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Abstract: D2-Pyrazolines are of significant medici-
nal and synthetic interest due to their therapeutic
properties and utility in the synthesis of 1,3-di-ACHTUNGTRENNUNGamines, yet few asymmetric methods exist to pre-
pare them. An unprecedented and highly enantiose-
lective organocatalytic synthesis of 2-pyrazolines
was achieved through an asymmetric conjugate ad-
dition catalyzed by 9-epi-amino Cinchona alkaloids
followed by deprotection-cyclization, which fur-
nished chiral 2-pyrazolines in 46–78% yield and 59–
91% ee. This bifunctional catalytic methodology
thus provides easy access to a considerable range of
optically active 3,5-dialkyl 2-pyrazolines.

Keywords: asymmetric catalysis; Cinchona alka-
loids; conjugate addition reaction; cyclization;
enones; D2-pyrazolines

D2-Pyrazolines and their derivatives have been report-
ed to possess antimicrobial,[1] immunosuppressive,[2]

anticancer,[3] antidepressant,[4] and central nervous
system effects.[5] More recently, compounds with a 2-
pyrazoline (4,5-dihydropyrazole) backbone have been
targeted as potent CB1 receptor antagonists
(Figure 1), which have exhibited antiobesity activity
(Ibipinabant 1[6]). Also 2-pyrazolines have demon-
strated potential activity in several biological
screens,[7] e.g., optimized 2-pyrazoline 2 has shown ex-
cellent activity (IC50 =26 nM) against kinesin spindle
protein; inhibitors of this protein constitute a unique
strategy in cancer treatment.[8] Apart from their me-
dicinal significance, 2-pyrazolines have also been
shown as useful intermediates in the synthesis of vari-
ous amines including pyrazolidines,[9] azaprolines,[10]

and 1,3-diamines.[11]

To date, however, only a few examples have been
reported for the asymmetric synthesis of chiral 2-pyr-
azolines, and optically pure 2-pyrazolines are com-
monly obtained by resolution of their racemic coun-
terparts.[12] In 2000, the first asymmetric catalytic syn-
thesis of 2-pyrazolines through the 1,3-dipolar cyclo-
addition of acrylamides was reported utilizing a chiral
Lewis acid catalyst.[13] In 2005 an indirect strategy to
synthesize chiral 2-pyrazoline 3 (Figure 1) was report-
ed where chirality was introduced by enantioselective
organocatalytic thia-Michael addition to enones.
However, 2-pyrazolines obtained by further transfor-
mation of the thia-adduct showed low ees, and were
found to readily undergo racemization.[14] Alternative-
ly, organometallic approaches which cover asymmet-
ric [3+2] cycloadditions of 1,3-dipoles such as diazo-
esters,[15] nitrile imine dipole precussors[16] to a,b-

Figure 1. 2-Pyrazolines with valuable biological activities.
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enones provide trisubstituted 3,5-dialkyl-2-pyrazolines
4 in high ee and yield. More recently List and M�ller
disclosed the use of chiral phosphoric acid catalysis to
obtain 2-pyrazolines 5 in high enantioselectivity and
yield through a 6p electrocyclization,[17] however, di-ACHTUNGTRENNUNGalkylpyrazolines (R1 =alkyl) proved challenging, and
only one example was reported with low ee and yield.
Building upon this work, Bri�re and co-workers em-
ployed a Cinchona alkaloid-derived phase-transfer
catalyst to arrive at 3,5-diarylpyrazolines with good ee
and yield.[18]

However, the substrate scope was restricted to aryl-
substituted a,b-unsaturated enones making it of limit-
ed use. Thus, development of an asymmetric method
which can use the alkyl-substituted a,b-unsaturated
enones to provide the chiral 3,5-dialkylpyrazolines in
useful yield and enantioselectivity will afford a com-
plementary way to bridge this gap and allow direct
access to important classes of pyrazoline heterocycles
(Scheme 1).[9a]

First reported in 1968,[19] 9-epi-amino-Cinchona al-
kaloids (7, Scheme 1) were found to serve as highly
enantioselective organic catalysts during the last sev-
eral years. To date, they have demonstrated high
enantioselectivity in the promotion of a series of
asymmetric conjugate additions of carbon,[20] sulfur,[21]

nitrogen,[22] and oxygen[23] nucleophiles to a,b-unsatu-
rated carbonyl compounds, as well as of other nucleo-
philic additions[24] and Diels–Alder reactions.[25] Fol-
lowing our recent success in the development of 7-cat-
alyzed aminations[22b] and peroxidations[23d] of aliphat-
ic a,b-enones, we became interested in developing the
efficient enantioselective conjugate addition of hydra-
zide nucleophile 8 to aliphatic a,b-enones 9 followed
by a deprotection-cyclization of the 1,4-adduct 10 as a
catalytic asymmetric access to 2-pyrazolines 6
(Scheme 1).

We began our studies by selecting the appropriate
hydrazide 8, which was critical for the desired trans-
formation, as the observed instability of 10 required
mild deprotection conditions. Protecting the hydra-

zine with benzyl carbamate (Cbz) provided both the
required regioselectivity and allowed the use of mild
deprotection through hydrogenolysis. Benzyl substitu-
tion at the other hydrazine nitrogen made possible
the cleavage of this group under hydrogenolysis con-
ditions to form 6.

For the promotion of the conjugate addition of an
amine nucleophile via iminium catalysis, selection of
an appropriate acid co-catalyst is crucial for achieving
optimal reaction rate and enantioselectivity. Accord-
ingly, a screening of several acids of varying acidity
and steric properties was performed (Table 1) utilizing
9a as a model substrate. As expected, there was no re-
action observed after 15 h without any acid co-catalyst

Scheme 1. Synthetic route to 3,5-disubstituted pyrazolines 6 and 9-amino-Cinchona alkaloid catalysts 7-Q and 7-QD.

Table 1. Acid co-catalyst screening.[a]

Entry Acid Equiv. vs.
7-Q

Conversion
[%][b]

ee 10a
[%]

1 – – 0 –
2 CH3CO2H 3 3 85
3 ClCH2CO2H 3 3 37
4 Cl2CHCO2H 3 33 7
5 CF3CO2H 3 15 racemic
6 Ph2CHCO2H 3 12 76
7 Ph3CCO2H 3 3 86
8 PhCO2H 3 12 90
9 PhCO2H 2 9 91
10 PhCO2H 1 2 –

[a] 8 (0.05 mmol) and 9a (0.1 mmol).
[b] For comparative purposes only, determined by relative

integration of 8 and 10a on GC.
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(entry 1, Table 1). Acetic acid (entry 2), and several
halogenated derivatives (entries 3–5) revealed a trend
of decreasing ee with increasing acidity; however, ac-
ceptable levels of conversion could not be obtained in
conjunction with high ee. Two sterically hindered
acetic acid derivatives (entries 6 and 7) were investi-
gated next, both of which afforded 76% and 86% ee,
though not at a useful level when coupled with an ac-
ceptable reaction rate. Finally, benzoic acid (entry 8)
was used, giving an optimal combination of enantiose-
lectivity and reaction rate. Lowering the equivalents
of benzoic acid versus catalyst (entries 9 and 10) de-
creased the reaction rate without decreasing selectivi-
ty, indicating that 3 equivalents of benzoic acid gave
the best combination of ee and conversion.

We next screened the effect of solvent on the reac-
tion (Table 2). Toluene, although a poor solvent for
dissolving hydrazide 8, proved to be one of the best
for the asymmetric conjugate addition (entry 1).
Halogenated solvents, while fully dissolving all sub-
strates, resulted in only moderate ee and conversion
(entries 2–4). Ethers, which also allowed full dissolu-
tion, gave generally moderate to high ee ; however,
conversions were significantly lower than with toluene
(entries 5–7). Following these results, and with the

poor solubility of 8 in toluene in mind, several mix-
tures with chloroform (entries 8–10) were investigat-
ed, all of which improved solubility; however, with
decreased conversion. A mixed solvent of toluene and
ether (entry 11) maintained both excellent ee and
good substrate solubility; however, the rate was
slower in toluene. Finally, a mixture of toluene and
1,2-dichloroethane (entry 12) provided improved sub-
strate solubility along with a slight improvement in ee
compared to pure toluene, while sacrificing a negligi-
ble level of conversion.

With optimized reaction conditions for the asym-
metric conjugate addition, we decided to explore the
deprotection-cyclization step. It was observed that
due to the oxidative decomposition of N1-benzylated
2-pyrazolines (cyclized product) the enantioselectivity
was lower in comparision to aza-Michael adduct 10a.
We chose to stabilize 2-pyrazolines 6 by adding an
electron-withdrawing acetyl group to the 1-position
during cyclization. When subjected to deprotection-
cyclization after acetyl substitution, the model sub-
strate 9a furnished 2-pyrazoline 6a in 72% yield in
two steps with no loss of ee compared to 10a (Table 3,
entry 1 vs. Table 2, entry 12).

We then investigated the scope of the reaction with
regard to a,b-unsaturated enones 9 (Table 3). We
found that a variety of alkyl substituents (R1 and R2)
with or without a functional group could be tolerated.
Substrates with a methyl group as R1, and R2 either
as ethyl (9a, entries 1 and 2) or methyl group (9b, en-
tries 3 and 4) afforded good yield and selectivity,
though enone 9b showed slightly lower levels of ee
than 9a. Fixing R1 as a methyl group, a variety of
straight-chain aliphatic substrates were successfully
applied in high ee. In addition to R1 as n-propyl (9c,
entries 5 and 6) and n-pentyl (9d, entries 7 and 8), the
substrate scope included R1 groups with a terminal
chloride (9e, entries 9 and 10), and a SEM-protected
alcohol (9f, entries 11 and 12), indicating compatibili-
ty with the use of protecting groups. Additionally, the
methodology could be extended to enone 9g, with
straight-chain alkyl substituents at both R1 and R2

(entries 13 and 14). Furthermore, the enantiomer of
6a was obtained in 83% ee by using catalyst 7-QD
(Table 3, entry 2). This deprotection protocol could be
applied to intermediates 10 to obtain 3,5-disubstituted
2-pyrazolines 6 in synthetically useful ees and yields
(Table 3). For all substrates, we observed similar iso-
lated yields with both 7-Q- and 7-QD-catalyzed reac-
tions; however, the ee of the product obtained with
the 7-QD pseudoenantiomer was consistently lower
by 4 to 23% compared with that of the 7-Q-catalyzed
product. Importantly, in all cases either enantiomer
could still be obtained in useful overall yield and
enantiomeric excess.

In the presence of an acid co-catalyst, the 9-amino-
Cinchona alkaloid 7 was postulated to activate the

Table 2. Solvent screening for the addition of 8 to 9a.[a]

Entry Solvent Conv.
[%][b]

ee
10a
[%]

1 toluene 51 88
2 CHCl3 13 76
3 1,2-dichloroethane 22 77
4 CH2Cl2 13 82
5 THF 8 82
6 TBME 21 88
7 Et2O 24 91
8[c] toluene/CHCl3 (7/3) 40 87
9[c] mesitylene/CHCl3 (7/3) 33 89
10[c] Et2O/CHCl3 (7/3) 35 89
11 toluene/Et2O (1/1) 31 91
12[c] tolene/1,2-DCE 47 90

[a] Reaction conditions: 8 (0.05 mmol) and 9a (0.1 mmol),
and solvent (0.18 mL).

[b] For comparative purposes only, determined by relative
integration of 8 and 10a on GC.

[c] Solvent (0.2 mL).
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a,b-unsaturated enone 9 via iminium catalysis while
interacting with the hydrazide 8 through hydrogen
bonding in the stereo-defining step. Due to the pres-
ence of benzoic acid in the reaction mixture, the cata-
lyst could exist as both the ammonium salt and the
free amine. Thus, two modes of nucleophile activation
by the catalyst-substrate iminium salt could be pro-
posed (Scheme 2), both based on the bifunctional

nature of 9-amino-Cinchona alkaloid catalysts. Mode
A involves hydrogen bonding of the ammonium salt
to substrate 8. Although this mode decreases the nu-
cleophilicity of 8 electronically, it promotes catalysis
through bringing both reactants close to each other,[26]

facilitating the reaction while imparting stereocontrol.
Three hydrogen bonding interactions are possible, in-
volving the catalyst interacting with the carbonyl
oxygen of the carbamate (mode A1), or with the nu-
cleophilic nitrogen (mode A2). Additionally, the free
amine catalyst can act as a base, activating nucleo-
phile 8 via hydrogen bonding to the nucleophilic ni-
trogen (mode B). As has been postulated previous-
ly,[27] there exists the potential for nitrogen nucleo-
philes to compete with catalysts under iminium catal-
ysis conditions through the formation of a nucleophile
iminium salt; however, in this case no such back-
ground reaction was observed, indicating that the con-
jugate addition was promoted exclusively by the cata-
lyst 7.

In conclusion, we have developed an efficient enan-
tioselective organocatalytic approach, which provides
an unprecedented asymmetric access to 3,5-dialkyl-2-
pyrazolines 6 in useful yield and enantioselectivity.
This methodology was tolerant of a variety of aliphat-
ic a,b-unsaturated enones, using an easily accessible
nitrogen nucleophile and catalyst. Additionally, both
enantiomers of the chiral pyrazolines could be ac-
cessed by using the readily available bifunctional Cin-

Table 3. Substrate scope for the addition of 8 to enones 9a–f.[a]

Entry R1/R2 9–6 7 Yield 6 [%] (2 steps) ee 6 [%]

1 Me/Et 9a–6a 7-Q 72 90
2 Me/Et 9a–6a 7-QD 60 83
3 Me/Me 9b–6b 7-Q 57 82
4 Me/Me 9b–6b 7-QD 46 59
5 n-Pr/Me 9c–6c 7-Q 78 90
6 n-Pr/Me 9c–6c 7-QD 74 81
7 n-Pen/Me 9d–6d 7-Q 58 82
8 n-Pen/Me 9d–6d 7-QD 63 76
9 Cl ACHTUNGTRENNUNG(CH2)3/Me 9e–6e 7-Q 50 91
10 Cl ACHTUNGTRENNUNG(CH2)3/Me 9e–6e 7-QD 63 75
11 SEMO ACHTUNGTRENNUNG(CH2)3/Me 9f–6f 7-Q 64 91
12 SEMO ACHTUNGTRENNUNG(CH2)3/Me 9f–6f 7-QD 66 76
13 n-Pr/n-Bu 9g–6g 7-Q 66 90
14 n-Pr/n-Bu 9g–6g 7-QD 72 86

[a] Reaction conditions (a): 8 (0.1 mmol) 9 (0.2 mmol), 7 (15 mol%), PhCO2H (45 mol%), and solvent (0.35 mL); (b): AcCl
(0.2 mmol), Pd/C (20 mg), and THF (2.0 mL).

Scheme 2. Proposed modes of substrate activation by cata-
lyst 7, and potential substrate-activated mode of background
catalysis.
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chona alkaloid catalysts derived from quinine (7-Q)
and quinidine (7-QD). Such a methodology should
provide a useful asymmetric route to a variety of pre-
viously inaccessible asymmetric 3,5-dialkyl-2-pyrazo-
lines and their derivatives.

Experimental Section

General Procedure for the Enantioselcective
Synthesis of D2-Pyrazolines

Catalyst 7-Q (4.9 mg, 15 mmol) or 7-QD (4.9 mg, 15 mmol),
benzoic acid (5.5 mg, 45 mmol), and 8 (25.6 mg, 0.1 mmol)
were dissolved in toluene/1,2-dichloroethane (7/3, 0.35 mL)
in an ultrasonic bath for 5 min. The reaction vial was placed
in a �25 8C freezer for 20 min, at which point 9 (0.2 mmol)
was added. After standing at �25 8C for 4 days, the reaction
mixture was purified by flash chromatography to give a mix-
ture of 10 and 6 (inseparable mixture). This mixture was
concentrated under vacuum and used for the formation of 6.

To an oven-dried Schlenk flask under N2 were added Pd/
C (20 mg, 0.2 mmol, dry support) and 10 in THF (2.0 mL).
The flask was cooled to �78 8C, exchanged with H2, and
AcCl (14 mL, 0.2 mmol) was added. The bath was changed
to �18 8C (dry ice in saturated aqueous NaCl) and allowed
to warm slowly to room temperature until the full consump-
tion of 10 was observed by TLC (2–4 h). The reaction was
stopped by passing the suspension through a Celite� plug
with CHCl3. Solvent was removed under vacuum, the resi-
due was dissolved in CH2Cl2 (2 mL) and treated with excess
aqueous NaHCO3. The aqueous layer was extracted with
CH2Cl2 (2� 1 mL), the combined organic layers were dried
over anhydrous Na2SO4, and concentrated under vacuum.
The basified residue was purified by flash chromatography
to give 6a–g as pale yellow oils.
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