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Abstract—Continuous nucleophilic addition with several organometallic reagents to tricyclic lactone (—)-1 proceeded diastereose-
lectively. Newly generated tertiary and quaternary asymmetric centers were controlled by the order in which the nucleophilic
reagents were added. Using this methodology, enantiodivergent syntheses of several y-substituted butenolides with tertiary and
quaternary asymmetric centers were established from a single chiral material. © 2003 Elsevier Science Ltd. All rights reserved.

Chiral y-substituted butenolides 2 are known to be useful
synthons for the enantiocontrolled construction of a
variety of biologically active natural and unnatural
compounds.' Therefore, chiral synthesis of y-substituted
butenolides has been an ongoing challenge for
researchers attempting the organic synthesis of certain
substances.>* We have recently reported the enantiodi-
vergent synthesis of (+)- and (-)-frans-quercus lactones

3 from (+)-1 as a single chiral material via continuous
diastereoselective nucleophilic addition.* We have found
that (+)-1 is the synthetic equivalent of both enantiomers
of chiral y-butyl-substituted butenolide 2a (Scheme 1).
We report here an application of this methodology to
synthesize both enantiomers of several chiral y-substi-
tuted butenolides 2 with tertiary and quaternary asym-
metric centers from a single chiral material 1 (Scheme 1).°
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In the present study optically pure tricyclic lactone
(-)-1, prepared from dicyclopentadiene by our estab-
lished method,® was allowed to react with the first
organometallic reagent (R;M), and then continuously
reacted with the second organometallic reagents (R,M)
in the same flask to furnish diastereomeric diols 6 and
7 (Scheme 2). The results of this continuous nucleo-
philic addition are summarized in Table 1. In the case
of using diisobutylaluminum hydride (DIBAL) as the
first nucleophilic reagent (R;M) and using some
organometallic reagents as the second nucleophilic
reagents (R,M) in tetrahydrofuran (THF), diastereose-
lective nucleophilic addition proceeded preferentially to
yield diol 6 with some alkyl and aryl substitutions, and
to selectively construct a tertiary asymmetric center
(entries 1, 2, 6, and 8). In comparison with entries 1 and
2, a higher yield and higher diastereoselectivity of diols
6a and 7a were observed, when "butylmagnesium chlo-

ride ("BuMgCl) was used as R,M. These results sug-
gested that it was suitable for the reaction to use
Grignard reagent as R,M. For this reason, we demon-
strated the use of some other Grignard reagents as R,M
(entries 6 and 8). We then inverted the newly generated
asymmetric center in the order in which the nucleo-
philic reagents were added. In THF, lactone (-)-1
reacted with stoichiometric amounts of ”butyllithium
("BuLi) as R;M to avoid dialkylation,” and continu-
ously reacted with DIBAL or L-Selectride as R,M. In
these cases, a lower yield and lower diastereoselectivity
of diols 6b, 7b were observed (entries 3 and 4). When
toluene was used as a solvent, a drastic improvement in
this reaction was observed.® Entry 5 shows that diol 6b
was obtained in 78% yield as an almost single product,
and that the inversion of the newly generated tertiary
asymmetric center succeeded. Although a similar result
was obtained in the case of the methyl group (entry 7),
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Table 1. Continuous nucleophilic addition to lactone (—)-1
Entry Solvent R,:M R,M Products Yield® (%) Ratio® 6:7
6 and 7
1 THF DIBAL "BuLi a: R, =H, R,="Bu® 46 71:29
2 THF DIBAL "BuMgCl a: R;=H, R,="Bu 81 >99:1
3 THF "BuLi DIBAL b: R,="Bu, R,=H 38 52:48
4 THF "BuLi L-Selectride b: R,="Bu, R,=H 26 67:33
5 Toluene "BuLi L-Selectride b: R,="Bu, R,=H 78 >99:1
6 THF DIBAL MeMgBr ¢ R,=H, R,=Me 82 93.7
7 Toluene MelLi L-Selectride d: R,=Me, R,=H 77 94:6
8 THF DIBAL PhMgBr e: R,=H, R,=Ph¢ 83 94:6
9 Toluene PhLi L-Selectride f: R,=Ph, R,=H 25 60:40
10 Toluene "BuLi MeMgBr g: R, ="Bu, R,=Me 60 >99:1
11 Toluene MelLi "BuMgCl h: R, =Me, R,="Bu 56 >99:1
12 Toluene MeLi PhMgBr i: R,=Me, R,=Ph 68 >99:1
13 Toluene PhLi MeMgBr i Ry=Ph, R,=Me 84 >99:1
14 Toluene "BuLi PhMgBr k: R, ="Bu, R,=Ph 44 >99:1
15 Toluene PhLi "BuMgCl I: R, =Ph, R,="Bu 69 >99:1

# Isolated yield.

® The ratios 6:7 have been determined on the '"H NMR spectra at 270 MHz of crude products by integration of the signals due to the bridgehead

protons or the oxymethine protons.
¢ "Butyl.
4 Phenyl.
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Scheme 3. Reagents and conditions: (i) cat. TPAP, NMO, 4 A
molecular sieves, CH,Cl,, rt; (ii)) ODCB, reflux.

Table 2. Studies of the oxidation of diol 6

Entry Substrate Product 8 Yield* (%)
1 6a 8a: R,=H, R,="Bu 66
2 6b 8b: R, ="Bu, R,=H 61
3 6¢ 8c: R,=H, R,=Me 57
4 6d 8d: R, =Me, R,=H 45
5 6e 8e: R, =H, R,=Ph 65
6 6f 8f: R,=Ph, R,=H 48
7 6g 8g: R, ="Bu, R,=Me 41
8 6h 8h: R,=Me, R,="Bu 45
9 6i 8i: R,=Me, R,=Ph 37
10 6j 8j: R,=Ph, R,=Me 40
11 6k 8k: R, ="Bu, R,=Ph 42
12 6l 8l: R, =Ph, R,="Bu 45

4 Isolated yield.

lower selectivity and yield were observed in the case of
the phenyl group (entry 9). We next demonstrated
similar construction of a quaternary asymmetric center
(entries 10-15). In all cases, the reactions proceeded to
furnish diol 6 diastereoselectively with 44-84% yield,
and to construct quaternary asymmetric centers includ-
ing alkyl and aryl moieties.” All of the diastereomeric
diol 7 products were readily separated by silica gel
column chromatography either directly or after conver-

Table 3. Studies of the retro-Diels—Alder reaction of lactone 8

sion to lactone 8. We believe that the diastereoselectiv-
ity in these reactions can be explained as follows. First,
nucleophilic addition of R;M to (-)-1 gives the corre-
sponding acetal derivative 4, which is equilibrated to
the metal-chelated intermediate 5. Next, a second nucleo-
phile (R,M) approaches from the outside of the
chelated ring to give a single stereoisomer. Thus, the
newly generated asymmetric center is controlled selec-
tively by the order in which the nucleophilic reagents
are added (Scheme 2). We cannot, however, explain the
lower selectivity in entry 9 (Table 1), though the reac-
tion could possibly have proceeded through an acyclic
intermediate.

As shown in Scheme 3 and Table 2, oxidation of diol 6
with a catalytic amount of tetrapropylammonium per-
ruthenate (TPAP)!° in the presence of 4-methylmorpho-
line N-oxide (NMO) gave the corresponding lactones
8,!! respectively, in 37-66% yield (Scheme 3, Table 2).
Nuclear Overhauser effect (NOE) experiments were
carried out for all of the lactones 8 because strong NOE
was observed between the proton of the R, group and
the olefinic proton in the bicyclo[2.2.1]heptene ring, and
it was confirmed that the stereochemistry of the newly
generated asymmetric centers, as shown in Scheme 3
and Table 2, was correct. A retro-Diels—Alder reaction
of lactone 8 in refluxing o-dichlorobenzene (ODCB)
yielded both enantiomers of corresponding y-substi-
tuted butenolides 2 (Scheme 3, Table 3).!? The absolute
configurations of butenolides 2a-e were assigned by
comparison of their optical rotations with those
reported previously.!*'7 Of these butenolides, com-
pound 2b is also known as B-angelica lactone, which is
a key intermediate in the syntheses of some natural
products such as (+)-blastmycinone,'® (-)-saprathin,'
and (+)-himbacine.?® Because butenolide 2f has never
been reported,?' the absolute configuration was deter-

Entry Substrate Product 2 Yield* (%) [«]p® (c) ee (%)
1 8a (+)-2a: R;=H, R,="Bu 84 +100.8 (1.0) >98
2 8b (—)-2a: R,="Bu, R,=H 85 —100.4 (1.2)¢ >98
3 8c (+)-2b: R;=H, R,=Me 61 +117.0 (1.3)¢ >98
4 8d (—)-2b: R,=Me, R,=H 52 —114.0 (0.8)" >98
5 8e (+)-2c: R;=H, R,=Ph 19 +277.2 (0.8)® >98
6 8f (—)-2c: R,=Ph, R,=H 12 —276.7 (0.7) >98
7 8g (—)-2d: R, ="Bu, R,=Me 85 —19.1 (0.7) >98
8 8h (+)-2d: R,=Me, R,="Bu 77 +19.2 (1.2)" >98
9 8i (+)-2e: R;=Me, R,=Ph 92 +274.4 (1.2) >98
10 8j (—)-2e: R,=Ph, R,=Me 83 —274.3 (1.3y >98
11 8k (+)-2f: R;="Bu, R,=Ph 90 +163.1 (1.0) >98
12 81 (—)-2f: R,=Ph, R,="Bu 80 —161.4 (0.9) >98

4 Isolated yield.
® Measured in CHCI; at room temperature.

¢ Determined by HPLC with a chiral stationary phase (Chiralcel OD, eluent: 2-propanol-hexane).

dli.1% —101.0.

e lit.% +93.8 (c 0.5).

f1it.14* _107 (c 1.6).

£1it.15® 4304 (¢ 1.0).

h i, 180 (29% ee) +4.6 (c 1.42).
iit.17° +275.6 (¢ 1.0).

i1t (91% ee) —248.3 (c 5.0).
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mined based on their connection with the structures of
the starting diastereomeric lactones 8k and 8l. Entries 5
and 6 in Table 3 show that there was a lower yield in
the retro-Diels—Alder reaction. In these cases, B,y-
unsaturated lactone 9 was also obtained in 8% yield
with butenolide 2¢ (Scheme 4). These results suggest the
possibility of the racemization of 2 through a retro-
Diels—Alder reaction. We therefore determined the
enantiomeric excess (ee) of 2 by HPLC with a chiral
stationary phase. Fortunately, all of the butenolides 2
existed in >98% ee. Thus, serious racemization had not
occurred under these reaction conditions.*?

In conclusion, we have established enantiodivergent
syntheses of both enantiomers of several y-substituted
butenolides with tertiary and quarternary asymmetric
centers from tricyclic lactone (-)-1 as a single chiral
material. This result means that these chiral butenolides
can also be synthesized from enantiomeric lactone (+)-1
by the same methods described above. Therefore, lac-
tone 1 can be used enantiodivergently and enantiocon-
vergently as a synthetic equivalent of both enantiomers
of y-substituted butenolides 2. We have just begun to
investigate exploitation of lactone 1 as a chiral buteno-
lide equivalent for the synthesis of pharmacologically
important natural and unnatural compounds.
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