

An all-cis 3,4-Dihydroxy-5-aminopiperidine by a Novel Route to Deoxydiamino Sugars

Sauda Swaleh and Jürgen Liebscher*

Institut für Chemie, Humboldt-Universität Berlin, Hessische Str. 1-2, D-10115 Berlin, Germany; Received 8 December 1998; revised 7 January 1999; accepted 13 January 1999 Abstract: An (L)-diaza-1,6-dideoxytalose 7 as a first example of a new synthetic concept for aminodeoxy sugars by

Abstract: An (L)-diaza-1,6-dideoxytalose 7 as a first example of a new synthetic concept for aminodeoxy sugars by destruction of the 5-membered heterocyclic ring of condensed pyridones derived from natural amino acids and an o-bromo-bromomethyl 5-membered heterocycle is reported. © 1999 Elsevier Science Ltd. All rights reserved.

Chiral piperidines with hydroxy and eventually amino substituents are of broad interest as azasugars and as alkaloides. They also exhibit interesting biological activities.^{1,2} Known syntheses of this class of compounds are commonly based on sugars as starting material but there are also a number of syntheses starting with naturally occurring amino acids and their derivatives.³ We report now a first example of a novel approach to enantiopure aminohydroxypiperidines using biogenic α -amino acids as chiral precursors making use of a straight forward synthesis of optically active condensed dihydropyridin-3-ones by reaction of o-bromo-bromomethylaromatics or heterocycles with a amino esters recently developed in our group.⁴ Thus N-alkylation of the N-benzenesulphonylalanine methyl ester 1 with 5-bromo-4-bromomethyl-2-phenyloxazole 2 and and cyclisation of the resulting oxazolylamino ester by bromo-lithium exchange gave the oxazolo[4.5-c]pyridone 3. Reduction of the keto function with NaBH₄ allowed stereoselective formation of the cis-hydroxy product 4 (anti-attack with respect to the methyl group). Since all attempts failed to cleave the oxazole ring reductively,⁵ e. g. by catalytic hydrogenation or by sodium in boiling ethanol, or by hydrolysis compound 4 was transformed to the more reactive N-methyloxazolium salt 5. A modified procedure using 1M aqueous KOH rather than the commonly used aqueous NH3 ⁶ turned out to be advantageous to cleave the oxazole ring of 5 hydrolytically creating the third chiral centre again in the cis configuration (i. e. anti-attack of a proton under formation of 6). Finally smooth reduction of the keto group of 6 with NaBH₄ occurred again in an anti-fashion with respect to the other substituents at the ring thus affording the allcis product 7 in enantiomerically pure form representing a (L)-diaza-1,6-dideoxytalose.⁷ As far as we could find out compound 7 represents the first diazahexose of this configuration.

Investigations of other heterocyclic rings as precursors for heteroatom substituents to the piperidine ring as well as possibilities to synthesise products similar to 7 but with other configurations, e. g. by changing the configuration of the hydroxy group in 4 or with other protective groups are currently underway.

Acknowledgements

We gratefully acknowledge financial support by the DAAD, the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie. We are indebted to Dr. Burkhard Ziemer, Humboldt-Universität Berlin for providing X-ray crystal analysis.

Dedicated to Professor Dr Henk van der Plas on the occasion of his 70th birthday.

References and Notes

- Ferrier, R.J.; Blattner, R.; Clinch, K.; Furneaux, R.H.; Gadiner, J.M.; Tyler, P.C.; Wightman, R.H.; Williams, N.R. A Specialist Periodical Report, The Royal Society of Chemistry in Carbohydrate Chemistry 1996, 28, 120.
- 2. Herdeis, C.; Schiffer, T. Tetrahedron 1996, 52, 14745 and references cited therein.
- 3. Kiciak, K.; Jacobsson, U.; Golebiowski, A.; Jurczak, J. Polish J. Chem. 1994, 68, 199 and references cited therein.
- 4. Faltz, H.; Radspieler, A.; Liebscher, J. Synlett 1997, 1071.
- 5. Boyd, G. V. in Comprehensive Heterocyclic Chemistry (ed. Katritzky, A. R.; Rees, C. W.) 1984, Vol. 6, p. 177.
- 6. Ott, D.G.; Hayes, F.N.; Kerr, V.N. J. Amer. Chem. Soc., 1956, 78, 1941.
- 7. e.e. > 99% (HPLC) Selected data for 7: Colourless crystals; mp. 142-143°C (EtOAc/hexane=2/1); [α]_D²⁰ = -14.1 (c=1, MeOH); δ_H(300 MHz; CD₃COCD₃J/Hz) 1.18 (d, J=7.02, 3H, CH₃);); 2.89(s, CHNCH₃); 3.10(s, CHOCH₃); 3.32(m CHOCH₃); 3.69(t, J=12.26, 1H, CH-OH); 3.83(m, CH-NCH₃); 3.88-4.37, (dd, J=4.96, CH₂N); 4.30(m, 1H, CHCH₃); 7.43 (2xCH₄); 7.45(2xCH₄); 7.64(CH₄); 7.66(2xCH₄); 7.73(CH₄); 7.88 (2xCH₄); δ_c(75 MHz; CD₃OD) 13.6 (CH₃); 36(NCH₃); 38 0(CH₂N); 52.0(CH-NCH₃); 54.0(CH-CH₃); 57.2(CH-OCH₃); 72.0(CH-OH) 79.7 (CH-OCH₃); 128.4(2xCH₄); 130.1(2xCH₄); 131 (2xCH₄); 131.3 (2xCH₄); 134.4 (CH₄); 138.0 (CH₄); 144.0 (CS); 175.0 (CONCH₃). The relative configuration was confirmed by X-ray crystal analysis of racemic 7 obtained from racemic rather than from enantiopure 3.

Full details of the structure determination of racemic have been deposited at the Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany. A full literature citation and the reference number CSD 410369 should be quoted for any request of the material.