Synthesis of 2,3-Diaryl-3,4-dihydro-2*H*-1,3-benzoxazines and Their Fungicidal Activities

Zilong Tang,^{a,b}* Weiwen Chen,^{a,b} Zhonghua Zhu,^{a,b} and Hanwen Liu^{a,b}

 ^aSchool of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
 ^bKey Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
 *E-mail: zltang67@yahoo.com.cn Received February 4, 2010 DOI 10.1002/jhet.533
 Published online 18 November 2010 in Wiley Online Library (wileyonlinelibrary.com).

A series of novel 2,3-diaryl-3,4-dihydro-2H-1,3-benzoxazines have been prepared in high yields from o-arylaminomethylphenols and aromatic aldehydes in the presence of SnCl₄ for the first time, and their fungicidal activities were investigated too. Some of the products showed good fungicidal activities against *Rhizoctonia solani* justified by 100% activity of compound **1b**.

J. Heterocyclic Chem., 48, 255 (2011).

INTRODUCTION

As 3,4-dihydro-2H-1,3-benzoxazines and 3,4-dihydro-2H-1,3-oxazine containing compounds have been reported to show different antimicrobial properties [1], such as bactericidal, fungicidal, and many pharmacological features [2] such as antitumour, antituberculosis, and anthelmintic activity, these types of compounds have been an important subject of researches. In addition, N-substituted 3,4-dihydro-2H-1,3-benzoxazines are potential intermediates for the preparation of phenolformaldehyde resins [3]. Hence, the synthesis of these compounds including the synthesis of benzoxazine monomers containing special functional group has attracted great interest. Several methods have been reported for the preparation of these compounds in the literature. For example, an important method was developed by Burke et al. [4], using Mannich-type condensation of phenols with primary amines and two equivalents of formaldehyde. Condensations of o-aminomethylphenol with aldehydes or ketones provided another route [5]. Reactions of primary amines with oxygen-containing dihalocompounds established a way to prepare 3,4dissymmetric-substituted 3,4-dihydro-1,3-benzoxazines [6]. Recently, rhodium-catalyzed reactions of 2-(alkenyloxy)benzylamines have been developed as a new way generate 3,4-dihydro-1,3-benzoxazines, which to involves an allylic cleavage followed by regioselective carbonylation at the internal carbon atom [7]. However, some drawbacks existed in previous methods. Hence, both the preparation of novel 3,4-dihydro-1,3-benzoxazines and the development of efficient method are still of great importance. On the other hand, the reported biological studies of dihydro-1,3-benzoxazines were mainly focused on the pharmacological activities. To the best of our knowledge, few papers about the pesticidal activities of dihydro-2*H*-1,3-benzoxazines and the preparation of 2,3-diaryl-3,4-dihydro-2*H*-1,3-benzoxazines have been reported. Hence, herein, we present our results of the synthesis of 2,3-diaryl-3,4-dihydro-2*H*-1,3benzoxazines mediated by $SnCl_4$ (Scheme 1) and the preliminary fungicidal activities of the products.

RESULTS AND DISCUSSION

The intermediate Schiff bases **3** were smoothly prepared in 84 to 99% yields (Table 1) by condensation reactions of substituted anilines **2** with salicylaldehyde, and followed by reduction with NaBH₄ affording *o*-arylaminomethylphenols **4** in 90 to 94% yields (Table 1) [8,9]. It was found that only *E* isomer of Schiff base **3** was formed [9], possibly due to the stability and a hydrogen bond between the hydroxyl group and the nitrogen atom [9,10]. Then, reaction of *o*-aminomethyl phenol **4c** with 3-nitrobenzaldehyde **5c** in the presence of *p*-toluenesulfonic acid (TsOH) [**2g**,11] was performed under reflux by removing the water of condensation Scheme 1. Synthesis of 2,3-diaryl-3,4-dihydro-2H-1,3-benzoxazines 1.

with chloroform azeotropically to prepare 2,3-diaryl-3,4dihydro-2H-1,3-benzoxazine 1a, the reaction gave the desired product in only 11% yield along with an unknown white solid (Table 2, entry 1). We next attempted a mixed solvent of chloroform and cyclohexane, (v:v = 1:7) taking into account the higher azeotropic ability of cyclohexane, the yield raised to 18% (entry 2), but still far away from satisfaction. Here, it should be noted that the addition of chloroform was to increase the solubility of reactants. In literature, Lewis acid SnCl₄ was reported as an effective catalyst for many reactions, such as acetalization and ketalization of aldehydes or ketones [12]. Therefore, we tried $SnCl_4$ (20 mol %) as catalyst, to our delight, it turned out that the reaction of 4c with 5c in chloroform/cyclohexane (v:v = 1:7) gave product 1a in 95% yield at 85°C (entry 3). To the best of our knowledge, this is the first time to use SnCl₄ as catalyst for the zaz-acetalization of aromatic aldehyde with o-aminomethylphenol to prepare dihydro-1,3-benzoxazine. But, the yield decreased when the amount of the catalyst was increased to 25 mol % (entry 4). Thus, we employed 20 mol % of SnCl₄ for the synthesis of compounds 1b-1o. Generally, under these conditions, 1b-1o were prepared in 60 to 80% yields (entries 3-18). Compounds possessing an electron-releasing group on the phenyl group bond to the nitrogen atom gave higher yields than those with an electro-withdrawing group. Electronreleasing group increases the electron density of the nitrogen and hence increases its nucleophilicity. Moreover, it was observed that, for compounds containing a methyl group on the benzene ring connected with the nitrogen atom, the yield mainly depended on the position of the methyl group in the order of para > meto > ortho regardless of the nature of the aryl group at position-2 of the oxazine ring. The last two cases may be attributed to the steric hindrace.

The structures of all the synthesized compounds were established on the basis of their spectroscopic data and elemental analysis. For compound **1b**, strong absorptions at 1530 and 1337 cm⁻¹ are attributed to the antisymmetrical and symmetrical stretch vibration absorption of the

NO₂ group, and 1585 and 1610 cm⁻¹ for vC=C bond. $\delta = 6.85$ observed in ¹H-NMR corresponds to OCHN proton of benzoxazine ring. The downfield shift of OCHN proton is due to the strong electron negative of nitrogen and oxygen atoms. Particularly, the proton of NCH₂ group absorbs as two doublets at 4.00 and 4.19 instead of a singlet. These data strongly suggested the formation of benzoxazine ring. In addition, the spectroscopic data-based structure was further confirmed by Xray crystallographic analysis of **1b** (Fig. 1) [13]. It can be seen clearly from the structure, in solid state, the conformation of oxazine ring is a half-chair form with two trans-axial orientation of both the *N*-aryl and 2-aryl group. It apparently indicated that the nitrogen atom adopted sp³ hybrid orbital.

According to SOP procedure [14], fungicidal activities of the prepared compound **1a–1o** against *Gibberella zeae*, Phytophythora capsici, Alternaria alternate, Botrytis cinerea, and Sclerotonia sclerotiorum were evaluated using the mycelium growth rate test in concentration of 25 mg/ L, which was expressed as inhibition rate (%), and their activities against Rhizoctonia solani using the leaf-disc culture in concentration of 500 mg/L, which was expressed as control efficacy (%). The results are summarized in Table 3. In principle, it can be seen that most of the compounds showed moderate to good activity. For the tested compounds, the activity against Rhizoctonia solani was the best as shown by compound 1b (100%) and 1e, 1g, and 1n (80% for three compounds). Moreover, compounds possessing an electron-releasing group on the phenyl group bond to the nitrogen atom showed higher activities against Rhizoctonia solani than those with an electro-withdrawing group. For other fungus, there was not apparent structure-activity relationship. The insecticidal activities of the compounds 1 are in progress.

EXPERIMENTAL

All solvents were dried by standard procedure. Aromatic aldehydes and substituted anilines were commercially

 Table 1

 The results of the preparation of Schiff base 3 and oaminomethylphenol 4.

Entry	R	Product 3	Yield ^a (%)	Product 4	Yield ^b (%)
1	2-CH ₃	3a	90	4a	91
2	3-CH ₃	3b	84	4b	94
3	$4-CH_3$	3c	98	4c	94
4	4-Cl	3d	98	4d	90
5	4-OCH ₃	3e	93	4e	92
6	Η	3f	91	4f	91

^a Isolated yield for reaction carried out in refluxing ethanol for 3 h.

^b Isolated yield for reaction carried out in methanol at 0°C for 40 min.

Entry	R	R^1	Conditions ^a	Product	Yield ^b (%)
1	4-CH ₃	3-NO ₂	TsOH (20 mol %), CHCl ₃ , reflux, 5 h	1 a	11 ^c
2	4-CH ₃	3-NO ₂	TsOH (20 mol %), reflux, 5 h, CHCl ₃ /C ₆ H ₁₂	1a	18
3	4-CH ₃	3-NO ₂	SnCl ₄ (20 mol %), 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	1a	95
4	4-CH ₃	3-NO ₂	SnCl ₄ (25 mol %), 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	1a	85
5	4-CH ₃	$2-NO_2$	SnCl ₄ , 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	1b	80
6	4-CH ₃	$4-NO_2$	SnCl ₄ , 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	1c	67
7	3-CH ₃	$2-NO_2$	SnCl ₄ , 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	1d	69
8	3-CH ₃	3-NO ₂	SnCl ₄ , 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	1e	68
9	3-CH ₃	$4-NO_2$	SnCl ₄ , 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	1f	65
10	2-CH ₃	$2-NO_2$	SnCl ₄ , 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	1g	63
11	2-CH ₃	3-NO ₂	SnCl ₄ , 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	1h	65
12	2-CH ₃	$4-NO_2$	SnCl ₄ , 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	1i	64
13	4-C1	$2-NO_2$	SnCl ₄ , 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	1j	69
14	4-C1	$4-NO_2$	SnCl ₄ , 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	1k	60
15	Н	$2-NO_2$	SnCl ₄ , 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	11	66
16	Н	3-NO ₂	SnCl ₄ , 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	1m	61
17	4-CH ₃ O	$2-NO_2$	SnCl ₄ , 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	1n	73
18	4-CH ₃ O	3-NO ₂	SnCl ₄ , 85°C, 5 h, CHCl ₃ /C ₆ H ₁₂	10	70

 Table 2

 The results of the preparation of compound 1.

^a The mole ratio of *n* (aromatic aldehyde **5**): *n* (aminomethyl phenol **4**) = 1.3:1 for all reactions. The amount of SnCl₄: 20 mol % based on aminomethyl phenol except for the cases marked in the table. C_6H_{12} : cyclohexane; CHCl₃: $C_6H_{12} = 1.7$ (v:v).

^b Isolated yield.

^c An unknown white solid also formed.

available. Infrared spectra were recorded on a PE-2000 FT-IR. ¹H and ¹³C-NMR spectra were recorded on Bruker Avance-500 MHz spectrometer. Chemical shifts (δ) are given in ppm relative to Me₄Si (0, ¹H) or CDCl₃ (77.0, ¹³C). Mass spectra were obtained with Thermo Finnigan LCQ Advantage spectrometer. Elemental analysis was measured on PE 2400 II CHNS instrument. Melting points were determined on a WRS-1B digital melting point instrument and without correction. Thin-layer chromatography (TLC) was run on precoated silica gel plates (Merck 60F₂₅₄). Column chromatography was carried out using flash silica gel. X-ray crystallographic analysis was performed on a Bruker Smart CCD diffractometer equipped with a graphite monochromator Mo K α radiation (λ = 0.71073 Å).

Schiff bases **3a–f** and corresponding *o*-arylaminomethyl phenols **4a–f** were prepared according to the method described in references [8,9].

General procedure for the synthesis of 2,3-diaryl-3,4dihydro-2H-1,3-benzoxazines 1a-1o. Under nitrogen, into a 250-mL three-necked flask equipped with a Dean-stark, 2-((ptoluidino)methyl)phenol 4c (1.07 g, 5 mmol), 3-nitrobenzaldehyde (0.98 g, 6.5 mmol), mixed solvent of chloroform and cyclohexane (150 mL, v:v = 1:7), and $SnCl_4$ (0.26 g, 20 mol %) were added and mixed with stirring. The solution was heated at 85°C for 5 h (checked by TLC), and the water of condensation was removed by azeotropic distillation. Then, triethyl amine was added to make solution at pH = 8, followed by addition of ethyl acetate (100 mL), and washed sequentially with water (2 \times 100 mL) and saturated brine (2 \times 100 mL). The organic phase was dried over MgSO₄ and evaporated under reduced pressure. The obtained yellow oil was purified by flash column chromatography (silica gel, PE-EtOAc) affording the product 1a (1.64 g, 95% yield) as a yellow solid.

2-(3-Nitrophenyl)-3-p-tolyl-3,4-dihydro-2H-benzo[e][1,3]oxazine (1a). Yield 95%, m.p.: 123.6-125.5°C; IR (KBr): 3093, 3070, 3022, 2978, 2857, 1611, 1583, 1528, 1513, 1490, 1457, 1380, 1346, 1272, 1265, 1227, 1197, 1149, 1127, 1108, 1083, 1033, 995, 956, 941, 923, 893, 821, 811, 805, 752, 734, 711, 694, 670, 594 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): δ 2.27 (s, 3H, CH₃), 4.25 (d, J = 17.0 Hz, 1H, CH₂), 4.35 (d, J = 17.0Hz, 1H, CH₂), 6.56 (s, 1H, CH), 6.86 (d, J = 8.0 Hz, 2H), 7.02–7.03 (m, 1H), 7.07–7.12 (m, 4H), 7.16 (d, J = 2.5 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.90 (d, J = 8.5 Hz, 1H), 8.15-8.17 (m, 1H), 8.45 (s, 1H); ¹³C-NMR (CDCl₃, 125 MHz): δ 20.68, 47.20, 87.61, 117.09, 120.14, 121.01 (2C), 121.16, 122.29, 123.23, 126.67, 128.37, 129.69, 129.91 (2C), 132.58, 133.09, 141.64, 146.95, 148.70, 152.39; MS (EI, 70 ev) m/z (%): 346 (30) [M⁺], 240 (100), 223 (6), 193 (8), 165 (4), 118 (14), 107 (4), 91 (25), 77 (9), 65 (9), 51 (4); Anal. Calcd. for C21H18N2O3: C 72.82; H 5.24; N 8.09. Found: C 72.53; H 5.22; N 8.06.

2-(2-Nitrophenyl)-3-p-tolyl-3,4-dihydro-2H-benzo[e][1,3]oxazine (1b). Yield 80%, m.p.:152.6-153.0°C; IR (KBr): 3083, 3021, 2972, 2920, 1610, 1585, 1530, 1513, 1486, 1456, 1437, 1386, 1363, 1337, 1292, 1276, 1268, 1224, 1198, 1144, 1109, 1034, 1024, 1015, 978, 961, 935, 852, 839, 820, 782, 757, 736, 714, 687, 679, 632, 589 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): δ 2.25 (s, 3H, CH₃), 4.00 (d, J = 17.0Hz, 1H, CH₂), 4.19 (d, J = 17.0 Hz, 1H, CH₂), 6.85 (s, 1H, CH), 6.86-6.88 (m, 1H), 7.00-7.06 (m, 6H), 7.17-7.20 (m, 1H), 7.44-7.47 (m, 2H), 7.61-7.63 (m, 1H), 7.72-7.74 (m, 1H); ¹³C-NMR (CDCl₃, 125 MHz): δ 20.74, 47.12, 85.52, 116.72, 120.45, 120.86 (2C), 121.13, 124.45, 126.72, 128.41, 128.76, 129.21, 129.80 (2C), 131.84, 132.76, 132.99, 146.74, 149.08, 152.60; MS (ESI): 347[M+H]+; Anal. Calcd. for C21H18N2O3: C 72.82; H 5.24; N 8.09. Found: C 73.11; H 5.26; N 8.05.

Figure 1. ORTEP diagram of compound 1b.

2-(4-Nitrophenyl)-3-*p***-tolyl-3,4-dihydro-2***H***-benzo[e][1,3]oxazine (1c). Yield 67%, m.p.: 93.7–96.9°C; IR (KBr): 2920, 2859, 1614, 1583, 1516, 1490, 1455, 1442, 1386, 1343, 1318, 13002, 1224, 1205, 1144, 1109, 1033, 1014, 976, 960, 940, 905, 854, 829, 812, 760, 739, 712, 696, 589 cm⁻¹; ¹H-NMR (CDC1₃, 500 MHz): \delta 2.27 (s, 3H, CH₃), 4.22 (d,** *J* **= 17.0 Hz, 1H, CH₂), 4.34 (d,** *J* **= 16.5 Hz, 1H, CH₂), 6.57 (s, 1H, CH), 6.86–6.88 (m, 2H), 6.99 (d,** *J* **= 3.5 Hz, 1H), 7.06–7.10 (m, 4H), 7.16–7.19 (m, 1H), 7.74 (d,** *J* **= 8.5 Hz, 2H), 8.18–8.21 (m, 2H); ¹³C-NMR (CDCl₃, 125 MHz): \delta 20.64, 47.13, 87.72, 116.94, 120.10, 120.73 (3C), 121.14, 123.83, 123.99, 126.67, 127.92, 128.29, 129.87 (2C), 132.44, 146.41, 145.85, 147.69, 152.38; MS (ESI): 347[M+H]⁺; Anal. Calcd. for C₂₁H₁₈N₂O₃: C 72.82; H 5.24; N 8.09. Found: C 72.54; H 5.28; N 8.12.**

2-(2-Nitrophenyl)-3-m-tolyl-3,4-dihydro-2H-benzo[e][1,3]oxazine (1d). Yield 69%, m.p.: 138.1-139.0°C; IR (KBr): 3072, 2947, 2906, 2862, 1606, 1586, 1535, 1489, 1456, 1445, 1378, 1340, 1301, 1273, 1236, 1216, 1199, 1169, 1140, 1109, 1036, 983, 958, 937, 852, 837, 782, 772, 756, 737, 690, 634, 597 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): δ 2.30 (s, 3H, CH₃), 4.01 $(d, J = 17.0 \text{ Hz}, 1\text{H}, \text{CH}_2), 4.23 (dd, J = 1.0 \text{ Hz}, J = 1.0 \text{ Hz},$ 1H, CH₂), 6.80(d, J = 7.5 Hz, 1H), 6.85-6.87 (m, 2H), 6.93-6.95 (m, 1H), 6.98 (s, 1H, CH), 7.01 (d, J = 8.0 Hz, 1H), 7.08 (s, 1H), 7.11 (t, J = 8.0 Hz, 1H), 7.17–7.20 (m, 1H), 7.43– 7.48 (m, 2H), 7.61–7.62 (m, 1H), 7.73–7.74 (m, 1H); ¹³C-NMR (CDCl₃, 125 MHz): δ 21.72, 46.79, 85.03, 116.76, 117.27, 120.41, 121.05 (2C), 121.13, 123.91, 124.47, 126.66, 128.41, 128.78, 129.02, 129.22, 131.83, 132.99, 139.02, 149.10, 152.44; MS (ESI): 347[M+H]+; Anal. Calcd. for C21H18N2O3: C 72.82; H 5.24; N 8.09. Found: C 73.12; H 5.28; N 8.06.

2-(3-Nitrophenyl)-3-*m***-tolyl-3,4-dihydro-2***H***-benzo**[**e**][**1**,3]**o**x-azine (1e). Yield 68%, m.p.: 101.3–102.0°C; IR (KBr): 3092, 3025, 2979, 2918, 1602, 1585, 1529, 1488, 1475, 1380, 1348, 1314, 1271, 1238, 1219, 1181, 1123, 1113, 1087, 1046, 1032, 994, 958, 970, 942, 899, 891, 806, 776, 753, 735, 696, 688, 671, 599 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): δ 2.32 (s, 3H, CH₃), 4.26 (d, *J* = 17.0 Hz, 1H, CH₂), 4.37 (d, *J* = 17.0 Hz, 1H, CH₂), 6.63 (s, 1H, CH), 6.82–6.89 (m, 3H), 7.00–7.04 (m, 3H), 7.15–7.19 (m, 2H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.89–7.91 (m, 1H), 8.15–8.17 (m, 1H), 8.44 (s, 1H); ¹³C-NMR (CDCl₃, 125 MHz): δ 21.65, 46.56, 86.98, 117.11, 117.24, 120.05, 121.07, 121.13, 122.20, 123.22, 123.54, 126.60, 128.35, 129.17, 129.72, 133.04, 139.24, 141.60, 148.64, 149.36, 152.15; MS (ESI): 347[M+H]⁺; Anal. Calcd. for C₂₁H₁₈N₂O₃: C 72.82; H 5.24; N 8.09. Found: C 72.53; H 5.20; N 8.05.

2-(4-Nitrophenyl)-3-m-tolyl-3,4-dihydro-2H-benzo[e][1,3]ox-azine (1f). Yield 65%, m.p.: 126.2–126.9°C; IR (KBr): 3042, 2976, 2876, 1607, 1584, 1554, 1541, 1512, 1489, 1456, 1378, 1350, 1306, 1239, 1221, 1189, 1169, 1128, 1110, 1038, 981, 956, 857, 826, 783, 767, 752, 739, 694, 609 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): δ 2.32 (s, 3H, CH₃), 4.24 (d, J = 16.0 Hz, 1H, CH₂), 4.38 (d, J = 7.0 Hz, 1H, CH₂), 6.65 (s, 1H, CH), 6.83 (t, J = 7.5 Hz, 1H), 6.85 (t, J = 5.0 Hz, 2H), 7.00 (dd, J

 Table 3

 Fungicidal activities of compounds 1a–1o.

Compound	Gibberella zeae (%)	Phytophythora capsici (%)	Alternaria alternate (%)	Botrytis cinerea (%)	Rhizoctonia solani (%)	Sclerotonia sclerotiorum (%)
1a	10.3	37.4	17.5	13.6	50.0	0
1b	30.9	28.0	10.5	19.0	100	59.8
1c	30.9	28.0	0	13.6	0	0
1d	39.2	33.6	14.0	6.8	50.5	56.1
1e	30.9	9.3	35.1	27.2	80.0	0
1f	30.9	37.4	10.5	20.4	0	0
1g	20.6	28.0	14.0	33.3	80.0	0
1h	20.6	28.0	10.5	33.3	0	0
1i	20.6	28.0	7.0	27.2	60.0	0
1j	30.9	31.8	42.1	47.6	0	75
1k	41.2	37.4	38.6	47.6	10.0	28.0
11	30.9	31.8	17.5	23.1	50.0	0
1m	24.7	22.4	3.5	13.6	70.0	0
1n	51.5	37.4	45.6	27.2	80.0	56.1
10	10.3	18.6	0	13.6	0	0

= 7.0 Hz, J = 3.5 Hz, 3H), 7.16–7.20 (m, 2H), 7.74 (d, J = 8.5 Hz, 2H), 8.19 (d, J = 8.0 Hz, 2H); ¹³C-NMR (CDCl₃, 125 MHz): δ 21.69, 46.66, 87.22, 117.07, 117.12, 120.16, 120.92, 121.21, 123.53(2C), 123.91, 126.69, 127.95(2C), 128.36, 129.25, 139.31, 146.51, 147.81, 149.36, 152.32; MS (ESI): 347[M+H]⁺. Anal. Calcd. for C₂₁H₁₈N₂O₃: C 72.82; H 5.24; N 8.09. Found: C 73.60; H 5.21; N 8.13.

2-(2-Nitrophenyl)-3-o-tolyl-3,4-dihydro-2H-benzo[e][1,3]oxazine (1g). Yield 63%, m.p.: 164.3-165.3°C; IR (KBr): 3079, 3025, 2948, 2913, 1608, 1597, 1588, 1527, 1458, 1439, 1365, 1338, 1300, 1274, 1228, 1207, 1187, 1142, 1118, 1057, 1035, 1021, 977, 955, 937, 855, 841, 827, 780, 760, 737, 725, 714, 684, 663, 634, 592 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): δ 2.20 (s, 3H, CH₃), 3.93 (s, 2H, CH₂), 6.76 (d, J = 12.0 Hz, 1H), 6.83–6.86 (m, 1H), 6.98 (s, 1H, CH), 6.99–7.01 (dd, J = 7.4Hz, J = 0.9 Hz, 1H), 7.03 (t, J = 8.0 Hz, 1H), 7.09 (d, J =8.0 Hz, 1H), 7.14 (d, J = 7.0 Hz, 1H), 7.20–7.23 (m, 1H), 7.43–7.51 (m, 3H), 7.72 (d, J = 7.5 Hz, 1H), 7.78 (dd, J =1.5 Hz, J = 1.0 Hz, 1H); ¹³C-NMR (CDCl₃, 125 MHz): δ 17.93, 47.84, 85.79, 116.61, 119.57, 121.08, 122.95, 124.92 (2C), 126.64, 127.06, 128.47, 128.77, 129.13, 131.19, 132.11, 133.17, 133.37, 148.11, 148.79, 152.44; MS (ESI): 347[M+H]⁺; Anal. Calcd. for C₂₁H₁₈N₂O₃: C 72.82; H 5.24; N 8.09. Found: C 72.51; H 5.21; N 8.05.

2-(3-Nitrophenyl)-3-o-tolyl-3,4-dihydro-2H-benzo[e][1,3]oxazine (1h). Yield 65%, m.p.: 85.0-86.1°C; IR (KBr): 3023, 2933, 2885, 1598, 1585, 1533, 1490, 1456, 1434, 1386, 1380, 1349, 1336, 1227, 1215, 1188, 1149, 1082, 1033, 986, 959, 893, 807, 764, 755, 742 724, 695, 673, 588 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): δ 2.51 (s, 3H, CH₃), 4.14 (d, J = 17.0 Hz, 1H, CH₂), 4.25 (d, J = 17.0 Hz, 1H, CH₂), 6.34 (s, 1H, CH), 6.86-6.92 (m, 2H), 7.05-7.13 (m, 3H), 7.20-7.25 (m, 2H), 7.36 (d, J = 7.5 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.99 (d, J = 2.5 Hz, 1H), 8.16–8.18 (m, 1H), 8.54–8.55 (m, 1H); 13 C-NMR (CDCl₃, 125 MHz): δ 18.59, 47.37, 87.92, 117.08, 119.86, 121.15, 122.35, 123.10, 123.31, 125.03, 126.69, 126.86, 128.23, 129.57, 131.07, 133.13, 133.17, 141.43, 148.11, 148.52, 152.28; MS (ESI): $347[M+H]^+$; Anal. Calcd. for C₂₁H₁₈N₂O₃: C 72.82; H 5.24; N 8.09%. Found: C 73.12; H 5.28: N 8.06.

2-(4-Nitrophenyl)-3-*o***-tolyl-3,4-dihydro-2***H***-benzo[***e***][1,3]oxazine (1i). Yield 64%, m.p.: 128.5–129.8°C; IR (KBr): 3074, 2955, 2886, 1607, 1584, 1520, 1486, 1456, 1380, 1345, 1333, 1228, 1214, 1183, 1140, 1106, 1033, 1019, 1011, 975, 953, 932, 858, 837, 763, 752, 742, 723, 709, 601 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): \delta 2.50 (s, 3H, CH₃), 4.12 (d,** *J* **= 16.5 Hz, 1H, CH₂), 4.23 (d,** *J* **= 17.0 Hz, 1H, CH₂), 6.35 (s, 1H, CH), 6.86–6.92 (m, 2H), 7.05–7.11 (m, 3H), 7.22–7.26 (m, 2H), 7.36–7.38 (m, 1H), 7.84 (d,** *J* **= 8.5 Hz, 2H), 8.22–8.23 (m, 2H); ¹³C-NMR (CDCl₃, 125 MHz): \delta 18.59, 47.40, 88.16, 116.97, 119.89, 121.17, 123.19, 123.75, 124.25, 125.02, 126.73, 126.88, 128.03, 128.21, 130.44, 131.08, 133.04, 146.32, 147.61, 148.18, 152.35; MS (ESI): 347[M+H]⁺; Anal. Calcd. for C₂₁H₁₈N₂O₃: C 72.82; H 5.24; N 8.09. Found: C 72.51; H 5.20; N 8.04.**

3-(4-Chlorophenyl)-2-(2-nitrophenyl)-3,4-dihydro-2*H***-ben-zo[e][1,3]oxazine (1j).** Yield 69%, m.p.: 140.7–141.3°C; IR (KBr): 3035, 2936, 2875, 1609, 1592, 1522, 1494, 1457, 1384, 1361, 1342, 1304, 1276, 1224, 1203, 1113, 1098, 1034, 1020, 1008, 980, 949, 936, 855, 826, 782 750, 740, 727, 645, 596 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): δ 3.99 (d, J = 17.0 Hz,

1H, CH₂), 4.22 (d, J = 17.0 Hz, 1H, CH₂), 6.85 (s, 1H, CH), 6.87–6.91 (m, 1H), 7.00 (d, J = 9.5 Hz, 2H), 7.06–7.09 (m, 2H), 7.17–7.22 (m, 3H), 7.44–7.49 (m, 2H), 7.59–7.62 (m, 1H), 7.73–7.77 (m, 1H); ¹³C-NMR (CDCl₃, 125 MHz): δ 46.95, 85.09, 116.67, 119.81, 121.28, 121.98 (2C), 124.49, 126.60, 128.25, 128.57, 128.61, 129.14 (2C), 129.33, 131.94, 132.40, 147.54, 148.77, 152.28; MS (ESI): 367 [M+H]⁺; Anal. Calcd. for C₂₀H₁₅ClN₂O₃: C 65.49; H 4.12; N 7.64. Found: C 65.75; H 4.10; N 7.68.

3-(4-Chlorophenyl)-2-(4-nitrophenyl)-3,4-dihydro-2H-benzo[e][1,3]oxazine (1k). Yield 60%, m.p.: 135.9-137.6°C; IR (KBr): 3075, 3057, 2938, 2973, 2891, 2851, 1605, 1593, 1583, 1516, 1496, 1487, 1455, 1373, 1348, 1331, 1288, 1224, 1199, 1182, 1131, 1112, 1034, 1005, 963, 930, 902, 855, 830, 819, 800, 753, 743, 724, 711, 642, 624, 602, 559 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): δ 4.24 (d, J = 17.0 Hz, 1H, CH₂), 4.34 $(d, J = 1 7.0 Hz, 1H, CH_2), 6.56 (s, 1H, CH), 6.89-6.94 (m, CH)$ 2H), 7.00 (d, J = 8.0 Hz, 1H), 7.11–7.12 (m, 2H), 7.17–7.19 (m, 1H), 7.20-7.24 (m, 2H), 7.72-7.74 (m, 2H), 8.19-8.21 (m, 2H); ¹³C-NMR (CDCl₃, 125 MHz): δ 47.24, 87.23, 117.02, 119.61, 121.39, 121.90 (3C), 123.90 (2C), 126.66, 127.84, 127.90 (2C), 128.53, 129.29 (2C), 145.83, 147.78, 152.12; MS (EI, 70 ev) m/z (%): 366 (35) [M⁺], 260 (100), 213 (17), 178 (4%), 138 (10), 111 (12), 78 (7), 51 (5); Anal. Calcd. for C₂₀H₁₅ClN₂O₃: C 65.49; H 4.12; N 7.64. Found: C 65.15; H 4.08; N 7.60.

2-(2-Nitrophenyl)-3-phenyl-3,4-dihydro-2H-benzo[e][1,3]oxazine (11). Yield 66%, m.p.: 130.9-131.7°C; IR (KBr): 3023, 2948, 2860, 1598, 1585, 1535, 1496, 1486, 1455, 1396, 1365, 1273, 1223, 1136, 1110, 1036, 981, 957, 853, 783, 756, 735, 717, 694, 591 cm $^{-1}$; ¹H-NMR (CDCl₃, 500 MHz): δ 4.04 (d, J = 17.0 Hz, 1H, CH₂), 4.26 (d, J = 17.0 Hz, 1H, CH₂), 6.89 (s, 1H, CH), 6.92-6.94 (m, 1H), 6.96-7.03 (m, 2H), 7.11 (s, 1H), 7.16-7.23 (m, 3H), 7.25-7.28 (m, 2H), 7.46-7.49 (m, 2H), 7.63–7.65 (m, 1H), 7.75–7.77 (m, 1H); ¹³C-NMR (CDCl₃, 125 MHz): δ 46.78, 85.24, 116.75, 120.36, 120.55 (3C), 121.20, 123.12, 124.50, 126.69, 128.47, 128.79, 129.26 (3C), 131.88, 132.87, 149.08, 152.50; MS(EI, 70 ev) m/z (%) $= 332 (29) [M^+], 315 (22), 284 (4), 226 (10), 209 (72), 196$ (12), 181 (12), 179 (28), 151 (19), 152 (36), 134 (7), 120 (6), 104 (20), 92 (23), 77 (100), 65 (9), 51 (41); Anal. Calcd. for C₂₀H₁₆N₂O₃: C 72.28; H 4.85; N 8.43. Found: C 71.95; H 4.82; N 8.39.

2-(3-Nitrophenyl)-3-phenyl-3,4-dihydro-2*H***-benzo[e][1,3]oxazine (1m). Yield 61%, m.p.: 90.3–91.8°C; IR (KBr): 3030, 2962, 2875, 1605, 1502, 1488, 1456, 1398, 1364, 1252, 1227, 1138, 1127, 1085, 994, 957, 893, 783, 757, 735, 713, 694, 592 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): \delta 4.04(d, J = 17.0 Hz, 1H, CH₂), 4.26 (d, J = 17.0 Hz, 1H, CH₂), 6.62 (s, 1H, CH), 6.82–6.92 (m, 3H), 7.02–7.06 (m, 3H), 7.16–7.20 (m, 2H), 7.25–7.28 (m, 1H), 7.51–7.55 (m, 2H), 7.66–7.76 (m, 2H); ¹³C-NMR (CDCl₃, 125 MHz): \delta 47.02, 87.23, 116.90, 120.45, 120.62 (3C), 121.41, 123.22, 125.00, 126.73, 128.51, 129.02, 129.28 (3C), 132.11, 132.90, 149.09, 152.78; MS (ESI): 333 [M+H]⁺; Anal. Calcd. for C₂₀H₁₆N₂O₃: C 72.28; H 4.85; N 8.43. Found: C 72.65; H 4.81; N 8.38.**

3-(4-Methoxyphenyl)-2-(2-nitrophenyl)-3,4-dihydro-2*H***-benzo[e][1,3]oxazine (1n). Yield 73%, m.p.: 165.-166.9°C; IR (KBr): 3076, 2968, 1607, 1579, 1531, 1509, 1488, 1456, 1388, 1364, 1299, 1270, 1242, 1225, 1199, 1145, 1108, 1034, 1022, 975, 960, 854, 830, 783, 758, 737, 685, 631, 589** cm⁻¹; ¹H- NMR (CDCl₃, 500 MHz): δ 3.75 (s, 3H, OCH₃), 4.01 (d, J = 17.0 Hz, 1H, CH₂), 4.17(d, J = 17.0 Hz, 1H, CH₂), 6.77–6.79 (m, 2H), 6.87–6.92 (m, 2H), 6.94 (s, 1H, CH), 7.04 (d, J = 8.0 Hz, 1H), 7.09–7.11 (m, 2H), 7.21–7.25 (m, 1H), 7.46–7.48 (m, 2H), 7.64–7.66 (m, 1H), 7.75–7.76 (m, 1H); ¹³C-NMR (CDCl₃, 125 MHz): δ 47.48, 55.29, 85.96, 114.17 (2C), 116.59, 120.41, 121.06, 123.18 (2C), 124.28, 126.64, 128.27, 128.59, 129.06, 131.75, 132.77, 142.48, 148.95, 152.63, 155.92; MS (ESI): 363 [M+H]⁺; Anal. Calcd. for C₂₁H₁₈N₂O₃: C 69.60; H 5.01; N 7.73. Found: C 69.31; H 4.98; N 7.69.

3-(4-Methoxyphenyl)-2-(3-nitrophenyl)-3,4-dihydro-2H-benzo[e][1,3]oxazine (10). Yield 70%, m.p.: 103.2-106.1°C; IR (KBr): 3070, 3093, 2950, 2832, 1610, 1582, 1528, 1512, 1488, 1456, 1345, 1252, 1227, 1197, 1179, 1127, 1085, 1038, 994, 957, 893, 826, 783, 757, 735, 712, 694, 670 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): δ 3.77 (s, 3H, OCH₃), 4.26 (d, J = 17.0Hz, 1H, CH₂), 4.34 (d, J = 17.0 Hz, 1H, CH₂), 6.48 (s, 1H, CH), 6.81–6.83 (m, 2H), 6.90–6.91 (m, 2H), 7.05 (d, J = 8.0Hz, 1H), 7.16–7.18 (m, 2H), 7.20–7.23 (m, 1H), 7.53 (t, J =8.0 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 8.17–8.1 9(m, 1H), 8.49 (s, 1H); ¹³C-NMR (CDCl₃, 125 MHz): δ 47.99, 55.36, 88.17, 114.31(2C), 116.96, 120.10, 121.10, 122.22, 123.12, 123.34(2C), 126.60, 128.25, 129.54, 133.07, 141.41, 142.61, 148.50, 152.44, 155.77; MS(EI, 70 ev) m/z (%) = 362 (72) $[M^+]$, 345(17), 256(100), 239(38), 227(7), 209(11), 196(19), 183(8), 168(48), 152(10), 1D40(19), 135(30), 122(51), 106(25), 92(20), 77(41), 64(19); Anal. Calcd. for C₂₁H₁₈N₂O₃: C 69.60; H 5.01; N 7.73. Found: C 69.85; H 5.05; N 7.69.

Acknowledgment. The authors thank the Natural Science Foundation of Hunan Province (No. 06JJ50016) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry for the financial support of this work. We are also grateful to Dr. Ou Xiaoming for his help with the investigation of fungicidal activities.

REFERENCES AND NOTES

[1] (a) Mireya, E. R.; Carrajal, M. A.; Rincon, J. M. Rev Colomb Cienc Quim Farm 1980, 3, 63; (b) Gomez, P. G.; Pabon, H. P.; Carvajal, M. A.; Rincon, J. M. Rev Colomb Cienc Quim Farm 1985, 4, 15; (c) Waisser, K.; Gregor, K.; Kubicova, L.; Klimesova, V.; Kunes, J.; Machacek, M.; Kaustova, J. Eur J Med Chem 2000, 35, 733; (d) Waisser, K.; Gregor, K.; Dostal, H.; Kunes, J.; Kubicova, L.; Klimesova, V.; Kaustova, J. Source II Farmaco 2001, 56, 803.

[2] (a) Kuehne, M. E.; Konopka, E. A. J Med Pharm Chem 1962, 5, 257; (b) Chylinska, J. B.; Urbanski, T.; Mordarski, M. J Med Chem 1963, 6, 484; (c) Chylinska, J. B.; Janowiec, M.; Urbanski, T. Br J Pharmacol 1971, 43, 649; (d) Bouaziz, Z.; Riondel, J.; Mey, A.; Berlion, M.; Villard, J.; Filliond, H. Eur J Med Chem 1991, 26, 469; (e) Benameur, L.; Bouaziz, Z.; Nebois, P.; Bartoli, M.-H.; Boitard, M.; Fillion, H. Chem Pharm Bull 1996, 44, 605; (f) Wang, S.; Li, Y.; You, Q.; Liu, Y.; Lu, A. Bioorg Med Chem Lett 2008, 18, 4095. (g) Pasternak, A.; Goble, S. D.; Struthers, M.; Vicario, P. P.; Ayala, J. M.; Salvo, J. D.; Kilburn, R.; Wisniewski, T.; DeMartino, J. A.; Mills, S. G.; Yang, L. Med Chem Lett 2010, 20, 4.

[3] (a) Kopf, P. W.; Wagner, E. R. J Polym Sci Polym Chem Ed 1973, 11, 939; (b) Riess, G.; Schwob, J. M.; Guth, G.; Roche, M.; Laude, B. Polym Prepr 1984, 25, 41; (c) Wang, Y.-X.; Ishida, H. Macromolecules 2000, 33, 2839; (d) Ejfler, J.; Krauzy-Dziedzic, K.; Szafert, S.; Lis, T.; Sobota, P. Macromolecules 2009, 42, 4008.

[4] (a) Burke, W. J. J Am Chem Soc 1949, 71, 609; (b) Burke,
W. J.; Wayne, S. C. J Am Chem Soc 1952, 74, 1518; (c) Burke, W.
J.; Kolbezen, M. J.; Stephens, C. W. J Am Chem Soc 1952, 74, 3601;
(d) Burke, W. J.; Ec, K. C.; Murdock, G. J Am Chem Soc 1954, 76, 1677; (e) Rivera, A.; Ospina, E.; Sanchez, A.; Joseph-Nathan, P. Heterocycles 1986, 24, 2507.

[5] (a) McDonagh, A. F.; Smith, H. E. J Org Chem 1968, 33,
1; (b) Neuvonen, K.; Pihlaja, K. J Chem Soc Perkin Trans 2 1988,
461; (c) Szatmari, I.; Martinek, T. A.; Lazar, L.; Fulop, F. Eur J Org Chem 2004, 2231.

[6] Colin, J. L.; Loubinoux, B. Tetrahedron Lett 1982, 23, 4245.

[7] (a) Campi, E. M.; Jackson, W. R.; McCubbin, Q. J.; Trnacek, A. E. J Chem Soc Chem Commun 1994, 2763; (b) Campi, E. M.; Jackson, W. R.; McCubbin, Q. J.; Trnacek, A. E. Aust J Chem 1996, 49, 219.

[8] (a) Palmieri, G. Eur J Org Chem 1999, 805; (b) Cimarelli, C.; Palmieri, G.; Volpini, E. Tetrahedron 2001, 57, 6089.

[9] Karakas, A.; Elmali, A.; Ünver, H.; Svoboda, I. J Mol Struct 2004, 702, 103.

[10] Arod, F.; Gardon, M.; Pattison, P.; Chapuis, G. Acta Crystallogr Sect C 2005, 61, o317.

[11] (a) Caserio, F. F.; Roberts, J. D. J Am Chem Soc 1958, 80, 5837; (b) Daignault, R. A. Org Synth 1973, V, 303.

[12] (a) Andersen, N. H.; Hong-Sun, Uh. Synth Commun 1973,
3, 125; (b) Erickson, J. L. E.; Collins, J. F. E. J Org Chem 1965, 30, 1050.

[13] Tang, Z.-l.; Zhu, Z.-H.; Zhang, C.-Y.; Chen, W.-W.; Liu, H.-W.; Huang, K.-L. Z. Kristallogr. NCS 225 2010, DOI: 10.1524/ ncrs. 2010.00xx. CCDC no. 1267/2884. The single-crystal growth was carried out in ethyl acetate and petroleum ether at room temperature. X-ray crystallographic analysis was performed on a Bruker Smart CCD diffractometer equipped with a graphite monochromator Mo K α radiation ($\lambda = 0.71073E$). Crystal data for **1b**: empirical formula = C₂₁H₁₈N₂O₃, formula weight = 346.37, crystal dimensions = 0.44 × 0.39 × 0.26 mm³, triclinic, space group P-1, a = 9.0481(7) Å, b = 10.2521(9) Å, c = 10.7292(9) Å, $\alpha = 66.675(2)$, $\beta = 81.279(2)$, $\gamma = 73.525(2)$, $\mu = 0.089$ mm⁻¹, V = 875.53(13) Å³, Z = 2, $D_c = 1.314$ g/cm³, F(000) = 364, S = 1.051, R1 = 0.0488, wR2 = 0.1390.

[14] Liu, A.; Ou, X.; Huang, M.; Wang, X.; Liu, X.; Wang, Y.; Chen, C.; Yao, J. Pest Manag Sci 2005, 61, 166.