
This is an Accepted Manuscript, which has been through the  
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
author guidelines.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the ethical guidelines, outlined 
in our author and reviewer resource centre, still apply. In no 
event shall the Royal Society of Chemistry be held responsible 
for any errors or omissions in this Accepted Manuscript or any 
consequences arising from the use of any information it contains. 

Accepted Manuscript

rsc.li/catalysis

www.rsc.org/catalysis

ISSN 2044-4753

 Catalysis 
 Science & 
Technology

PAPER
Qingzhu Zhang et al.
Catalytic mechanism of C–F bond cleavage: insights from QM/MM 
analysis of fluoroacetate dehalogenase

Volume 6 Number 1 7 January 2016 Pages 1–308

 Catalysis 
 Science & 
Technology

View Article Online
View Journal

This article can be cited before page numbers have been issued, to do this please use:  F. Ferretti, F.

Scharnagl, A. Dallanese, R. Jackstell, S. Dastgir and M. Beller, Catal. Sci. Technol., 2019, DOI:

10.1039/C9CY00951E.

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/
https://doi.org/10.1039/c9cy00951e
https://pubs.rsc.org/en/journals/journal/CY
http://crossmark.crossref.org/dialog/?doi=10.1039/C9CY00951E&domain=pdf&date_stamp=2019-06-13


  

 

ARTICLE 

  

Please do not adjust margins 

Please do not adjust margins 

a. Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 
29a, 18059 Rostock, Germany 

b. Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133   
Milano, Italy 

c Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Licio   
Giorgieri 1, 34127 Trieste, Italy 

d Qatar Environment and Energy Research Institute (QEERI), Hamad bin Khalifa 
University (HBKU), Qatar Foundation, Doha, Qatar 

 
Electronic Supplementary Information (ESI) available: [details of any supplementary 
information available should be included here]. See DOI: 10.1039/x0xx00000x 

 

Received 00th January 20xx, 

Accepted 00th January 20xx 

DOI: 10.1039/x0xx00000x 

 

Additive-Free Cobalt-Catalysed Hydrogenation of Carbonates to 
Methanol and Alcohols  

Francesco Ferretti,a,b Florian Korbinian Scharnagl,a Anna Dall’Anese,a,c Ralf Jackstella,  
Sarim Dastgir,d and Matthias Bellera* 

Reduction of various organic carbonates to methanol and alcohols can be achieved in the presence of a molecularly-

defined homogeneous cobalt catalyst. Specifically, the use of Co(BF4)2 in combination with either commercial or tailor-

made tridentate phoshine ligands allows for additive-free hydrogenations of carbonates. Optimal results are obtained at 

relatively mild conditions (120°C, 50 bar hydrogen pressure) in the presence of xylyl-Triphos L4. 

 

Introductions 

The catalytic hydrogenation of carbon dioxide to methanol is 
of general interest in the context of the so-called “Methanol 
Economy”. This concept comprises the capture of carbon 
dioxide from the atmosphere and its conversion to methanol 
or dimethyl ether, using dihydrogen as pointed out originally 
by Asinger1 and Olah2, 3. Although most efforts focused on 
heterogeneous catalysts, also the development of suitable 
molecularly-defined catalysts is interesting due to the 
potentially higher activity. Thus in recent years, notable 
contributions in this area have been made by the groups of 
Milstein,4 Klankermayer and Leitner,5-7 Olah and Prakash,8-13 
Sanford,14, 15 Himeda and Laurenczy,16 Wass,17 Martins and 
Pombeiro,18 as well as our group.19, 20 So far, a ruthenium-
based PNP pincer complex constitutes the most productive 
homogeneous system with a reported turnover number (TON) 
of 9900, albeit after 10 days.12 An alternative approach to the 
direct hydrogenation of carbon dioxide makes use of cyclic 
and/or acyclic organic carbonates. The former derivatives can 
be easily synthesised from carbon dioxide and epoxides, as 
already done on industrial scale in the so-called OMEGA 
process by Shell. The latter carbonates are mainly obtained 
from CO2 by indirect methods (i.e alcoholysis of other carbon 
dioxide derivatives such as urea or cyclic carbonates) 
nowadays, but can also be directly prepared from CO2 and 
alcohols. 21-23 Subsequent hydrogenation leads to methanol 
and the corresponding alcohols.24 This indirect strategy for CO2 
reduction was first demonstrated by Milstein in 2011, who 
reported the selective hydrogenation of carbonates, 

carbamates and formates to methanol using different 
ruthenium-PNN-pincer complexes.25-27 Later on, the use of 
ruthenium-based NHC-pincer systems has been described.28, 29 
The groups of Leitner and Klankermayer extensively studied 
[Ru(Triphos)(TMM)] (Triphos = 1,1,1-
tris(diphenylphosphinomethyl)ethane and TMM = 
trimethylene methane) in hydrogenations of carboxylic and 
carbonic acid derivatives, including cyclic and acyclic 
carbonates in the presence or the absence of the additive 
HNTf2.30 So far, the most productive catalyst for this reaction 
has been reported by the group of Kuiling Ding. By using the 
commercial ruthenium-MACHO pincer complex, they achieved 
catalyst TONs up to 87000 for hydrogenation cyclic 
carbonates, which is about one order of magnitude higher 
compared to the direct conversion of carbon dioxide to 
methanol, underlining the possible advantage of this indirect 
CO2 reduction route.31 Apart from expensive precious metal 
complexes, the first non-noble metal catalysts for this 
transformation were reported only very recently. In 2018, the 
groups of Leitner,32 Rueping33 and Milstein34 at the same time 
reported manganese pincer complexes for the hydrogenation 
of organic carbonates under basic conditions.  
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Scheme 1: Overview of selected reported homogeneous systems for the hydrogenation 

of organic carbonates to the corresponding alcohols. 
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Modifying a system based on the combination of cobalt and 
Triphos, initially reported by Elsevier and de Bruin for the 
reduction of carboxylic acid, 35 our group succeeded in the 
direct hydrogenation of carbon dioxide with a homogeneous 
cobalt catalyst.19 Later on, improved results have been 
obtained by us,20 as well as by Klankermayer and Schieweck.7 
To the best of our knowledge, the applicability of such 
complexes for reduction of organic carbonates has not been 
reported yet. In this context, herein we describe the efficient 
hydrogenation of cyclic and acyclic carbonates in 2,2,2-
trifluoroethanol (TFE) in the presence of Co(BF4)2·6H2O and a 
modified Triphos ligand. 

Results and Discussion 

At the beginning of our investigations, different cobalt 
precursors in the presence of the ligand Triphos were tested 
for the hydrogenation of the model substrate diethyl 
carbonate at 120 °C and 50 bar H2 (see   

Table 1). Unfortunately, no active catalyst could be generated 
in the presence of coordinating anions such as halides (entries 
1 and 2) acetyl acetonate (entries 3 and 4), carbonate and 
acetate (entries 6 and 7). Also the use of the cobalt 
hexafluoroacetylacetone did not show any appreciable yield of 
MeOH (entry 5). Finally, we found that Co(NTf2)2 and 
Co(BF4)2·6H2O are both suitable for the hydrogenation of 
carbonates (entries 8 and 9), even at reduced catalyst loadings 
of 2 mol% (entries 10 and 11). Co(NTf2)2 afforded the highest 
conversions but a lower selectivity than Co(BF4)2. Although the 
use of Co(NTf2)2 gave good activities for CO2 reduction,20 here 
the low yield of alcohols is ascribed to the decomposition of 
the triflimide-anion which reacted with the substrate. In fact, 
we observed by GC-MS the formation of several unidentified 
by-products containing fragments derived both from diethyl 
carbonate and the NTf2-anion.  

Table 1: Testing different cobalt precursors for the hydrogenation of diethyl carbonate. 

 

Entry Co Precursor Conversion [%] 
Yield EtOH 

[%] 

Yield MeOH 

[%] 

1 CoCl2 6 <1 <1 

2 CoF2 2 <1 <1 

3 Co(acac)2 4 <1 <1 

4 Co(acac)3 4 <1 <1 

5 Co(acacF)2 2 <1 <1 

6 CoCO3 ∙ 0.33 H2O 1 <1 <1 

7 Co(OAc)2 3 <1 <1 

8 Co(NTf2)2 60 37 13 

9 Co(BF4)2∙6H2O 36 31 25 

10a Co(NTf2)2 44 36 8 

11a Co(BF4)2∙6H2O 24 22 16 

Reaction conditions: General conditions: 1.0 mmol diethyl carbonate, 2 mol% cobalt 

precursor, 2.4 mol% L1, 2 mL THF, 120 °C, 50 bar H2, 18 h. Conversions and yields were 

calculated via GC using hexadecane as internal standard. acacF = 

hexafluoroacetylacetone.  a Co precursor = 0.02 mmol (2 mol%), L1 = 0.024 mmol. 

After identifying an active catalyst system, we tried to improve 
the comparably low activity investigating different ligands in 
the presence of cobalt tetrafluoroborate hexahydrate. Here, a 
variety of bidentate (L20 and L21), tridentate (L1 – L14) and 

tetradentate ligands (L15 – L19) was tried. Similar to Co-
catalysed hydrogenation reactions of carboxylic compounds, 
also in the case of carbonates solely ligands with the Triphos 
backbone were suitable. All the other ligands tested gave only 
traces of methanol and ethanol.  

 

 

 

 

 

 

 

 

 

Entry Ligand Conversion [%] Yield (EtOH) [%] Yield (MeOH) [%] 

1 L1 24 22 16 

2 L2 37 32 26 

3 L3 45 37 32 

4 L4 57 48 42 

5 L5 30 27 22 

6 L6 4 <1 0 

7 L7 4 <1 <1 

8 L8 19 <1 <1 

9 L9 29 <1 <1 

10 L10 32 1 <1 

11 L11 17 <1 0 

12 L12 6 <1 <1 

13 L13 5 1 <1 

14 L14 4 <1 <1 

15 L15 6 <1 <1 

16 L16 2 <1 <1 

17 L17 4 <1 0 

18 L18 3 <1 0 

19 L19 11 <1 0 

20 L20 6 <1 0 

21 L21 3 <1 <1 

22 no ligand 4 <1 <1 

General conditions: 1.0 mmol diethyl carbonate, 2 mol% Co(BF4)2·6H2O, 2.4 mol% 

ligand, 2 mL THF, 120 °C, 50 bar H2, 18 h. Conversions and yields were calculated via GC 

using hexadecane as internal standard. 

Among the Triphos-type ligands, the xylyl-Triphos L4 revealed 
the highest productivity, followed by anisyl- (L3) and p-tolyl-
Triphos (L2). The dimethylamino-substituted Triphos L5 
showed a slightly better productivity than L1. Thus, the 
substitution of the phenyl ring of Triphos with electron-
donating groups seems to be beneficial for the system activity. 
However, the results are difficult to rationalize only on the 

Table 2: Hydrogenation of diethyl carbonate: Variation of ligands in combination with 

Co(BF4)2∙6H2O. 
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base of the basicity of the phosphorus. The catalytic behaviour 
can be better explained taking into account the steric 
properties of the ligands. Indeed, Leitner and Klankermayer 
recently showed the benefit of using sterically hindered 
ligands by comparing the activity of L1, L2 and L4 in the 
ruthenium/triphos-catalysed hydrogenation of methyl 
benzoate and lactams. The increased activity in the order L4 > 
L2 > L1 is ascribed to the suppression of inactive hydride 
bridged ruthenium dimers formation.36 The same trend was 
not noticed when cobalt was used instead of ruthenium for 
either the reduction of CO2

7, 20 or reductive transformation of 
carboxylic acids,37 suggesting a negligible role of dimers in 
catalyst deactivation. On the other hand, [(Triphos)2Co2(μ-H3)]+ 
was found inactive, in the absence of acid co-catalysts, for the 
synthesis of dimethoxymethane and methyl formate from 
CO2.7 Considering the absence of additives in the present 
system, the prevention of dimer formation is a possible 
explanation for the order of activity of the ligands.  

 

 

 

 

 

 

 

Reaction conditions: 1.0 mmol diethyl carbonate, 2 mol% Co(BF4)2·6H2O, 2.4 mol% L1 

or L4, 2 mL solvent, 120 °C, 50 bar H2, 18 h. Conversions and yields were calculated via 

GC using hexadecane as internal standard. The ethanol yield could not be determined 

in the case of isopropanol as solvent. 

Next, the performance of the in situ-generated catalyst with 
commercial ligand L1 has been investigated in different 
solvents (Scheme 2). By far the best results were obtained with 
2,2,2-trifluoroethanol (TFE) leading to 71% yield of both 
methanol and ethanol (conversion: 75%). Quantitative 
conversion and GC-yields for both alcohols have been achieved 
by combining the best solvent with the best ligand, L4. 
Previously, such beneficial effect of fluorinated solvents has 
been observed by Elsevier,38 as well as by Klankermayer.7 
Interestingly, TFE gave significantly better results compared to 
the related solvent 1,1,1,3,3,3-hexafluoro isopropanol (HFIP). 
THF showed the best productivity as a non-fluorinated solvent. 
The sensitivity of the system towards water was shown by 

combining THF with 5 L (0.28 mmol) of distilled water. Adding 
this small amount dropped the conversion from 24% to 10% 
and the yield of ethanol from 22% to 4%. Methanol formation 
could not be observed anymore. All other solvents resulted in 
low conversions, yields and selectivities. With an optimised 
system in hand, the hydrogenation of different organic 
carbonates was investigated in more detail (Table 3). 

Table 3: Hydrogenation of carbonates to the corresponding alcohols: Substrate scope 

RO

O

OR'

Co(BF4)2·6H2O (2 mol%)
L4 (2.4 mol%)

2.0 mL TFE

50 bar H2, 120 °C,  18 h
MeOH + ROH + R'OH

1-15  
Entry Substrate Conv. 

[%] 
MeOH 

[%] 
ROH 
[%] 

R’OH 
[%] 

1 
O O

O

 
1 

>99 85 - - 

2 
O O

O

 
2 

>99 98 >99 - 

3 
O O

O

 
3 

92 96 73 - 

4 
O O

O

 
4 

>99 >99 >99 - 

5 
O O

O

 
5 

94 84 n.d.a 89 

6 O O

O

 
6 

>99 11 88 - 

7 O O

O

OO

O  
7 

>99 94 54 - 

8 
O

O O

F

F

F

F

F

 
8 

>99 92 97 91 

9 F3C O O CF3

O

 
9 

>99 80 n.d.a - 

10 
O O

O
F

F

F

F

F F

F

F

F

F

 
10 

53 5 43 - 

11 

O

O O
 

11 

>99 85 75 - 

12 

O

O O

 
12 

>99 96 90 - 

Reaction conditions: 1.0 mmol diethyl carbonate, 2 mol% Co(BF4)2·6H2O, 2.4 mol% L4, 

2 mL TFE, 120 °C, 50 bar H2, 18 h. Conversions and yields were calculated via GC using 

hexadecane as internal standard. When R = R’, yields are reported as 2 ROH. a The peak 

of ROH overlaps with the one of TFE in the gas-chromatogram. 

Dimethyl carbonate 1 gave three equivalents of methanol in a 
yield of 85% at full conversion. Almost quantitative yields of 
both alcohols have been achieved for di-n-butyl carbonate 2. 
Also the aromatic carbonate 3 was effectively converted to 
methanol and phenol. The asymmetric aromatic/aliphatic 
carbonates 4 and 5 yielded the three corresponding alcohols. 
For dibenzyl carbonate 6, a low methanol yield (11%) was 

Scheme 2: Hydrogenation of diethyl carbonate: Solvent screening. 

0

20

40

60

80

100

TH
F

d
io

xa
n

e

te
rt

-a
m

yl
 a

lc
o

h
o

l

is
o

-p
ro

p
an

o
l

cy
cl

o
h

e
xa

n
e

h
ex

an
e

to
lu

e
n

e

H
FI

P

TF
E

H
FI

P
/T

H
F 

1
:1

n
ea

t

TH
F/

H
2

O
 (

5µ
L)

TF
E 

(L
4)

Page 3 of 6 Catalysis Science & Technology

C
at

al
ys

is
S

ci
en

ce
&

Te
ch

no
lo

gy
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
3 

Ju
ne

 2
01

9.
 D

ow
nl

oa
de

d 
on

 6
/1

4/
20

19
 6

:0
5:

45
 A

M
. 

View Article Online
DOI: 10.1039/C9CY00951E

https://doi.org/10.1039/c9cy00951e


ARTICLE Journal Name 

4  |  J. Name. , 2012, 00,  1-3  This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

observed, even though the conversion and the yield of benzylic 
alcohol both have been high (<99%/88%). A similar behaviour 
was found for the perfluorinated carbonate 10, although at a 
lower conversion. It is worth noticing that the used cobalt 
source contains six equivalents of water and both benzyl 
alcohol and pentafluorophenol are good leaving groups. Thus, 
for 6 and 10 hydrolysis of the substrates would lead to 
formation of alcohol, carbon dioxide. This, at least in part, 
accounts for the discrepancy of methanol and alcohol yields. 
The asymmetric carbonate 8, which bears one 
hexafluorophenol unit yielded in 92% of methanol, along with 
97% of 9-fluorenyl methanol and 91% of hexafluorophenol. 
Also the fluorinated substrate 9 was converted to methanol in 
high yield. Noteworthy, also the cyclic carbonates 12 and 13 
were readily transformed to the diols and methanol. These 
carbonates are of particular interest vide supra, as they are 
commercially produced from carbon dioxide and epoxides or 
oxetanes.39  

H O

O

O O

O

H H

O

H H

OH

H
EtOH EtOH

H O

O

H H

O

n

Conversion

>99%

>99%

Ethanol

>99%

-

Methanol

86%

88%

H2 H2 H2

Co(BF4)2·6H2O (2 mol%)
L4 (2.4 mol%)

2.0 mL TFE
50 bar H2, 120 °C,  18 h

Co(BF4)2·6H2O (2 mol%)
L4 (2.4 mol%)

2.0 mL TFE
50 bar H2, 120 °C,  18 h

1.0 mmol

1.0 mmol  

Scheme 3: Hydrogenation of the potential intermediates ethyl formate and 

formaldehyde. 

As the hydrogenation of diethyl carbonate potentially occurs 
stepwise via ethyl formate and/or formaldehyde, these 
compounds have been investigated in separate hydrogenation 
experiments (Scheme 3). Both, ethyl formate and para-
formaldehyde were completely hydrogenated, giving 
methanol in 86% and 88%, respectively, and ethanol in >99%. 
Therefore, although only traces of ethyl formate were 
detected by GC for the model substrate, we cannot exclude 
that these compounds indeed are intermediates in the 
hydrogenation of diethyl carbonate.  

Conclusions 

In conclusion, we investigated the homogeneous cobalt-

catalysed hydrogenation of organic carbonates for the first 

time. The combination of Co(BF4)2·6H2O with a Triphos-derived 

ligand L4 resulted in an active catalytic system suitable for 

reduction of both cyclic and acyclic carbonates. At relatively 

mild conditions, good to very good yields of methanol and the 

corresponding alcohols have been obtained using the solvent 

TFE.   

 

Experimental Section 

Materials 

All chemicals were purchased from commercial sources and 
were used as received without additional purification, if not 
stated otherwise. Molecular hydrogen was purchased from 
Linde. All experiments were carried out under argon 
atmosphere by using standard Schlenk-techniques, unless 
stated otherwise. Solvents were dried and distilled or directly 
used from a solvent purification system (MBraun). THF was 
stored over molecular sieves 3 Å. Diethyl carbonate was 
distilled prior to use. The ligands L2 – L6,37 L7 – L9,40 L11,40 
L15,41 L16,42 L17,43 L19,44 and L2045 have been synthesised 
according to literature-reported procedures.  

Catalytic experiments were conducted in 4 mL screw cap vials, 
closed with a polytetrafluoroethylene (PTFE)/white rubber 
septum (Wheaton 13 mm Septa) and phenolic cap and 
connected with atmosphere by a needle, inside a 300 mL Parr 
autoclave and stirred with a magnetic stirring bar. GC 
measurements were carried out on a 7890A GC-System with 
HP-5 column (polydimethylsiloxane with 5% phenyl groups, 
length 30 m, i.d. 0.32 mm, film 0.25 µm) and with a FID 
coupled with a 7693 autosampler from Agilent Technologies. 
Argon was used as carrier gas. GC-analyses for methanol 
quantification were performed on an Agilent HP-6890 
chromatograph with a FID detector and an Agilent HP Ultra 1 
column (19091A-105, 50 m, 0.20mm i.d., 0.33 mm film 
thickness, 100% dimethylpolysiloxane) using argon as carrier 
gas. 

 
In a typical catalytic experiment, Co(BF4)2·6H2O (6.81 mg, 
2.0 mmol) and ligand (2.4 mmol) were fast weighed in the air 
and transferred into a 4 mL glass vial. If used, solid substrates 
were also weighed in the air and added into the vial. The vial 
was subsequently set under argon. 2.0 mL solvent were added 
and the mixture stirred for 5-10 min. Then, liquid substrates 
were added and the vials were placed in a metal plate inside a 
300 mL autoclave. After closing, the reactor was pressurised 
with hydrogen (about 20 bar), which was released again. This 
procedure was carried out three times, after which 50 bar H2 
were introduced. The autoclave was then heated inside an 
aluminium block to 120 °C for 18 h. Afterwards the reaction 
was quenched with an ice-bath and the reactor vented. 

Hexadecane (30 L) was added to the reaction as internal 
standard for GC, along with 2 mL THF. After proper mixing, GC 
was measured of the sample. 
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