem. 2009, 74, 7998.
- [7] Ockham's (Occam's) razor favours the simplest explanation, but it is not an irrefutable principle of logic.
- [8] Calculations at the B3LYP 6-31+G(d,p) level suggest that the pyridyloxy group, like the methoxy group, is electron-releasing. Although the pyridyloxy group is a weaker donor than methoxy, the majority (51.46%) of the alkene π -electron density is localized near the β -carbon of **1** (Figure 1). A similar pattern is calculated for **[IV]**, after complexation of the alkyllithium.
- [9] This unusual reaction would not be classified as an "umpolung" process. The term "umpolung" (meaning, "reversed polarity") refers to an altered form of a common functional group that displays reactivity opposite to that of the normal pattern (e.g., lithiated 1,3-di-thiane vs. aldehyde). In contrast, Eq. (1) represents a rare example in which the unaltered functional group in this case, an enol ether displays reactivity opposite to the expected pattern. For a discussion on umpolung reactivity strategies, see: D. J. Ager, in: Umpoled Synthons: A Survey of Sources and Uses in Synthesis, (Ed.: T. A. Hase), John Wiley & Sons, New York, 1987, pp 19–72.
- [10] a) Anionic Polymerization: Principles and Practice, (Ed.: M. Merton), Academic Press, New York, 1983;
 b) R. Waack, M. A. Doran, J. Org. Chem. 1967, 32, 3395;
 c) X. Wei, P. Johnson, R. J. K. Taylor, J. Chem. Soc. Perkin Trans. 1 2000, 1109.
- [11] N. D. Willmore, D. A. Hoic, T. J. Katz, J. Org. Chem. 1994, 59, 1889.
- [12] For reviews, see: a) H. Yamataka, K. Yamada, K. Tomioka, in: *Chemistry of Organolithium Compounds*, (Eds.: Z. Rappoport, I. Marek), Wiley, New York, 2004, Vol. 2, pp 901–939; b) H. Yamataka, N. Fujimura, Y. Kawafuji, T. Hanafusa, *J. Am. Chem. Soc.* 1987, 109, 4305; c) H. Yamataka, Y. Kawafuji, K. Na-

gareda, N. Miyano, T. Hanafusa, J. Org. Chem. 1989, 54, 4706.

- [13] M. C. Whisler, S. MacNeil, V. Snieckus, P. Beak, Angew. Chem. 2004, 116, 2256; Angew. Chem. Int. Ed. 2004, 43, 2206.
- [14] The relative energies of alkyllithium [**IV**], benzyllithium [**I**], and lithium alkoxide [**VII**] were calculated at the B3LYP 6-31+G(d,p) level (R=*n*-Bu, Figure 2). Both the addition and the rearrangement appear to be highly exothermic. We thank a referee for suggesting that we examine the energetics of the conversion of $[IV] \rightarrow [I] \rightarrow [VII]$.
- [15] A more concerted process, in which radical anion [V] undergoes the anionic rearrangement directly without generating α -pyridyloxy-benzyllithium [I], cannot be ruled out at this time.

- [16] a) A. J. Serio Duggan, E. J. J. Grabowski, W. K. Russ, Synthesis 1980, 573; b) K. W. C. Poon, P. A. Albiniak, G. B. Dudley, Org. Synth. 2007, 84, 295; c) S. S. Lopez, G. B. Dudley, Beilstein J. Org. Chem. 2008, 4, 44.
- [17] Incidentally, this reaction was originally designed and performed as a competition experiment between E2 elimination and the anionic rearrangement described previously (ref.^[6]). It shows, not surprisingly, that elimination of the lithium alkoxide is faster than the anionic rearrangement [*cf.* Eq. (2)]. In one compromised run of this competition experiment, we used LDA that was contaminated with a small amount *n*-butyllithium, which resulted in isolation of **2a** and identification of the contra-electronic alkyllithium addition reaction.
- [18] Similar reactivity trends have been documented for other directed carbolithiation reactions; see refs.^[1a,1d,4]