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The formation of carbon–carbon
bonds by using readily generated
a-sulfonyl carbanions[1] and their
applications to the synthesis of
natural products[2] have been exten-
sively studied. Sulfones having chir-
ality at the a position are known to
show biological activity, for exam-
ple, dorzolamide has antiglaucoma
activity,[3] but little attention has
been paid to the enantioselective
reaction of a-sulfonyl carbanions,[4]

probably because of the difficulty in
obtaining high enantioselectivity.
However, there are a few prece-
dents: the enantioselective reaction
of a-lithio sulfones derived from an
allyl sulfone using a chiral amino
alcohol as a chiral ligand[4a] and by
using chiral lithium amides.[4b] How-
ever, the enantioselectivities
reported in these reports are unsat-
isfactory. Herein we report the first
highly and catalytic enantioselec-
tive reaction of a-lithiated sul-
fones.[5]

We first attempted the enantio-
selective reaction of a-carbanions
of various benzyl sulfones, for
example, methyl, tBu, phenyl, pen-
tafluorophenyl, and 2-pyridyl
benzyl sulfones 1a–e, respectively
(Table 1). The benzyl sulfones were
treated with nBuLi (1.2 equiv)
and bis(oxazoline)-phenyl 3a

(1.25 equiv) in toluene and subsequently with benzaldehyde.
Trimethylsilyl chloride (TMSCl) was added for the trimethyl-
silylation of the formed alkoxide, thereby suppressing the
retro-aldol-type reaction. Most of the reactions gave high
yields of a diastereomeric mixture of the syn and anti isomers
of the products 2a–e, with each isomer having low enantio-
selectivity. Trifluoromethyl sulfones are known to have
unusual configurational stability.[6] Indeed, when benzyl
trifluoromethyl sulfone 1 f was allowed to react with a
stoichiometric amount of the bis(oxazoline)s at �78 8C
under similar reaction conditions, the syn-2 f was formed
exclusively. This syn isomer was obtained in high enantiose-

Table 1: Enantioselective reaction of various a-lithiated sulfones 1a–f with benzaldehyde.

Entry 1 Chiral ligand Product Yield[a] [%] d.r.b] syn :anti e.r.[c] syn e.r.[c] anti

1[d] 1a 3a 2a 19[e] 50:50 55:45 51:49
2[d] 1b 3a 2b 71[e] 64:36 65:35 61:39
3[d] 1c 3a 2c 83[e] 68:32 66:34 71:29
4[d] 1d 3a 2d 72 86:14 62:38 57:43
5[d] 1e 3a 2e 66[e] 61:39 52:48 54:46
6[d] 1 f 3a 2 f 56(56[e]) >98:2 85:15
7[d] 1 f 3b 2 f 55 >98:2 71:29
8[d] 1 f 3c 2 f 58 >98:2 50:50
9[d] 1 f 4 2 f 31 >98:2 51:49
10[f ] 1 f 3a 2 f 87 95:5 94:6 nd[i]

11 1 f 3a 2 f 84 93:7 87:13 nd
12 1 f 3d 2 f 74 93:7 97:3 nd
13 1 f 3e 2 f 74 92:8 97:3 nd
14 1 f 3 f 2 f 76 90:10 93:7 nd
15 1 f 3g 2 f 87 96:4 97:3 nd
16[g] 1 f 3g 2 f 87 96:4 97:3 nd
17[h] 1 f 3g 2 f 44 95:5 95:5 nd

[a] Conversion yield determined by 19F NMR analysis. [b] Determined by 1H NMR analysis. [c] Deter-
mined by HPLC analysis on a chiral stationary phase. [d] The reaction was carried out at �78 8C with
125 mol% 3. [e] Yield of isolated product. [f ] 3a (125 mol%) was used. [g] 3g (10 mol%) was used.
[h] 3g (2 mol%) was used. [i] Not determined.
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lectivity with bis(oxazoline)-Ph 3a (Table 1, entry 6), whereas
bis(oxazoline)-tBu 3b, -iPr 3c, and (�)-sparteine (4) gave
lower enantioselectivity but exclusive formation of syn-2 f
(Table 1, entries 7–9). Other solvents such as cumene, Et2O,
or THF did not improve the enantioselectivity. The best
enantioselectivity was obtained when the reaction was carried
out at �30 8C in toluene using 3d (Table 1, entry 10).[7]

Furthermore, we were pleased to find that the reaction of
1 f proceeded with a substoichiometric amount of 3a. Thus,
the reaction of 1 f was performed with 30 mol% of 3a at
�30 8C to give syn-2 f as the major product in high yield and
with high enantioselectivity (Table 1, entry 11). Several
bis(oxazoline) derivatives also showed excellent results
(Table 1, entries 12–15). Even 10 mol% of the dibenzyl
bis(oxazoline) derivative 3g worked well (Table 1, entry 16).
Notably, 2 mol% of 3g was found to show even higher
enantioselectivity (Table 1, entry 17). O=Brien and co-work-
ers have reported an asymmetric deprotonation of a methyl-
ene proton a to amino and oxy groups in the presence of a
substoichiometric amount of (�)-sparteine to give products
with high enantioselectivity, with an achiral ligand used to
regenerate the BuLi/(�)-sparteine complex.[8] Interestingly,
our enantioselective reaction proceeded in a catalytic manner
without any additives.[9]

The reaction of 1 f with various aromatic aldehydes such
as p-tolualdehyde, p-methoxybenzaldehyde, p-chlorobenzal-
dehyde, 2-naphthaldehyde, and 2-furaldehyde in the presence
of 3g gave the products 5–9 with excellent diastereoselectiv-
ities and high enantioselectivities (Table 2, entries 1–6).

a-Fluorinated sulfur compounds can also serve as syn-
thetic intermediates or precursors for the synthesis of
fluorinated molecules[10] and bioactive compounds.[11] We
further studied the preparation of optically active a-fluoro-
benzyl sulfones. Fluorination of 1 f with N-fluorobenzensul-
fonimide (NFSI) with 1.25 equivalents of 3a afforded (R)-10
exclusively in moderate yield (Scheme 1).[12]

To define the enantiodetermining step in the enantio-
selective reaction of a-lithiated sulfones, we studied the
reaction of the racemic product syn-6 (rac-syn-6) by treating it
with 1.2 equivalents of nBuLi and a substoichiometric amount
of 3g to cause the retro-aldol-type reaction and then
subsequent reaction with p-chlorobenzaldehyde (Scheme 2).

It was found that syn-7 was obtained with high enantioselec-
tivity. Furthermore, the reaction of lithiated 1 f with a
deficient amount of benzaldehyde afforded 2 f with complete
enantioselectivity (compare entries 4 and 7 in Table 2). These
results show that the reaction of 1 f proceeds through a
dynamic thermodynamic resolution pathway.[9,13] The highly
enantio- and diastereoselective reaction of lithiated trifluoro-
methylsulfone can be ascribed to high configurational stabil-
ity of the carbanion as a result of the large n–s* interaction.[14]

In summary, we have disclosed the first highly enantio-
selective reactions of carbanions a to the sulfonyl group using
bis(oxazoline) derivatives. The reaction of lithiated 1 f
proceeds through a dynamic thermodynamic resolution path-
way. Furthermore, the success of the catalytic reaction is
surprising, considering that a stoichiometric amount of
butyllithium is used. To the best of knowledge, this is the
first report for the catalytic enantioselective reaction through
a dynamic thermodynamic resolution. This novel reaction
should provide insight for the development of enantioselec-
tive reactions of carbanions. A detailed study of the reaction
mechanism is currently under investigation and will be
reported in due course.

Received: May 17, 2007
Published online: August 31, 2007

.Keywords: asymmetric synthesis · carbanions ·
enantioselectivity · homogeneous catalysis · sulfones

[1] For reviews, see a) J. C. Stowell, Carbanion in Organic Synthesis,
Wiley, New York, 1979 ; b) N. S. Simpkins, Sulphones in Organic

Table 2: Enantioselective reaction of trifluoromethyl sulfone 1 f with
various aldehydes in the presence of 3g.

Entry R Product Yield[a,b] [%] d.r.[c] syn:anti e.r.[d] syn

1[e] Ph 2 f 74 (87) 96:4 97:3
2 p-CH3C6H4 5 70 (84) 97:3 97:3
3 p-MeOC6H4 6 57 (91) 97:3 99:1
4 p-ClC6H4 7 66 (85) 90:10 92:8
5[e] 2-naphthyl 8 54 (80) 94:6 98:2
6 2-furyl 9 35 (58) 93:7 95:5
7[f ] p-ClC6H4 7 16 (18)[g] 90:10 99:1

[a] Yield of isolated product. [b] Yield in parenthesis is the conversion
yield. [c] Determined by 1H NMR analysis. [d] Determined by HPLC
analysis on a chiral stationary phase. [e] 3g (10 mol%) was used. [f ] p-
ClC6H4CHO (0.2 equiv) was used. [g] Based on 1 f.

Scheme 1. Enantioselective fluorination of lithiated 1 f.

Scheme 2. Enantioselective reaction of the racemic carbanion.
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