Tetrahedron 68 (2012) 159-165

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Construction of A/E/F ring systems of C₁₉-diterpenoid alkaloids with both C-1 and C-6 oxygen functions

Zhi-Gang Liu, Liang Xu*, Qiao-Hong Chen, Feng-Peng Wang*

Department of Chemistry of Medicinal Natural Products, West China College of Pharmacy, Sichuan University, No. 17, Duan 3, Renmin Nan Road, Chengdu 610041, PR China

ARTICLE INFO

Article history: Received 4 September 2011 Received in revised form 11 October 2011 Accepted 21 October 2011 Available online 28 October 2011

Keywords: C₁₉-diterpenoid alkaloids AEF ring system Intramolecular Diels–Alder reaction Intramolecular Mannich reaction

1. Introduction

 C_{19} -diterpenoid alkaloids comprise a large class of structurally complex natural products mainly distributing in plants of *Aconitium* and *Delphinium* genera, which display a range of biological activities including antiinflammatory, analgesic, antiarrhythmic, antipyretic, anti-epileptic, hypotensive, and bradycardic properties.¹ Until now, over 674 members of these compounds have been identified, with new alkaloids ongoing to be isolated. The structures of C₁₉-diterpenoid alkaloids are characterized by a congested hexacyclic ring system containing 9–16 stereogenic centers and 5–9 oxygen functions involving hydroxyl, methoxy, and acyloxy groups. Differences among the numerous members of these alkaloids are determined by type, number, and position of the substituents on the basic skeleton, which is mostly represented by the carbon frame work of the aconane-type diterpene.

The total synthesis of C₁₉-diterpenoid alkaloids is a conspicuous challenge due to their intricate structures. So far, only three C₁₉-diterpenoid alkaloids have been practically synthesized, all of which were contributed by Wiesner and co-workers in 1970s.^{2–4} Accordingly, partial ring systems synthesis of the six rings of C₁₉-diterpenoid alkaloids has attracted much attention of synthetic chemists, resulting in many elegant synthetic works and useful methodologies.^{5–7} The unique nitrogen-containing A/E/F tricycle section is the commonly observed subunit in the C₁₉-diterpenoid

ABSTRACT

An tricyclic AEF fragment of C_{19} -diterpenoid alkaloid bearing an angular methyl group and the oxygen function groups at C-1 and C-6 was successfully synthesized. The synthesis features a stereoselective intramolecular Diels–Alder reaction and a highly efficient intramolecular Mannich reaction as well as efficient functional groups transformations.

© 2011 Elsevier Ltd. All rights reserved.

alkaloid, almost invariably functionalized by oxygenation. Construction of this subunit can be regarded as one of the key points for total synthesis of this family of alkaloids.^{8–10} In connection with an interest in total synthesis of royleinine,^{1,11} one of the aconitine-type C₁₉-diterpenoid alkaloids bearing an unique C-18 angular methyl group as well as C-1 and C-6 methoxyl groups, we planned to develop a new methodology for construction of the A/E/F ring system with both C-l and C-6 oxygen substituents. We now wish to describe a synthetic procedure leading to tricyclic amine **2** as the model for A/E/F ring system of royleinine using stereoselective intramolecular Diels–Alder reaction and intramolecular Mannich cyclization as the key steps.

2. Results and discussion

The intramolecular Mannich reaction is a highly efficient approach to assemble of nitrogen-containing complex ring systems. Despite the pioneering application of this methodology by Taber¹⁰

^{*} Corresponding authors. Tel./fax: +86 28 85501368 (F.-P. Wang.); tel./fax: +86 28 85503046 (L. Xu.); e-mail addresses: liangxu@scu.edu.cn (L. Xu), wfp@scu.edu.cn (F.-P. Wang).

^{0040-4020/\$ –} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2011.10.073

in construction of A/E/F ring of the C₁₈-diterpenoid alkaloid containing an oxygenated quaternary carbon at C-4,¹² we planned to employ the similar reaction as the key step to form the E/F rings by generation of a highly reactive β -ketoester **3** (**4** \rightarrow **2**, Scheme 1). The polysubstituted six-membered ring-A 5 should be available by intramolecular Diels-Alder reaction followed by facile functional group transformations.

Scheme 1. Retrosynthetic analysis for A/E/F ring 2

Following the work of Sherburn and co-workers,¹³ the intramolecular Diels-Alder reaction of the ester 6 that prepared from the facile condensation of known (E)-2,4-pentadien-1-ols and (Z)-2-methylbut-2-enedioic acid 1-(4-methoxybenzyl) ester,¹⁴ was conducted in xylene at 130 °C to give the cycloadduct as a 5:1 mixture of the exo and endo isomers in 97% yield, which could be easily separated by column chromatography (Scheme 2). The relative stereochemistry of exo-adduct 5 was established by the observed large coupling constant (*J*_{5.11}=13.6 Hz) in ¹H NMR spectrum and the NOE correlation between the angular methyl protons and H-5. Subsequently, selective hydrolysis of PMB ester with TFA in DCM delivered an acid, which was reduced to an alcohol 7 by in situ formation of active mixed anhydride and then reduction with NaBH₄ in 90% yield over two steps. The alcohol function of **7** was then protected as a TBS ether by using standard conditions and the olefin was subjected to m-CPBA/NaHCO₃ to give the epoxide **8** as a single stereoisomer in 91% yield over two steps. After screening various bulky nucleophilic hydride reagents and reaction conditions, regioselective opening of epoxide with simultaneous reduction of lactone was effected by treatment with LiBHEt₃ in THF to deliver the desired triol 9 in 81% separated yield,¹⁵ along with a small amount of unwanted regioisomer with hydroxyl at C-2.

Scheme 2. Synthesis of intermediate 11. Reagents and conditions: (a) DIC, DMAP, CH2Cl2, 89%; (b) xylene, BHT, 130 °C, 97%; (c) (i) TFA, CH2Cl2, (ii) Et3N, ClCO2Et, THF, then NaBH₄, 90% for two steps; (d) (i) TBSCl, Et₃N, DMF, (ii) *m*-CPBA, NaHCO₃, CH₂Cl₂, 91% for two steps; (e) LiBHEt_3, THF, 81%; (f) Bn(OMe)_2, CSA, CH_2Cl_2 , 86% based on 90% conversion; (g) (i) PCC, Na₂CO₃, 4 Å MS, CH₂Cl₂, (ii) Zn, allyl bromide, aq NH₄Cl-THF, (iii) NaH, CH3I, THF, 84% for three steps.

With the desired triol **9** in hand, the selective protection of 1.3-diol and installation of C-6a methoxyl group were addressed next. Treatment of **9** with Bn(OMe)₂ in DCM in presence of catalytic amount of CSA gave rise to 1,3-benzylidene acetal 10 in 86% yield based on 90% conversion. The remaining primary alcohol in **10** was then oxidized with PCC/Na₂CO₃ in DCM to furnish an aldehvde, which was subjected to a mild zinc powder promoted allylation in saturated aqueous NH₄Cl/THF (5:1)¹⁶ and in turn methylation of resulting homoallylic alcohol with CH₃I, affording the desired α methyl ether **11** as a single diastereoisomer in 84% yield over three steps. Careful analysis of the plausible stereo transition state of allyation reaction reveals that the bulky TBS group may hinder the Re face of carbonyl group, leading to exclusive nucleophilic attack of allyl anion from Si face (Fig. 1). The stereochemistry of the methoxyl group in 11 was confirmed at last E/F ring closure stage based on NOE difference experiments.

The next phase of the synthesis is outlined in Scheme 3. Regioselective cleavage of the 1.3-benzvlidene acetal 11 was achieved under classical conditions (DIBAL-H/DCM) to give primary alcohol 12. The alcohol was then converted into methyl carboxylate 13 in three steps: (1) oxidation of alcohol 12 with PCC/NaOAc to the aldehvde: (2) the aldehvde was further oxidized to carboxylic acid with NaClO₂; (3) conversion of carboxylic acid to the methylate 13 in 86% yield over three steps. With one single ester group in place, attention turned to installation of nitrogen at C-19 position. Thus, after a clean removal of TBS group with 5% HF/CH₃CN, the resulting alcohol was oxidized to aldehyde 14 by Dess-Martin periodinane reagent in 96% yield over two steps. Treatment of 14 with ethyl amine in methanol followed by reduction in situ with NaBH(OAc)₃ furnished the secondary amine, which was further protected with Boc₂O to give 15 in 88% yield over two steps.

Scheme 3. Synthesis of intermediate 15. Reagents and conditions: (a) DIBAL-H, CH₂Cl₂, 89%; (b) (i) PCC, NaOAc, 4 Å MS, CH₂Cl₂, (ii) NaClO₂, NaH₂PO₄, 2-methyl-2-butene, ^tBuOH/H₂O, iii) K₂CO₃, CH₃I, DMF, 86% for three steps; (c) (i) 5% aq HF/CH₃CN, (ii) DMP, CH₂Cl₂, 96% for two steps; (d) (i) EtNH₂, MeOH, then NaBH(OAc)₃, (ii) (Boc)₂O, Na₂CO₃, THF, 88% for two steps.

The final stage of the synthesis involved in the key intramolecular Mannich reaction (Scheme 4). Thus, oxidative cleavage of terminal olefin **15** with OsO₄/NalO₄ gave an aldehyde **4** that was subsequently hydrogenated to an alcohol **16**. Oxidation of alcohol **16** with Dess–Martin periodinane formed the key keto ester intermediate. Without further purification, this keto ester intermediate was exposed to 5% TFA in DCM at room temperature to remove the Boc group. To our surprise, it was found that the Mannich cyclization occurred simultaneously upon removal of the Boc group, giving the desired A/E/F ring **2** in 73% yield. The relative configuration of the methoxy group at C-6 could be confirmed by NOE difference experiments of compound **2**, which show the correlations between protons of angular methyl group (δ 1.20) and C-6 methoxy (δ 3.31), as well as between H-5 (δ 2.72) and H-6 (δ 3.62).

Scheme 4. Synthesis of A/E/F ring **2**. Reagents and conditions: (a) OsO₄, NMO, 1,4dioxane/H₂O, then NaIO₄, 85%; (b) Pd(OH)₂/C, H₂, 95% EtOH, 94%; (c) DMP, Na₂CO₃, CH₂Cl₂, then 5% TFA/CH₂Cl₂, 73%.

3. Conclusion

In conclusion, the desired tricycle amine **2** containing C-1 and C-6 oxygen functions as the model of A/E/F ring system of royleinine has been successfully synthesized from the commercial available 2,4-pentadien-1-ols. The synthesis features: (a) stereoselective synthesis of the model intermediate polysubstituted sixmembered ring A through an intramolecular Diels–Alder reaction and efficient functional group transformations; (b) stereoselective installation of C-6 α hydroxyl group through nucleophilic allylation of carbonyl group with the assistance of steric effect of neighboring bulky TBS group; (c) highly efficient construction of E/F ring by intramolecular Mannich reaction of β -ketoester under mild reaction conditions.

4. Experimental section

4.1. General information

Melting points were determined on a Kofler block (uncorrected); IR spectra were recorded on a Nicolet 200 SXV spectrometer; HRMS were obtained with a Bruker BioTOFQ mass spectrometer; ¹H and ¹³C NMR spectra were acquired on a Varian INOVA-400/54 spectrometer, with TMS as internal standard; silica gel GF₂₅₄ and H (10–40 mm, Qingdao Marine Chemical Factory, China) were used for TLC and CC. Tetrahydrofuran (THF) was freshly distilled from sodium/benzophenone. Unless otherwise noted, all reactions were carried out under an atmosphere of argon or nitrogen.

4.2. Preparation of ester 6

To a solution of (*Z*)-2-methylbut-2-enedioic acid 1-(4-methoxybenzyl) ester (40.2 g, 0.16 mol) and (*E*)-2,4-pentadien-1-ols (13.5 g, 0.16 mol) in CH₂Cl₂ (400 mL) were added dropwise DIC (22.2 g, 0.176 mol) and DMAP (980 mg, 8 mmol) in one portion at 0 °C. After stirring for 3 h, the mixture was filtered and the solvent was removed in vacuo. The residue was purified by silica gel chromatography with PE/EtOAc (15:1) to give ester **6** (45 g, 89%).

Colorless oil; IR (film) ν_{max} : 2956, 2838, 1722, 1652, 1613, 1445 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J*=8.1 Hz, 2H), 6.89 (d, *J*=8.1 Hz, 2H), 6.41–6.19 (m, 2H), 5.87 (s, 1H), 5.79–5.65 (m, 1H), 5.26 (d, *J*=16.0 Hz, 1H), 5.17 (s, 2H), 5.16 (d, *J*=12.1 Hz, 1H), 4.59 (d, *J*=6.3 Hz, 2H), 3.81 (s, 3H), 2.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 164.2, 159.3, 145.1, 135.5, 134.7, 129.9, 127.2, 126.2, 120.6, 118.5, 113.5, 66.0, 65.0, 54.8, 29.9; HRMS calcd for C₁₈H₂₀NaO₅ 339.1208, found 339.1202.

4.3. Preparation of compound 5

A solution of ester 6 (20.9 g, 66 mmol) in xylene (550 mL) was heated to 130 °C under Ar in the presence of BHT (1.45 g, 6.6 mmol) for 48 h. The mixture was concentrated in vacuo to leave a brown oil, which was purified by silica gel chromatography with PE/EtOAc (5:1) to afford exo-5: 16.9 g, 81%; endo-5: 3.3 g, 16%. For exo-5: white solid; mp: 69–71 °C; IR (KBr) v_{max}: 2961, 1771, 1716, 1613, 1517, 1468 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J=8.3 Hz, 2H), 6.87 (d, J=8.3 Hz, 2H), 5.70 (s, 2H), 5.15 (d, J=12.0 Hz, 1H), 5.04 (d, J=12.0 Hz, 1H), 4.36 (t, J=7.5 Hz, 1H), 3.81 (s, 3H), 3.76 (dd, J=11.3, 8.0 Hz, 1H), 2.94 (d, J=18.8 Hz, 1H), 2.94-2.90(m, 1H), 2.14 (d, J=13.5 Hz, 1H), 2.05 (dd, J=18.8, 3.7 Hz, 1H), 1.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 173.8, 159.5, 129.8, 129.0, 127.6, 123.5, 113.8, 69.8, 66.5, 55.2, 48.8, 43.0, 38.5, 37.8, 23.7; HRMS calcd for C₁₈H₂₀NaO₅ 339.1208, found 339.1202. For *endo*-**5**: white solid; mp: 53–55 °C; IR (KBr) *v*_{max}: 2965, 2914, 1767, 1725, 1613, 1517 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J=8.3 Hz, 2H), 6.89 (d, J=8.3 Hz, 2H), 5.89–5.78 (m, 1H), 5.57 (d, J=10.0 Hz, 1H), 5.14 (q, J=11.9 Hz, 2H), 4.34 (dd, J=8.7, 5.8 Hz, 1H), 4.12 (d, J=8.7 Hz, 1H), 3.81 (s. 3H). 3.23 (d, J=7.2 Hz, 1H), 3.15-3.00 (m, 1H), 2.58 (d, J=18.2 Hz, 1H), 2.19–1.98 (m, 1H), 1.28 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 175.9, 175.5, 159.4, 129.9, 128.2, 127.9, 124.0, 113.7, 71.6, 66.4, 55.1, 45.4, 39.9, 35.2, 29.4, 23.4; HRMS calcd for C18H20NaO5 339.1208, found 339.1202.

4.4. Preparation of alcohol 7

To a stirred solution of exo-5 (14.2 g, 45 mmol) in CH₂Cl₂ (250 mL) was added trifluoroacetic acid (17.2 mL, 0.225 mol) at 0 °C. After stirring at the same temperature for 2 h, the red reaction mixture was concentrated in vacuo. The residue was dissolved in 100 mL EtOAc and adjusted to pH=8 with saturated aqueous NaHCO₃. The organic layer was separated and discarded. The aqueous layer was acidified using 3 N aqueous HCl and extracted twice with EtOAc. The combined organics were dried over MgSO₄, evaporated to give the pure acid 5a. White solid; mp 184-186 °C; IR (KBr) ν_{max} : 3437, 2896, 2249, 2091, 1781, 1705 cm⁻¹; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 5.86 - 5.66 \text{ (m, 2H)}, 4.48 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{Hz}, 1\text{H}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{Hz}, 1\text{Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{Hz}, 1\text{Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82 \text{ (t, } J = 7.4 \text{ Hz}), 3.82$ J=10.4 Hz, 1H), 3.37–3.11 (m, 1H), 2.94 (d, J=19.0 Hz, 1H), 2.16 (d, J=13.9 Hz, 1H), 2.12 (d, J=19.0 Hz, 1H), 1.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃+CD₃OD) δ 176.4, 175.0, 128.4, 122.8, 69.8, 48.2, 42.2, 38.0, 37.4, 23.2; HRMS calcd for C10H12NaO4 219.0633, found 219.0631.

To a stirred solution of the crude acid **5a** in THF (200 mL) at 0 °C were added Et₃N (7.5 mL, 54 mmol) and ethyl chloroformate (5.2 mL, 54 mmol). After stirring at the same temperature for 20 min, the inorganic salts were filtered off and washed with cold THF (50 mL). The filtrate was placed in a 500 mL flask, followed by addition of NaBH₄ (3.4 g, 90 mmol) in portions and CH₃OH (10 mL) dropwise at -40 °C. The reaction mixture was allowed to stir for 3 h at the same temperature and quenched by addition of water. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organics were washed with brine, dried over MgSO₄, and concentrated in vacuo. The crude residue was purified by silica gel chromatography with PE/EtOAc (4:1) to yield alcohol **7** (7.4 g, 90% for two steps). White solid; mp 105–107 °C; IR (KBr)

 $ν_{max}$: 3471, 2957, 2887, 1766 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.91–5.39 (m, 2H), 4.47 (t, *J*=8.0 Hz, 1H), 3.82 (dd, *J*=11.3, 8.0 Hz, 1H), 3.66 (d, *J*=11.2 Hz, 1H), 3.47 (d, *J*=11.2 Hz, 1H), 3.21–3.01 (m, 1H), 2.16 (d, *J*=13.7 Hz, 1H), 2.05 (d, *J*=18.8 Hz, 1H), 1.95 (d, *J*=18.8 Hz, 1H), 1.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 129.7, 123.3, 70.2, 66.9, 49.3, 37.9, 37.0, 35.7, 23.0; HRMS calcd for C₁₀H₁₄NaO₃ 205.0841, found 205.0846.

4.5. Preparation of epoxide 8

To a stirred solution of alcohol 7 (7.4 g, 40.6 mmol) in DMF (60 mL) were added Et₃N (6.8 mL, 48.7 mmol), DMAP (249 mg, 2.0 mmol), and TBSCl (6.7 g, 44.7 mmol) at 0 °C. After stirring at room temperature for 2 h, the reaction mixture was diluted with EtOAc (600 mL), washed with water $(3 \times 100 \text{ mL})$ and brine. The organics were dried over MgSO₄ and concentrated in vacuo to give crude product 7a, which was directly used in next step. A small portion was purified for characterization of 7a. White solid; mp 41–43 °C; IR (KBr) v_{max}: 2953, 2855, 1776, 1472 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.78–5.63 (m, 2H), 4.40 (t, *J*=7.3 Hz, 1H), 3.74 (dd, *J*=11.6, 8.0 Hz, 1H), 3.54 (d, *J*=9.8 Hz, 1H), 3.44 (d, *J*=9.8 Hz, 1H), 3.15–2.94 (m, 1H), 2.13 (d, J=19.0 Hz, 1H), 2.09 (d, J=13.7 Hz, 1H), 1.88 (d, *J*=19.0 Hz, 1H), 1.33 (s, 3H), 0.87 (s, 9H), 0.02 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 130.2, 123.4, 69.7, 66.3, 49.4, 37.6, 37.3, 35.8, 25.7, 23.4, 18.1, -5.7, -5.8; HRMS calcd for C₁₆H₂₈NaO₃Si 319.1705, found 319.1702.

To a stirred solution of crude 7a in CH₂Cl₂ (250 mL) at 0 °C were added NaHCO₃ (5.0 g, 60 mmol) and m-CPBA (14.8 g, 70%, 60 mmol) in portions. After 10 min, the ice bath was removed and stirring was continued for 10 h at room temperature. The reaction was guenched with saturated aqueous Na₂S₂O₃ (30 mL), and the resulting mixture was stirred until it became clear. The organic phases were washed with water, dried over Na₂SO₄, and evaporated to leave a residue, which was purified by silica gel chromatography with PE/EtOAc (20:1) to yield epoxide 8 (11.6 g, 91% for two steps). White solid; mp 108–110 °C; IR (KBr) ν_{max} : 2927, 2855, 1781, 1472 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.41 (t, J=7.3 Hz, 1H), 3.96 (dd, J=11.6, 8.0 Hz, 1H), 3.57 (d, J=10.1 Hz, 1H), 3.32 (d, J=10.1 Hz, 1H), 3.30-3.26 (m, 1H), 3.23-3.12 (m, 2H), 2.35 (d, J=13.9 Hz, 1H), 1.96 (dd, J=16.0, 3.7 Hz, 1H), 1.73 (d, J=16.0 Hz, 1H), 1.19 (s, 3H), 0.88 (s, 9H), 0.04 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 67.9, 67.6, 51.8, 51.2, 42.7, 38.6, 34.4, 34.1, 25.7, 23.8, 18.0, -5.7, -5.8; HRMS calcd for C₁₆H₂₈NaO₄Si 335.1655, found 335.1651.

4.6. Preparation of triol 9

To a stirred solution of epoxide 8 (6.0 g, 19.2 mmol) in dry THF (200 mL) at -20 °C was added dropwise LiBHEt₃ (77 mL, 1 M in THF, 77 mmol). The reaction mixture was slowly warmed to 15 °C and stirred overnight. Then 50 mL water was added dropwise to quench the reaction, followed by addition of 1 N aqueous NaOH (40 mL) and 30% H₂O₂ (40 mL). The mixture was stirred over additional 30 min before extracting with EtOAc. The combined organics were dried over MgSO₄ and concentrated in vacuo. The residue was purified by silica gel chromatography with PE/EtOAc (2:1) to yield triol 9 (4.9 g, 81%). White solid; mp 65–67 °C; IR (KBr) ν_{max} : 3298, 2930, 2857, 1470 cm⁻¹; ¹H NMR (400 MHz, CDCl₃+D₂O) δ 4.24 (s, 1H), 4.05 (d, *J*=11.1 Hz, 1H), 3.99–3.84 (m, 3H), 3.74 (d, J=12.3 Hz, 1H), 3.22 (d, J=10.5 Hz, 1H), 1.90 (s, 2H), 1.83-1.71 (m, 1H), 1.61-1.52 (m, 2H), 1.28-1.22 (m, 1H), 1.04 (s, 3H), 0.91 (s, 9H), 0.09 (d, J=3.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) § 72.0, 66.6, 65.3, 59.1, 41.8, 39.2, 37.8, 32.7, 29.2, 25.8, 25.4, 18.2, -5.6, -5.6; HRMS calcd for C₁₆H₃₅O₄Si 319.2305, found 319.2303.

4.7. Preparation of compound 10

Benzaldehyde dimethylacetal (2.15 mL, 14.3 mmol) and CSA (139.4 mg, 0.6 mmol) were added to a solution of triol 9 (3.8 g, 11.9 mmol) in CH₂Cl₂ (120 mL) at 0 °C. The reaction mixture was stirred for 1 h at the same temperature and then guenched with saturated aqueous NaHCO₃ (30 mL). The organic layer was separated and the aqueous laver was extracted with EtOAc. The combined organics were dried over MgSO₄ and concentrated in vacuo. The residue was purified by silica gel chromatography with PE/ EtOAc (10:1) to afford compound 10 (3.7 g, 86% based on 90% conversion). Colorless oil; IR (film) ν_{max} : 3466, 2930, 2885, 1459 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J=7.1 Hz, 2H), 7.42-7.30 (m, 3H), 5.57 (s, 1H), 4.50 (d, J=12.0 Hz, 1H), 4.18 (s, 1H), 4.11 (d, J=11.4 Hz, 1H), 4.06 (d, J=10.6 Hz, 1H), 4.00-3.91 (m, 2H), 3.86–3.72 (m, 1H), 3.23 (d, *J*=10.6 Hz, 1H), 2.15 (dd, *J*=11.9, 2.9 Hz, 1H), 1.96 (d, *J*=11.9 Hz, 1H), 1.87–1.74 (m, 2H), 1.71–1.63 (m, 1H), 1.34-1.21 (m, 1H), 1.05 (s, 3H), 0.93 (s, 9H), 0.12 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 128.8, 128.3, 126.1, 102.0, 75.8, 69.1, 66.9, 57.4, 41.9, 37.6, 34.2, 32.1, 27.1, 25.7, 25.5, 18.2, -5.5, -5.7; HRMS calcd for C₂₃H₃₈NaO₄Si 429.2437, found 429.2435.

4.8. Preparation of compound 11

To a stirred solution of **10** (3.8 g, 9.3 mmol) in CH₂Cl₂ (100 mL) were sequentially added Na₂CO₃ (3.0 g, 27.9 mmol), 4 Å MS (7.6 g), and PCC (6.0 g, 27.9 mmol) at 0 °C. After 10 min, the ice bath was removed and stirring was continued for 1 h at room temperature. Then ether (100 mL) was added and the mixture was filtered over a pad of silica, washed with ether. The filtrate was concentrated in vacuo to give crude product 10a, which was directly used in next step. A small portion was purified for characterization of 10a. Colorless oil; IR (film) ν_{max} : 2930, 2857, 1717, 1468 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.49 (d, *J*=6.9 Hz, 2H), 7.42–7.34 (m, 3H), 5.52 (s, 1H), 4.32–4.08 (m, 2H), 4.03 (d, J=12.0 Hz, 1H), 3.70 (d, *J*=10.0 Hz, 1H), 3.33 (d, *J*=10.0 Hz, 1H), 3.04 (d, *J*=11.7 Hz, 1H), 2.02 (d, *J*=11.7 Hz, 1H), 1.88–1.63 (m, 3H), 1.42 (d, *J*=10.8 Hz, 1H), 1.29 (s, 3H), 0.88 (s, 9H), 0.02 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 203.7, 138.5, 128.9, 128.3, 126.1, 101.6, 74.4, 69.7, 66.0, 53.2, 39.8, 31.1, 30.7, 26.8, 25.9, 25.8, 18.2, -5.7, -5.8; HRMS calcd for C₂₃H₃₆NaO₄Si 427.2281, found 427.2286.

Zinc powder (2.35 g, 36 mmol) was successively added in portions to a stirred solution of the crude 10a and allyl bromide (3.1 mL, 36 mmol) in saturated NH₄Cl solution (100 mL) and THF (20 mL). The mixture was continued stirring for 1 h at room temperature, then extracted with CH₂Cl₂. The combined organics were dried on Na₂SO₄ and concentrated in vacuo to give crude alcohol 10b, which was directly used in next step. A small portion was purified for characterization of 10b. White solid; mp 58-60 °C; IR (KBr) *v*_{max}: 3512, 3040, 2931, 2851, 1470 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *I*=7.7 Hz, 2H), 7.41–7.33 (m, 3H), 5.94–5.75 (m, 1H), 5.59 (s, 1H), 5.12 (d, *J*=17.1 Hz, 1H), 5.06 (d, *J*=10.1 Hz, 1H), 4.69 (d, J=12.0 Hz, 1H), 4.21 (td, J=7.3, 3.2 Hz, 1H), 4.12 (s, 1H), 4.01-3.89 (m, 2H), 3.32 (d, J=10.6 Hz, 1H), 3.26 (d, J=3.3 Hz, 1H), 2.65-2.50 (m, 1H), 2.50–2.38 (m, 1H), 2.27 (d, J=11.7 Hz, 1H), 1.88 (d, J=11.7 Hz, 1H), 1.73-1.62 (m, 3H), 1.32-1.21 (m, 1H), 1.00 (s, 3H), 0.92 (s, 9H), 0.10 (d, J=3.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.0, 136.5, 128.9, 128.2, 126.4, 116.8, 102.4, 77.2, 70.5, 68.5, 67.1, 43.1, 42.5, 38.0, 33.3, 33.0, 27.2, 26.0, 25.8, 18.3, -5.6, -5.7; HRMS calcd for C₂₆H₄₃O₄Si 447.2931, found 447.2920.

To a stirred solution of crude **10b** in dry THF (90 mL) was added NaH (1.5 g, 60% in oil, 36.8 mmol) in one portion. After stirring at room temperature for 20 min, CH₃I (1.2 mL, 18.4 mmol) was added and the suspension was heated to reflux for 3 h. The reaction mixture was cooled to 0 $^{\circ}$ C, and quenched with water. The organic layer was separated and the water layer was extracted with EtOAc.

The combined organics were washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by silica gel chromatography with PE/EtOAc (50:1) to give **11** (4.15 g, 84% for three steps). Colorless oil; IR (film) ν_{max} : 3069, 2931, 2856, 1469 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J*=7.0 Hz, 2H), 7.41–7.29 (m, 3H), 5.84–5.68 (m, 1H), 5.56 (s, 1H), 5.14 (d, *J*=17.1 Hz, 1H), 5.09 (d, *J*=10.1 Hz, 1H), 4.46 (d, *J*=11.9 Hz, 1H), 4.07 (s, 1H), 3.87 (d, *J*=11.9 Hz, 1H), 3.79 (d, *J*=10.1 Hz, 1H), 3.43 (dd, *J*=9.7, 3.9 Hz, 1H), 3.31 (s, 3H), 3.23 (d, *J*=10.1 Hz, 1H), 1.74–1.63 (m, 3H), 1.43–1.32 (m, 1H), 0.91 (s, 3H), 0.90 (s, 9H), 0.04 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 135.7, 128.9, 128.3, 126.5, 117.6, 102.5, 79.3, 77.1, 70.7, 63.4, 56.6, 42.4, 39.0, 38.3, 32.5, 28.5, 27.2, 26.0, 25.9, 18.3, -5.5, -5.6; HRMS calcd for C₂₇H₄₄NaO₄Si 483.2907, found 483.2897.

4.9. Preparation of alcohol 12

DIBAL (29.6 mL, 1.0 M in Tol, 29.6 mmol) was added dropwise to a stirred solution of 11 (3.4 g, 7.4 mmol) in CH₂Cl₂ (150 mL) at 0 °C. The reaction mixture was warmed to 10 °C and stirred overnight. With cooling (0 °C), saturated potassium sodium tartrate solution (100 mL) was added, and the suspension was stirred until it became clear. The organic layer was washed with water, dried over Na₂SO₄, and concentrated to give a residue, which was purified by silica gel chromatography with PE/EtOAc (25:1) to afford alcohol 12 (3.0 g, 89%). Colorless oil; IR (film) v_{max}: 3512, 3031, 2930, 2856, 1470 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.28 (m, 5H), 5.82–5.59 (m, 1H), 5.14 (d, J=17.0 Hz, 1H), 5.05 (d, J=10.1 Hz, 1H), 4.63 (d, J=11.7 Hz, 1H), 4.35 (d, J=11.7 Hz, 1H), 3.88-3.78 (m, 3H), 3.74 (d, *J*=10.2 Hz, 1H), 3.61 (d, *J*=8.2 Hz, 1H), 3.41 (dd, *J*=9.5, 4.6 Hz, 1H), 3.31 (s, 3H), 3.19 (d, J=10.2 Hz, 1H), 2.57-2.36 (m, 2H), 2.03–1.90 (m, 2H), 1.87 (dd, J=14.0, 3.2 Hz, 1H), 1.69 (d, J=13.1 Hz, 1H), 1.43 (t, J=14.0 Hz, 1H), 1.34-1.21 (m, 1H), 0.89 (s, 12H), 0.03 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 135.8, 128.4, 127.6, 127.5, 117.4, 80.1, 80.0, 69.8, 66.3, 63.7, 56.2, 43.0, 39.1, 38.3, 37.0, 27.4, 26.1, 25.9, 23.4, 18.3, -5.6, -5.6; HRMS calcd for C₂₇H₄₆NaO₄Si 485.3063, found 485.3059.

4.10. Preparation of ester 13

To a stirred solution of 12 (3.6 g, 7.8 mmol) in CH₂Cl₂ (100 mL) were sequentially added 4 Å MS (7.2 g), NaOAc (1.92 g, 23.4 mmol), and PCC (5.0 g, 23.4 mmol) at 0 °C. After 10 min, the ice bath was removed and stirring was continued for 1 h at room temperature. Then ether (100 mL) was added and the mixture was filtered over a pad of silica, washed with ether. The filtrate was concentrated in vacuo to give crude aldehyde 12a, which was directly used in next step. A small portion was purified for characterization of 12a. Colorless oil; IR (film) *v*_{max}: 3068, 2931, 2857, 1718, 1468 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.78 (d, *I*=3.4 Hz, 1H), 7.37–7.27 (m, 5H), 5.90-5.66 (m, 1H), 5.16-5.03 (m, 2H), 4.54 (d, J=11.8 Hz, 1H), 4.33 (d, J=11.8 Hz, 1H), 4.00 (d, J=2.8 Hz, 1H), 3.56 (d, J=10.0 Hz, 1H), 3.52-3.45 (m, 1H), 3.42 (d, J=10.0 Hz, 1H), 3.22 (s, 3H), 2.60-2.52 (m, 1H), 2.49–2.39 (m, 2H), 2.26–2.14 (m, 1H), 1.90–1.78 (m, 1H), 1.65–1.59 (m, 1H), 1.54–1.48 (m, 1H), 1.41 (td, *J*=12.4, 3.6 Hz, 1H), 0.93 (s, 3H), 0.89 (s, 9H), 0.03 (d, J=1.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) § 205.4, 138.5, 134.8, 128.2, 127.4, 127.3, 117.4, 79.5, 76.9, 70.3, 65.3, 57.0, 50.7, 44.3, 40.0, 37.3, 29.4, 25.9, 25.8, 23.9, 18.2, -5.7, -5.6; HRMS calcd for C₂₇H₄₄NaO₄Si 483.2907, found 483.2897.

To a stirred solution of crude aldehyde **12a** in ^tBuOH/H₂O (125 mL, 3.5/1) were added sequentially 2-methyl-2-butene (16.6 mL, 156 mmol), NaH₂PO₄· 2H₂O (6.1 g, 39 mmol), and NaC1O₂ (3.5 g, 39 mmol) at 0 °C. The mixture was stirred at room temperature for 2 h, followed by addition of saturated aqueous Na₂S₂O₃ (30 mL) to quench the reaction. The mixture was extracted with

EtOAc. The combined organics were dried over MgSO₄, and concentrated to give crude acid **12b**, which was directly used in next step. A small portion was purified for characterization of **12b**. White solid; mp 82–84 °C; IR (KBr) ν_{max} : 3458, 2936, 2855, 1717, 1462 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.31 (m, 5H), 5.82–5.66 (m, 1H), 5.08 (d, *J*=19.4 Hz, 1H), 5.04 (d, *J*=11.7 Hz, 1H), 4.67 (d, *J*=11.4 Hz, 1H), 4.53 (d, *J*=11.4 Hz, 1H), 4.13 (s, 1H), 3.52 (s, 1H), 3.48–3.35 (m, 2H), 3.28 (s, 3H), 2.92 (s, 1H), 2.58–2.37 (m, 2H), 2.20–2.08 (m, 1H), 1.91–1.45 (m, 4H), 0.92 (s, 3H), 0.89 (s, 9H), 0.03 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 178.1, 137.9, 135.8, 128.3, 127.6, 127.5, 116.7, 79.9, 74.9, 70.6, 69.2, 57.7, 44.6, 37.4, 28.8, 25.8, 25.2, 23.9, 18.2, 16.4, –5.6, –5.7; HRMS calcd for C₂₇H₄₅O₅Si 477.3036, found 477.3040.

To a stirred solution of crude acid **12b** in DMF (75 mL) at 0 °C were added K_2CO_3 (2.15 g, 15.6 mmol) and CH_3I (1.9 mL, 31.2 mmol). The reaction mixture was stirred at the same temperature for 2 h. Then EtOAc (500 mL) was added, and the mixture was washed with H_2O (3×100 mL) and brine. The organic layer was dried on MgSO₄ and concentrated in vacuo. The residue was purified by silica gel chromatography with PE/EtOAc (60:1) to afford ester 13 (3.3 g, 86% for three steps). White solid; mp 52-54 °C; IR (KBr) *v*_{max}: 3029, 2931, 2859, 1750,1434 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.27 (m, 5H), 5.97–5.73 (m, 1H), 5.10 (d, J=17.1 Hz, 1H), 5.02 (d, J=10.1 Hz, 1H), 4.56 (d, J=12.4 Hz, 1H), 4.34 (d, J=12.4 Hz, 1H), 3.86 (s, 1H), 3.65 (d, J=10.0 Hz, 1H), 3.59 (s, 3H), 3.35 (d, J=10.0 Hz, 1H), 3.33-3.28 (m, 1H), 3.24 (s, 3H), 2.75 (dd, J=12.1, 2.8 Hz, 1H), 2.62-2.45 (m, 1H), 2.34-2.20 (m, 2H), 1.91-1.78 (m, 1H), 1.66–1.59 (m, 1H), 1.53–1.34 (m, 2H), 0.90 (s, 3H), 0.89 (s, 9H), 0.03 (d, I=1.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 138.7, 136.5, 128.1, 127.5, 127.3, 116.3, 79.7, 74.6, 70.2, 64.1, 58.2, 51.1, 44.9, 44.8, 41.0, 37.4, 28.5, 25.8, 25.3, 23.7, 18.2, -5.5, -5.6; HRMS calcd for C₂₈H₄₆NaO₅Si 513.3012, found 513.2996.

4.11. Preparation of aldehyde 14

To a stirred solution of ester 13 (1.5 g, 3.06 mmol) in CH₃CN (120 mL) at 0 °C was added aqueous HF (6.0 mL, 40% in H₂O). After stirring at 20 °C for 4 h, saturated aqueous NaHCO₃ (30 mL) was added dropwise to quench the reaction. The mixture was extracted with EtOAc, and the combined organics were dried on MgSO₄, concentrated to give crude alcohol 13a, which was directly used in next step. A small portion was purified for characterization of 13a. Colorless oil; IR (film) ν_{max} : 3487, 3028, 2934, 1746, 1436 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) § 7.36-7.28 (m, 5H), 5.96-5.70 (m, 1H), 5.13 (d, J=17.1 Hz, 1H), 5.05 (d, J=10.1 Hz, 1H), 4.57 (d, J=12.4 Hz, 1H), 4.34 (d, J=12.4 Hz, 1H), 3.88 (s, 1H), 3.65 (d, J=11.4 Hz, 1H), 3.59 (s, 3H), 3.51–3.38 (m, 2H), 3.29 (s, 3H), 2.87 (dd, J=12.1, 3.1 Hz, 1H), 2.59-2.44 (m, 1H), 2.36 (d, J=12.1 Hz, 1H), 2.34-2.25 (m, 1H), 2.01 (s, 1H), 1.87 (dd, *J*=13.6, 3.2 Hz, 1H), 1.78–1.43 (m, 3H), 0.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 138.6, 136.0, 128.1, 127.5, 127.3, 116.9, 79.7, 74.5, 70.2, 66.5, 57.5, 51.1, 44.9, 43.8, 39.0, 37.2, 29.8, 25.5, 23.9; HRMS calcd for C₂₂H₃₂NaO₅ 399.2147, found 399.2136.

To a stirred solution of crude alcohol **13a** in CH₂Cl₂ (60 mL) was added Dess–Martin periodinane (1.95 g, 4.6 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 1 h, followed by addition of saturated aqueous NaHCO₃ (15 mL) and saturated aqueous Na₂S₂O₃ (15 mL) to quench the reaction. After being vigorously stirred for 30 min, the mixture was extracted with CH₂Cl₂. The combined organics were dried on Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel chromatography with PE/EtOAc (15:1) to afford aldehyde **14** (1.1 g, 96% for two steps). Colorless oil; IR (film) ν_{max} : 3029, 2934, 1746, 1705, 1436 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.63 (s, 1H), 7.43–7.27 (m, 5H), 5.99–5.60 (m, 1H), 5.09 (d, *J*=17.1 Hz, 1H), 5.03 (d, *J*=10.1 Hz, 1H), 4.55 (d, *J*=12.3 Hz, 1H), 4.35 (d, *J*=12.3 Hz, 1H), 3.08 (dd, *J*=2.5 Hz, 1H), 3.61 (s, 3H), 3.29 (s, 3H), 3.24–3.16 (m, 1H), 3.08 (dd, *J*=12.2, 3.2 Hz, 1H),

2.62–2.45 (m, 1H), 2.41 (dd, *J*=12.2, 3.0 Hz, 1H), 2.30–2.12 (m, 1H), 2.01–1.88 (m, 1H), 1.81 (td, *J*=14.1, 3.7 Hz, 1H), 1.65–1.56 (m, 1H), 1.51–1.39 (m, 1H), 1.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.7, 173.6, 138.3, 135.9, 128.2, 127.6, 127.5, 116.7, 81.0, 74.0, 70.4, 58.8, 51.2, 48.5, 45.4, 44.0, 40.8, 28.5, 24.3, 23.1; HRMS calcd for C₂₂H₃₀NaO₅ 397.1991, found 397.1995.

4.12. Preparation of compound 15

To a solution of aldehyde 14 (1.8 g, 4.8 mmol) in dry MeOH (60 mL) was added 30% EtNH₂ in methanol (28.9 mL, 192 mmol). After stirring at room temperature for 5 h, the TLC analysis showed the complete consumption of 14. Then the mixture was cooled at $0 \,^{\circ}$ C, and NaBH(OAc)₃ (2.0 g, 9.6 mmol) was added. The reaction mixture was stirred for another 30 min, and guenched with saturated aqueous NaHCO₃. The mixture was extracted with EtOAc, and the combined organics were dried on MgSO₄, concentrated to give crude amine 14a, which was directly used in next step. A small portion was purified for characterization of 14a. Colorless oil; IR (film) v_{max} : 3328, 3028, 2928, 1748, 1727, 1435 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.24 (m, 5H), 5.94-5.76 (m, 1H), 5.10 (d, J=17.1 Hz, 1H), 5.02 (d, J=10.1 Hz, 1H), 4.57 (d, J=12.4 Hz, 1H), 4.34 (d, J=12.4 Hz, 1H), 3.87 (s, 1H), 3.59 (s, 3H), 3.39–3.29 (m, 1H), 3.26 (s, 3H), 2.80–2.51 (m, 5H), 2.39 (d, J=11.8 Hz, 1H), 2.35–2.22 (m, 2H), 1.85 (d, J=11.2 Hz, 1H), 1.60–1.35 (m, 3H), 1.10 (t, J=7.1 Hz, 3H), 0.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 138.7, 136.6, 128.1, 127.5, 127.3, 116.3, 79.7, 74.5, 70.3, 58.3, 51.0, 50.6, 46.3, 45.3, 44.9, 41.4, 36.0, 29.0, 26.1, 23.8, 15.3; HRMS calcd for C₂₄H₃₈NO₄ 404.2801, found 404.2809.

To a stirred solution of crude 14a in THF (80 mL) were added Na₂CO₃ (1.53 g, 14.4 mmol) and (Boc)₂O (1.57 g, 7.2 mmol). After stirring at room temperature for 10 h, the mixture was diluted with EtOAc, and washed with water and brine. The organic layer was dried on MgSO₄, concentrated in vacuo. The residue was purified by silica gel chromatography with PE/EtOAc (20:1) to afford compound **15** (2.1 g, 88% for two steps). Colorless oil; IR (film) ν_{max} : 3067, 2930, 1749, 1692, 1454 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.27 (m, 5H), 5.98–5.68 (m, 1H), 5.12 (d, *J*=17.0 Hz, 1H), 5.03 (d, J=10.0 Hz, 1H), 4.56 (d, J=12.4 Hz, 1H), 4.34 (d, J=12.4 Hz, 1H), 3.86 (s, 1H), 3.59 (s, 3H), 3.53-3.32 (m, 2H), 3.30 (s, 3H), 3.26-2.97 (m, 3H), 2.78–2.55 (m, 2H), 2.49–2.33 (m, 1H), 2.29 (d, J=12.5 Hz, 1H), 1.93–1.80 (m, 1H), 1.64–1.54 (m, 1H), 1.52–1.39 (m, 11H), 1.09 (t, J=6.5 Hz, 3H), 0.89 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 173.8, 156.6, 138.7, 136.5, 128.2, 127.5, 127.3, 116.6, 80.1 (79.7), 79.0, 74.4, 70.3, 58.1, 51.1, 46.1 (45.8), 45.0, 44.8, 44.4(43.8), 40.9(40.6), 38.6, 29.5, 28.6 (28.4), 26.4 (25.8), 24.2, 13.2 (12.5); HRMS calcd for C₂₉H₄₅NNaO₆ 526.3145, found 526.3150.

4.13. Preparation of aldehyde 4

OsO₄ (0.64 mL, 5 wt % in 1,4-dioxane, 0.125 mmol) and NMO (588 mg, 5.0 mmol) were added to a stirred solution of olefin 15 (1.24 g, 2.5 mmol) in 1,4-dioxane/H₂O (50 mL, 3:1). After stirring at room temperature for 2 h, the TLC analysis showed the complete consumption of 15. Then NaIO₄ (1.07 g, 5.0 mmol) was added, and the mixture was stirred overnight. The reaction was quenched with saturated aqueous Na₂S₂SO₃ (10 mL) and saturated aqueous NaHCO₃ (10 mL). The mixture was extracted with CH₂Cl₂, and the combined organics were dried on Na₂SO₄, concentrated in vacuo. The residue was purified by silica gel chromatography with PE/ EtOAc (5:1) to afford aldehyde 4 (1.06 g, 85%). Colorless oil; IR (film) ν_{max}: 2930, 1746, 1722, 1693, 1455 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 7.51–7.27 (m, 5H), 4.57 (d, J=12.4 Hz, 1H), 4.33 (d, J=12.4 Hz, 1H), 4.03 (s, 1H), 3.87 (s, 1H), 3.57 (s, 3H), 3.44-3.22 (m, 1H), 3.25 (s, 3H), 3.20-2.89 (m, 3H), 2.87-2.60 (m, 2H), 2.22 (d, *J*=12.4 Hz, 1H), 1.88 (s, 1H), 1.56–1.40 (m, 13H), 1.10 (t, *J*=6.7 Hz, 3H), 0.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.9 (201.3), 173.9 (173.7), 156.6 (156.1), 139.3 (139.2), 128.2, 127.7, 127.5, 80.0 (79.1), 74.0, 73.7 (73.4), 70.1, 58.2, 52.4 (52.2), 51.2, 47.7, 46.1, 44.7, 44.6 (43.8), 38.8, 29.4, 28.4, 26.3 (25.5), 23.8, 13.2 (12.5); HRMS calcd for C₂₈H₄₄NO₇ 506.3118, found 506.3123.

4.14. Preparation of compound 16

Pd(OH)₂ on carbon (20%) (45 mg) was added to a solution of aldehyde **4** (898 mg, 1.8 mmol) in 95% EtOH (20 mL). The mixture was stirred under hydrogen for 20 h at room temperature. Filtration of the reaction product through Celite and evaporation of the solvent afforded compound **16** (690 mg, 94%), which was used in next step without purification. A small portion was purified for characterization of **16**. Colorless oil; IR (film) ν_{max} : 3433, 2931, 1723, 1690, 1415 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 4.08–3.99 (m, 2H), 3.71 (s, 3H), 3.66–3.58 (m, 1H), 3.55–3.44 (m, 1H), 3.29 (s, 3H), 3.23–3.02 (m, 2H), 2.92–2.50 (m, 3H), 2.19 (d, *J*=12.1 Hz, 1H), 2.03–1.69 (m, 3H), 1.46 (s, 10H), 1.11 (s, 3H), 0.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.2 (200.7), 176.5 (176.3), 156.6 (156.1), 80.1 (79.2), 73.6 (73.4), 66.9, 58.0, 51.9, 51.1, 47.5, 46.3, 44.6, 44.4, 38.8, 29.2, 28.4, 27.5, 26.3 (25.6), 13.1 (12.4); HRMS calcd for C₂₁H₃₇NNaO₇ 438.2468, found 438.2465.

4.15. Preparation of compound 2

To a stirred solution of **16** (491 mg, 1.2 mmol) in CH₂Cl₂ (24 mL) was added Dess-Martin periodinane (1.02 g, 2.4 mmol) and NaHCO₃ (403 mg, 4.8 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 2 h, then guenched with saturated agueous Na₂S₂O₃ (5 mL). After being vigorously stirred for 30 min, the mixture was extracted with CH₂Cl₂. The combined organics were dried on Na₂SO₄ and concentrated. The residue was dissolved in CH₂Cl₂ (20 mL), and TFA (0.92 mL, 1.2 mmol) was added dropwise to the solution at 0 °C. The mixture was stirred at room temperature for 2 h. and then the solvent was removed in vacuo. The residue was diluted with CH₂Cl₂ and washed with saturated aqueous NaHCO₃. The organic layer was dried on Na₂SO₄, concentrated to give the crude product, which was purified by silica gel chromatography with PE/EtOAc (20:1) to afford compound **2** (259 mg, 73%). Colorless oil; IR (film) *v*_{max}: 2921, 2850, 1742, 1700, 1457 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.72 (s, 3H), 3.70 (d, J=6.0 Hz, 1H), 3.66-3.58 (m, 1H), 3.31 (s, 3H), 3.09-2.92 (m, 1H), 2.72 (d, J=5.1 Hz, 1H), 2.62 (d, J=11.6 Hz, 1H), 2.51 (d, J=11.6 Hz, 1H), 2.42 (dd, J=17.9, 6.8 Hz, 1H), 2.37–2.20 (m, 2H), 2.08–1.95 (m, 1H), 1.94–1.80 (m, 1H), 1.78–1.65 (m, 2H), 1.20 (s, 3H), 0.99 (t, J=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.5, 171.5, 83.1, 67.7, 64.0, 58.2, 56.8, 52.4, 50.6, 48.3, 40.2, 38.6, 33.5, 26.8, 26.1, 12.9; HRMS calcd for C₁₆H₂₅NNaO₄ 318.1681, found 318.1684.

Acknowledgements

We are grateful to the National Natural Science Foundation of China (No. 30873147 and No. 20902061) for financial support of this research.

Supplementary data

Supplementary data associated with this article can be found in online version, at doi:10.1016/j.tet.2011.10.073.

References and notes

- Wang, F. P.; Chen, Q. H. In *The Alkaloids: Chemistry and Biology*; Cordell, G. A., Ed.; Elsevier Science: USA, 2010; Vol. 69, pp 1–577.
- Wiesner, K.; Tsai, T. Y. R.; Huber, K.; Bolton, S. E.; Vlahov, R. J. Am. Chem. Soc. 1974, 96, 4990–4992.
- 3. Wiesner, K.; Tsai, T. Y. R.; Nambiar, K. P. Can. J. Chem. 1978, 56, 1451-1454.

- 4. Wiesner, K. Pure Appl. Chem. 1979, 51, 689-703.
- 5. Hale, K. J.; Manaviazar, S. In Second Supplements to the 2nd Edition of Rodd's *Chemistry of Carbon Compounds*; Sainsbury, M., Ed.; Elsevier Science: USA, 1998; Vol. IV G(partial)/H, pp 1-63.
- 6. Goodall, K. J.; Barker, D.; Brimble, M. A. Synlett **2005**, 1809–1827.
- Yang, Z. K.; Chen, Q. H.; Wang, F. P. Tetrahedron 2011, 67, 4192–4195.
 Shishido, K.; Hiroya, K.; Fukumoto, K.; Kametani, T. Tetrahedron Lett. 1986, 27, 1167-1170.
- 9. Bailie, L. C.; Bearder, J. R.; Li, W. S.; Sherringham, J. A.; Whiting, D. A. J. Chem. Soc., Perkin Trans. 1 **1998**, 4047–4055.
- 10. Taber, D. F.; Liang, J. L.; Chen, B.; Cai, L. J. Org. Chem. 2005, 70, 8739–8742. 11. Ulubelen, A.; Mericli, A. H.; Mericli, F.; Kolak, U. Heterocycles 2000, 53,
- 2279-2283. 12. This reaction accomplished only in 31% yield under a very forcing reaction
- Cayzer, T. N.; Lilly, M. J.; Williamson, R. M.; Paddon-Row, M. N.; Sherburn, M. S. Org. Biomol. Chem. 2005, 3, 1302–1307.
- Nefkens, G. H. L.; Thuring, J. W. J. F.; Zwanenburg, B. Synthesis 1997, 290–291.
 Brown, H. C.; Kim, S. C.; Krishnamurthy, S. J. Org. Chem. 1980, 45, 1–12.
 Petrier, C.; Luche, J. L. J. Org. Chem. 1985, 50, 910–912.