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The imido-hydrido complex (ArN)Mo(H)(Cl)(PMe3)3 catalyses

a variety of hydroboration reactions, including the first example

of catalytic addition of HBCat to nitriles to form the

bis(borylated) amines RCH2N(BCat)2. The latter species easily

undergoes chemoselective coupling with aldehydes R0C(O)H to

yield imines RCH2NQQQC(H)R0.

Hydroboration of unsaturated substrates is a reaction of

immense importance for organic chemistry.1,2 Whereas, alkyl

and aryl boranes add to multiple C–C, C–O, and C–N bonds

easily, the hydroboration by deactivated boranes, such as

HBCat (Cat = catechol), calls for the application of transition

metal catalysis, which to date is mostly done by late transition

metals (Rh, Ir etc).2,3 The latter are notorious for their high

cost and toxicity. While early metals are usually both cheaper

and more environmentally benign, only a few catalytic examples

are known, and those are mostly limited to Ti and Zr.4

Stoichiometric reactions of HBCat with olefins have been

shown for Nb and Ta metallocene complexes.5 Much less is

known about catalytic hydroboration of carbonyl derivatives,6,7

with no reported examples for esters and nitriles.8

We have recently reported catalytic and mechanistic studies

on hydrosilylation reactions mediated by the imido-hydrido

complex (ArN)Mo(H)(Cl)(PMe3)3 (1; Ar = 2,6-iPr2C6H3),

including one of the first examples of nitrile hydrosilylation.9

Believing that HBCat may exhibit even superior reactivity

patterns due to its enhanced Lewis acidity, we elected to study

the hydroboration catalysed by 1. Here we report the results of

these efforts, including an insight into the mechanism and

observation of unusual B–H� � �M agostic and borylimino

intermediates.

Complex 1 shows catalytic activity in a diversity of hydro-

boration processes (Table 1). Thus, ketones (iPr2C(O),

Ph2C(O), PhC(O)Me10), and esters, MeC(O)OEt, are easily

converted to the corresponding boryl ethers (Table 1, entries

1–4). Addition of HBCat to alkenes4b–g,5 and alkynes4a,h–i

(styrene, 3-hexyne, and phenylacetylene) in the presence of 1

(5 mol%) affords the boro-substituted alkanes and alkenes,

respectively (Table 1, entries 5–7); albeit the 1-catalysed reaction

with styrene also gives large amounts of trans-PhCHQCHB(Cat)

and ethylbenzene. In contrast, 1 showed reduced or no cata-

lytic activity in the hydroboration of 1-hexene, cyclohexene,

a-methylstyrene, 1-octyne and PhCRCHCH3. The last but

not the least, the hydroboration of nitriles (MeCN and PhCN)

catalysed by 1 (5 mol%) leads to products of double addition

of HBCat across the CRN bond, RCH2N(BCat)2 (Table 1,

entries 8 and 9).

Since nitriles react faster than ketones and alkynes we also

tried polyfunctional compounds. Hydroboration of acrylonitrile,

3-(2-oxocyclohexyl)propanenitrile, 4-acetyl-benzonitrile, and

a mixture of PhCN/Ph2C(O) (1 : 1) was not chemoselective.11

In contrast, addition of HBCat to 5-hexyne-nitrile occurs

selectively on the alkyne moiety, leaving the nitrile group

unreacted.11

Importantly, the products of nitrile hydroboration,

RCH2N(Bcat)2, easily react with aldehydes to give imines

RCH2NQCHR0. Taken together, these novel hydroboration

and coupling reactions constitute a useful synthetic transfor-

mation of nitriles to imines.12 This reaction is remarkable in that

it proceeds chemoselectively with aldehydes but not with ketones.

In order to elucidate the mechanism of nitrile hydroboration,

we studied the stoichiometric reactivity of 1.13 Addition of

nitriles to 1 results in the methylenamide derivatives trans-

(ArN)Mo(Cl)(NQCHR)(PMe3)2 (2–5; Scheme 1). It is note-

worthy that unlike catalytic reactions (vide supra) insertion of

the CRN bond into the Mo–H bond is chemoselective,

tolerating ketone and non-conjugated alkene functionalities.

Table 1 Catalytic hydroboration with HBCat mediated by 1
a

Entry Substrate Product(s) t, h Yield, %b

1 iPr2C(O) (iPr)2CH(OBCat) 24 91
2 Ph2C(O) Ph2CH(OBCat) 24 100
3 PhC(O)Me PhCH(OBCat)Me 24 99
4 MeC(O)OEt EtOBCat 24 100
5 PhCHQCH2 PhCH2CH2BCat 20 32

PhCHQCHBCat 53
PhCH2CH3 15

6 3-hexyne EtCHQC(Et)BCat 24 94
7 PhCRCH PhCHQCHBCat 20 99
8 MeCN EtN(BCat)2 12 100
9 PhCN PhCH2N(BCat)2 12 100

a Conditions: 5 mol% of 1, 22 1C, C6D6, substrate/HBCat = 1 : 1

(1 : 2 ratio for entries 4, 8 and 9), Csubst = 0.4 M. b NMR yields.
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Control reactions of 1 with 1 : 1 mixtures of PhCN and ketones

(acetone, acetophenone, and cyclohexanone) result in the

exclusive formation of 3.14 In contrast, reactions of 1 with

acrylonitrile and 4-formylbenzonitrile afford complexes 6 and

7, respectively.

Compounds 2–7 were characterized by spectroscopic methods

(IR, NMR) and X-ray diffraction for 3 (Fig. 1). Complex 3 has

a distorted trigonal bipyramidal structure, with two trans

PMe3 ligands occupying the apical positions. The

Mo1–N2–C13 bond angle is almost linear (172.3(4)1) suggest-

ing that the [NQCHPh] fragment acts as a 4e donor15

stabilizing the 18e valence shell, assuming that the linear imide

ArN2� (Mo1–N1–C1 175.0(3)1) also donates 6e. Compounds

2–5 and 7 give rise to diagnostic imine proton (7.09–7.43 ppm)

and carbon signals (145.4–153.5 ppm) in their 1H and 13C

NMR spectra, respectively.

Interestingly, the addition of PhCN to the methyl derivative

2 leads to a slow (24 h at RT) release of acetonitrile to

form complex 3, indicating a-CH bond activation in the

methylenamide ligand. To the best of our knowledge, such

a reversible nitrile insertion into an early metal–hydride

bond has been previously observed only for complex

Cp*2Sc(NQCHR).15c The possibility of a-CH activation in

the methylenamide ligand was further confirmed by the

reaction of 3 with benzaldehyde, which in the presence of

PMe3 leads to exclusive formation of the benzoxy derivative

(ArN)Mo(Cl)(OBn)(PMe3)3 (8).
9 However, no transfer hydro-

genation was observed in reactions of 3 with acetone or

acetophenone even upon heating up to 60 1C. Such a difference

in the reactivity of 3 towards aldehydes and ketones allows

us to explain the difference in chemoselectivity of the

stoichiometric reactions of 1 with 4-acetylbenzonitrile and

4-formylbenzonitrile to give 5 and 7, respectively.16

The reaction of 3 with HBCat was followed by NMR

spectroscopy at low temperature. At �30 1C, the formation

of a mixture of two bis(phosphine) compounds was observed.

One of the products has a Cs symmetric NMR structure

with two equivalent PMe3 ligands giving rise to a singlet at

�0.9 ppm in 31P NMR. 1H NMR revealed a downfield imine

signal at 8.92 ppm, coupled in 1H–13C HSQC to the 13C NMR

signal at 172.0 ppm. Also, 11B NMR showed the presence of

a 4-coordinate boron centre exhibiting a doublet at 2.2 ppm

(vs. 29 ppm for HBCat) with reduced B–H coupling (JB–H E
55 Hz).17 These spectroscopic features indicate an agostic

borane structure tentatively formulated as the amido-borane

adduct (ArNQ)Mo(Cl){k3-N(QCHPh)(CatB–H� � �)}(PMe3)2
(9; Scheme 2).18

The second product (10) in the mixture is produced from 9

upon gentle increase of temperature. However, all attempts to

find a temperature regime for the full conversion of 9 were

unsuccessful. The 1H NMR spectrum of 10 at �50 1C shows a

downfield imine signal at 8.31 ppm (s, coupled in 1H–13C

HSQC NMR to the 13C NMR signal at 154.2 ppm) and a

broad upfield hydride resonance at �2.94 ppm. The two non-

equivalent PMe3 groups give rise to two mutually coupled

doublets at �1.4 ppm and �13.0 ppm in the 31P NMR

spectrum, with the large 2JP–P = 212.0 Hz suggesting trans-

arrangement. The 11B NMR spectrum revealed the presence

of an essentially 3-coordinate boron centre, which gives rise

to a broad signal at 10.2 ppm, not coupled to the hydride

at �2.94 ppm. All together these features are consistent

with the formation of a k1-(N-boryl)imine derivative (ArN)-

Mo(H)(Cl){k1-N(BCat)QCHPh}(PMe3)2 (10; Scheme 2). The

non-equivalency of phosphines is then explained by the

restricted rotation around the Mo–N bond at �50 1C.

Heating to 25 1C leads to disappearance of 9 and 10 and

formation of (ArN)Mo(H)(Cl){Z2-CatBNQCHPh}(PMe3)2
(11; Scheme 2). The 31P NMR spectrum of this species shows

two mutually coupled doublets at 2.4 and �5.2 ppm (2JP–P =

88.5 Hz). The 1H NMR spectrum of 11 revealed an upfield

imine proton at 5.00 ppm (dd, 3JH–P = 3.1 Hz), diagnostic for

the Z2-NQCHPh moiety, which is further supported by a

significant upfield shift of the 13C NMR resonance for the

imine carbon (62.9 ppm, found by 1H–13C HSQC NMR). The

MoH signal, in contrast, is shifted downfield to 7.06 ppm

(found by 1H–31P HSQC NMR; 2JH–P = 45.0 and 50.9 Hz),

suggesting the cis disposition of the hydride and imido ligands,

Scheme 1 Preparation of methylenamide complexes of Mo.

Fig. 1 Molecular structure of 3 (bond lengths in Å, angles in 1).

Hydrogen atoms except H13a are omitted. Mo1–N1 1.761(4),

Mo1–N2 1.843(4), N2–C13 1.279(6), C1–N1–Mo1 175.0(3),

C13–N2–Mo1 172.3(4), P1–Mo1–P2 164.60(5), Cl1–Mo1–N2

122.42(13), N1–Mo1–N2 116.45(17). Scheme 2 Suggested mechanism for the hydroboration of PhCN.
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as in the parent complex 1.9 The downfield 11B NMR signal at

10.1 ppm indicates a 3-coordinate boron.

Addition of another equiv. of HBCat to 11 does not allow

for the observation of any further intermediates. Only the

release of PhCH2N(BCat)2 and formation of a mixture of 1,

(ArN)MoCl2(PMe3)3
19 and unknown decomposition products

was observed. How the borylimine part of 11 is reduced into

amine still remains unclear. But it is clear that this last step of a

possible catalytic cycle (Scheme 2) is assisted by HBCat.

On the other hand, 1 reacts with HBCat very sluggishly:

after 24 h at room temperature only B20% conversion of 1 to

a mixture of (ArN)MoCl2(PMe3)3
19 and a highly fluxional

dihydride complex (ArN)MoH2(PMe3)3 (12) was observed by

NMR. No oxidative addition of borane to Mo and formation

of a Mo boryl complex, such as (ArN)Mo(Cl)(BCat)(PMe3)x
(x = 2, 3),20 takes place.

A similar mechanism can be also suggested for the hydro-

boration of carbonyl compounds. Indeed, we found that the

reaction of HBCat with (ArN)Mo(Cl)(OBn)(PMe3)3
9 (8),

formed upon the reaction of 1 with PhC(O)H, immediately

regenerates complex 1. For nitriles bearing carbonyl substituents,

the insertion of the CQO and CRN moieties into the Mo–H

bond of 1 becomes competitive in the presence of large excess

of HBCat21 resulting in the loss of chemoselectivity of hydro-

boration under catalytic conditions.

In conclusion, complex 1 was found to catalyse a variety of

hydroboration reactions, including the so far unknown cata-

lytic addition of HBCat to nitriles to form bis(boryl) amines.

The latter compounds can be easily converted to imines by the

reaction with aldehydes. The hydroboration of nitriles pro-

ceeds via a series of novel agostic borylamido and borylimino

complexes.
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