Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: C. Si, L. Shao, Z. Mao, W. Zhou and B. Wei, Org. Biomol. Chem., 2016, DOI: 10.1039/C6OB02523D.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the author guidelines.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

An efficient approach to trans-4-hydroxy-5-substituted 2pyrrolidinones through stereoselective tandem Barbier process: Divergent Syntheses of (3R,4S)- statines, (+)-preussin and (-)hapalosin

Abstract

Chang-Mei Si, ${ }^{\text {a,s }}$ Lu-Ping Shao, ${ }^{\text {a, }, \S}$ Zhuo-Ya Mao, ${ }^{\text {a,b }}$ Wen Zhou ${ }^{\text {a }}$ and Bang-Guo Weia ${ }^{\text {a,b,* }}$ A diastereoselective approach to trans-4-hydroxy-5-substituted 2-pyrrolidinones 1 ($\mathrm{P}_{1}=\mathrm{TBS}, \mathrm{P}_{2}=\mathrm{H}$) has been developed through stereoselective tandem Barbier process of $\left(R, S_{R S}\right)-8$ with alkyl and aryl bromide. The stereochemistry at the C-5 stereogenic center of the trans-4-hydroxy-5-substituted 2 -pyrrolidinones was solely controlled by α-alkoxy substitution. This effective approach was successfully used to prepare a variety of substituted ($3 R, 4 S$)-statines $\mathbf{2}$. In addition, two bioactive natural products of $(+)$-preussin 4 and hapalosin 5 were effectively synthesized through this stereoselective tandem Barbier process.

Introduction

The discovery of a concise and efficient methodology for enantioselective carbon-carbon bond formation is of great interest in synthetic organic chemistry because the resulting chiral centers can be practicably utilized for the syntheses of many natural products and chiral pharmaceutical agents ${ }^{1}$. Nowadays, the diastereoselective addition of Grignard reagents to imines bearing chiral auxiliaries (e.g. N-tertbutanesulfinamide ${ }^{2}$ and N-toluenesulfinamide ${ }^{3}$) is undoubtedly one of the most effective approaches to chiral amines ${ }^{4}$. As a prime instance, the enantioselective method to chiral functionalized trans-4-hydroxy-5-substituted-2pyrrolidinones 1 (Figure 1) and the ring-opened form, substituted statines $\mathbf{2}$, is very important in synthetic and medicinal chemistry, because both $\mathbf{1}$ and $\mathbf{2}$ serve as a substructure for numerous biologically relevant alkaloids ${ }^{5,6}$ isolated from terrestrial plants, animals and marine, as well as for pharmaceutical agents ${ }^{7}$. For example, epohelmin A (3), an inhibitor of recombinant lanosterol synthase $\left(\mathrm{IC}_{50}=10 \mu \mathrm{M}\right)^{8}$, possesses a hydroxy pyrrolidine unit. (+)-Preussin (4), a pyrrolidinol alkaloid to induce apoptosis in human tumor cells ${ }^{9}$ and hapalosin (5) with multidrug-resistance reversing activity in cancer cells ${ }^{10}$ bear a $(3 R, 4 S)$-substituted statine unit. Other examples include natural products Lyngbyabellin $N(6)$ and

[^0]Symplocin A (7). The former displays anti-cancer acyivity ${ }^{11}$, and the latter shows exceptionally potent activity as an inhibitor of cathepsin $\mathrm{E}\left(\mathrm{IC}_{50} 300 \mathrm{pM}\right)^{12}$.

Epohelmin A 3

(+)-preussin 4
Hapalosin 5

(3R,4S)-4-substituted Statines 2

Lyngbyabellin N 6

Symplocin A 7

Figure 1. Structures of several bioactive products.
In past decades, tremendous efforts have been devoted to the method development for the stereoselective construction of trans4 -hydroxyl-5-substituted 2-pyrrolidinones 1 and its ring-opened form, $(3 R, 4 S)$-substituted statins $\mathbf{2}$. Among a number of powerful
approaches reported so far, ${ }^{6}$ the most common approaches include reductive alkylation ${ }^{6 d, f, f, k}$ or nucleophilic substitution ${ }^{6 c}$ to construct the chiral center of the amino group, as well as by asymmetric reduction to build the stereochemistry of the hydroxyl group ${ }^{6 e}$. Recently, our group discovered a diverse approach for highly diastereoselective synthesis of versatile trans-4-hydroxy-5substituted 2-pyrrolidinones 2 and trans-5-hydroxy-6-substituted 2piperidinones through a one-pot intramolecular tandem protocol ${ }^{61,13}$. However, such tandem process requires Grignard reagents to react with α-chiral aldimine 8. To avoid the lab operation of Grignard reagents, we envisioned that the Barbier type reaction involving α-chiral aldimine 8 , metal and halogenated hydrocarbon could provide similar results in assembling both addition and in situ cyclization through intramolecular aminolysis of esters as well as removal of auxiliaries (Figure 2). In continuation of our efforts to explore utility of N-tert-butanesulfinyl imines, we have accomplished the synthesis of several bioactive natural products and their analogues ${ }^{14}$. Herein, we describe the first onepot tandem Barbier process using α-chiral aldimine 8, magnesium and brominated hydrocarbons to provide trans-4-hydroxy-5-substituted-2-pyrrolidinones 1 and the ring-opened form substituted statines 2 with high chemo and stereoselectivities, as well as its application in asymmetric syntheses of (+)-preussin 4 and (-)-hapolasin 5.

Our Previous works ${ }^{66,13}$

This work

Figure 2. Our strategy to trans-4-hydroxy-5-substituted-2-pyrrolidinones 1.

Results and discussion

As shown in Table 1, α-chiral aldimines $\mathbf{8}^{61,15}$ was used in our investigation. First, several metals ($\mathrm{In}, \mathrm{Zn}, \mathrm{Ir}$) were screened and the results turned out to be fruitless (Table 1, entries 1-3). When α chiral aldimine $\left(R, S_{R}\right)-8$, magnesium shavings and 4-methyl bromobenzene was stirred for overnight, the desired product was observed, which was not easily purified by silica gel chromatography due to the co-elution with the by-product sulfoxide ${ }^{61}$. Therefore, the concentrated crude residue was treated with di-tert-butyl dicarbonate in the presence of DMAP and TEA for 24 h , affording the N -Boc product 1a with high diastereoselectivity ($d r=99: 1$) and in 23% yield (Table 1, entry 4). Considering that the particle size of magnesium chips could affect the overall yield of this cascade Barbier process, two types of magnesium powder (50 or 200 mesh) were tried, and the yields were improved to 32% and 59%, respectively (Table 1, entries 5-6). Different reaction solvents
were also screened and the results are summarized in Trtiable in
 stereoselectivity of 1a was still excellent ($d r=99: 1$), albeit the yield slightly reduced to 44% (Table 1, entry 10). Interestingly, the mixture of $\left(R, S_{S}\right)-8$ and $\left(R, S_{R}\right)-8$, ie, $\left(R, S_{R S}\right)-8$, gave similar results (Table 1, entry 11), suggesting that the chiral sulfinamide moiety was not involved in the stereocontrol during this tandem Barbier addition process.

Table 1. The reactions mediated by different conditions.

[a] The reaction was performed with α-chiral aldimines $8(1.0 \mathrm{mmol}), \mathrm{Mg}(3.2$ mmol) and $4-\mathrm{MePhBr}(3.0 \mathrm{mmol})$ in solvent (5 mL) at rt for overnight, crude product was treated with $\mathrm{Boc}_{2} \mathrm{O}(2.0 \mathrm{mmol})$, DMAP (1.0 mmol) and triethylamine (5.0 mmol) in DMF for 24 h . [b] Isolated yield. [c] dr was determined by HPLC or ${ }^{1} \mathrm{H}$ NMR.

Next, we turned our attention to investigate the scope and limitation of this intramolecular tandem Barbier type process. With $\left(R, S_{R S}\right)-8$ as the starting material, various substituted aryl bromides were screened and the results are summarized in Table 2 (Table 2, entries 1-6 and 8), almost all the substituted aryl bromide could proceed smoothly to give desired products $\mathbf{1 b}-\mathrm{g}$ and $\mathbf{1 i}$ with high diastereoselectivities ($d r=99: 1$) in moderate yields. While 1-bromo-3-fluorobenzene was used, the diastereoselectivity of procuct $\mathbf{1 h}$ was slightly reduced (Table 2, entry 7). Notably, when α-naphthyl bromide was used, the desired lactam $\mathbf{1 j}$ was also obtained with excellent diastereoselectivity ($d r=95: 5$), although the yield is reduced to 30% (Table 2, entry 9). Several sp^{3} hybridized alkyl bromides were screened, the yields of desired products $\mathbf{1 k} \mathbf{k} \mathbf{m}$ was slightly decreased, albeit with excellent diastereoselectivities ($d r=$ 99:1) (Table 2, entries 10-13). Although BnBr could afford the corresponding product 1 n in 46% yield with excellent diastereoselectivity ($d r=97: 3$) (Table 2, entry 13), to our
disappointment, the reaction with allylBr was very messy (Table 2, entry 14).

Table 2. Reactions with various halogenated hydrocarbon with 8

		1.Mg(200), R 2. Boc_{2} tandem Barbier	$0=$ process	$\int_{\cdots, R}^{\text {OTBS }}$
Entry ${ }^{\text {a }}$	R	1b-q	Yield\% ${ }^{\text {b }}$	$d r^{\text {c }}$
1	3-MePh	1b	60	98:2
2	2-MePh	1c	31	99:1
3	Ph-	1d	52	99:1
4	4-MeOPh	1e	54	99:1
5	3-MeOPh	1f	56	99:1
6	2-MeOPh	1 g	27	99:1
7	3-FPh	1h	55	91:9
8	$3-\mathrm{CF}_{3} \mathrm{Ph}$	1 i	51	98:2
9	α-Naphthyl	1j	30	95:5
10	Ethyl	1k	39	99:1
11	Hexyl	11	34	99:1
12	Isobutyl	1m	40	99:1
13	Bn	1 n	46	97:3
14	Allyl	10	--	--

[a] The reaction was performed with α-chiral aldimines $\left(R, S_{S S}\right)-8(1.0 \mathrm{mmol})$, $\mathrm{Mg}(200)(3.2 \mathrm{mmol})$ and $\mathrm{RX}(3.0 \mathrm{mmol})$ in THF (5 mL) at rt for overnight, crude product was treated with $\mathrm{Boc}_{2} \mathrm{O}(2.0 \mathrm{mmol})$, DMAP $(1.0 \mathrm{mmol})$ and triethylamine (5.0 mmol) in DMF for 24 h . [b] Isolated yield. [c] dr was determined by HPLC or ${ }^{1} \mathrm{H}$ NMR.

To confirm the relative configurations of the products 1a-n, compound 1m was treated with tetrabutylammonium fluoride (TBAF) to give alcohol 9 m in 43% yield (Figure 3), which existed in trans-form shown by X-ray crystallographical analysis (see Supporting Information). ${ }^{26}$ Thus, the relative configurations of the products 1a-n were unambiguously assigned as trans-form.

Figure 3. The X-ray crystallographical analysis of 9 m .
With lactams 1 in hand, we turned our attention to utilize them in organic synthesis. Obviously, substituted ($3 R, 4 S$)-statines $\mathbf{2}^{16}$ could be conveniently prepared. Treatment of compounds $\mathbf{1}$ with
tetrabutylammonium fluoride (TBAF) in THF at Q Qeef Ato torome temperature gave alcohols 9, which could be. haydrofzeedzifh $\mathrm{LiOH} / \mathrm{H}_{2} \mathrm{O}_{2}$ and subsequently deprotected with HCl /dioxane to generate substituted ($3 R, 4 S$)-statines 2 as hydrochloride salts (Table $3)$.

Table 3. Synthesis of several substituted ($3 R, 4 S$)-statines 2a-n.

[a]. The reaction was performed with $\mathbf{1}(1.13 \mathrm{mmol})$ and TBAF (1.50 mmol) in THF $(5 \mathrm{~mL})$ at rt for overnight; [b]. The reaction was performed with $9(0.51 \mathrm{mmol}), 30 \%$ $\mathrm{H}_{2} \mathrm{O}_{2}(0.5 \mathrm{~mL})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.53 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(4 / 1)(5 \mathrm{~mL})$ at rt for 12 h , crude product was treated with $\mathrm{HCl} /$ Dioxane and stirred for overnight; [c] Isolated yield.

Another application of 1 is to synthesize (+)-preussin 4, a pyrrolidinol alkaloid. (+)-Preussin 4 could inhibit the growth of bacteria Candida and filamentous fungi, ${ }^{17 a}$ induce apoptosis in human tumor cells ${ }^{17 \mathrm{~b}}$ and inhibit cell growth of the fission yeast ts mutants defective on cdc2-regulatory genes ${ }^{17 c}$. All these reported

Scheme 1. Synthesis of (+)-preussin 4. Reagents and conditions: a. (i) $(\mathrm{COCl})_{2}$, DMSO, TEA, DCM, $-78^{\circ} \mathrm{C}$; (ii) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$, for two steps 90%; b. TBSCI, imidazole DMAP, DMF, $0^{\circ} \mathrm{C}^{\sim} r t, 93 \%$; c. (i) $n-\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{MgBr}, \mathrm{THF},-78^{\circ} \mathrm{C}--40^{\circ} \mathrm{C}$; (ii) $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{rt}, 3$ h; $\mathrm{NaOH}, \mathrm{Ph}=10-12$; (iii) $\mathrm{Pd} / \mathrm{C}, \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2},(\mathrm{HCHO})_{\mathrm{n}}, \mathrm{rt}, 20 \mathrm{~h}$, for three steps 51%; d. TBAF, THF, $0^{\circ} \mathrm{C}^{\sim} \mathrm{rt}, 24 \mathrm{~h}, 61 \%$.
biological activities made preussin an attractive synthetic target to chemists. ${ }^{14 e, 18,19}$ As shown in Scheme 1, our synthesis started from compound 9n, chiral inversion was straight-forward through Swern oxidation ${ }^{20}$ and the subsequent reduction with sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$ in methanol, producing the desired (2S,3S,)-10 in 90% overall yield. Compound 10 was treated with TBSCI to give 11 in 93\% yield. Then the desired 12 was obtained by known addition/ringopening process and followed by continuous deprotection of the Boc group in 11 as well as methylation in 51% overall yield ${ }^{21}$. Finally, deprotection of compound 12 with tetrabutylammonium fluoride (TBAF) in tetrahydrofuran afforded (+)-preussin $4\left\{[\alpha]_{D}{ }^{25}=+33.6\right.$ (c $0.4, \mathrm{CHCl}_{3}$); lit. ${ }^{18 \mathrm{~g}}[\alpha]_{\mathrm{D}}{ }^{25}=+32$ (c 1.1, CHCl_{3}) \} in 61% yield. The spectroscopic and physical data of the synthetic 4 were identical to the reported data. ${ }^{19 f}$

Hapalosin 5, a popular marine natural product, has attracted great attention in recent years ${ }^{22}$. Our strategy for asymmetric synthesis of hapalosin 5 is illustrated in Figure 4, with stereoselective synthesis of substituted $(3 R, 4 S)$-statines 2 and straight synthetic route as our main focus in constructing this target molecule.

Figure 4. Retrosynthetic analysis of hapalosin 5.

As shown in Scheme 2, hydrolysis ($\mathrm{LiOH} / \mathrm{H}_{2} \mathrm{O}_{2}$) of lactam 9n and subsequent reduction ($\mathrm{NMM} / \mathrm{ClCO}_{2} \mathrm{Et} / \mathrm{NaBH}_{4}$) gave a primary alcohol 16 in 83% overall yield, which was converted to silyl ether 17 by treatment with TBSCI/Imidazole in 70\% yield. N-Methylation of 17 was obtained by reacting with MeOTf in the presence of lithium hexamethyldisilazide (LiHMDS) to give compound 18 in 83\% yield. Selective desilylation (CSA) of 18 gave 13 in 99\% yield. The alcohol 13 was converted to acid in two-step sequence: oxidation to aldehyde with Dess-Martin periodinane ${ }^{23}$ and further Pinnick oxidation $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaClO}_{2}\right)^{24}$ to give free acid. The coupling of this acid and the alcohol 14^{25} was accomplished under classical yamaguchi ${ }^{23}$ condition $\left(\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{COCl}\right.$, TEA, DMAP). Desilylation of 15 with TBAF afforded compound 19 in 59\% overall yield. Upon the N Boc deprotection (TFA) and subsequent hydrogenation (Pd/C, EtOH, H_{2}), the intramolecular cyclization was achieved by the known amidation conditions ${ }^{22 c}$ to afford desired hapalosin $5\left\{[\alpha]_{\mathrm{D}}{ }^{25}=-42.1\right.$ (c $0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ lit. ${ }^{22 \mathrm{~b}}[\alpha]_{\mathrm{D}}{ }^{18}=-41$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); lit. ${ }^{22 \mathrm{~d}}[\alpha]_{\mathrm{D}}{ }^{25}=-41.2$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) \} in 41% overall yield. The spectroscopic and physical
data of the synthetic hapalosin 5 were identical with the reported data. ${ }^{22 d}$

DOI: 10.1039/C6OB02523D

Hapalosin (5)
Scheme 2. Synthesis of Hapalosin 5. Reagents and conditions: a. (i) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}$, THF/ $\mathrm{H}_{2} \mathrm{O}$; (ii) NMM, $\mathrm{ClCO}_{2} \mathrm{Et}$, THF, $0.5 \mathrm{~h} ; \mathrm{NaBH}_{4}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, for two steps 83%; b. TBSCI, imidazole, DMAP, DMF, $0^{\circ}{ }^{\circ} \sim \sim$ rt, 70%; c. LiHMDS, HMPA, MeOTf, THF, $78^{\circ}{ }^{\circ} 0^{\circ} \mathrm{C}, 83 \%$ d. CSA, $\mathrm{DCM} / \mathrm{MeOH},-40^{\circ} \mathrm{C}, 8 \mathrm{~h}, 99 \%$; e. (i) DMP, 0.5 h ; $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaClO}_{2}, 2$-methylbut-2-ene, t - BuOH ; (ii) $\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{COCl}, \mathrm{DMAP}, \mathrm{TEA}$; (iii) TBAF, THF, $0^{\circ} \mathrm{C}^{\sim} \mathrm{rt}, 24 \mathrm{~h}$, for three steps 59%; f. (i) TFA, rt, 4 h ; (ii) Pd/C, EtOH, 6 h ; (iii) DPPA, DIPEA, DMF, $0^{\circ} \mathrm{C}^{\sim} \mathrm{rt}, 4 \mathrm{~d}$, for three steps 41%.

Conclusions

In summary, we established an asymmetric one-pot method for highly diastereoselective synthesis of trans-4-hydroxy-5substituted 2-pyrrolidinones 1 through an intramolecular stereoselective tandem Barbier process of $\left(R, S_{R S}\right)-8$, alkyl and aryl bromide. The stereochemistry at the C-5 stereogenic center of the trans-4-hydroxy-5-substituted 2-pyrrolidinones was solely controlled by α-alkoxy substitution. This effective approach was successfully used to synthesize the libraries of substituted $(3 R, 4 S)$-statines 2 . In addition, the utility of chiral δ-lactams 1 was demonstrated by asymmetric syntheses of (+)preussin 4 and hapalosin 5.

Experimental

General: THF was distilled from sodium/benzophenone. Reactions were monitored by thin layer chromatography (TLC) on glass plates coated with silica gel with fluorescent indicator. Flash chromatography was performed on silica gel (300-400 mesh) with Petroleum ether/EtOAc as eluent. Optical rotations were measured on a polarimeter with a sodium lamp. HRMS were measured on LTQ-Orbitrap-XL or LCMS-IT-TOF apparatus. IR spectra were recorded using film on a Fourier Transform Infrared Spectrometer. NMR spectra were recorded at 400 MHz or 600 MHz , and chemical shifts are reported in $\delta(\mathrm{ppm})$ referenced to an internal TMS standard for ${ }^{1} \mathrm{H}$ NMR and CDCl_{3} (77.16 ppm) for ${ }^{13} \mathrm{C}$ NMR.

General procedure for synthesis of 1a-n: Compound 8 (1.00 g, 2.86 mmol) was dissolved in anhydrous THF (15 mL) at room temperature. Then magnesium powder (200 mesh, $222 \mathrm{mg}, 9.15$ mmol) was added in one portion. The $\mathrm{RBr}(8.58 \mathrm{mmol})$ was slowly dropped. After being stirred for overnight, the reaction was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine. Dried, filtered and concentrated, the crude amide was directly dissolved in dry DMF (15 mL). Then TEA (2.0 mL , 14.30 $\mathrm{mmol}), \mathrm{Boc}_{2} \mathrm{O}(1.3 \mathrm{~mL}, 5.72 \mathrm{mmol})$ and DMAP ($349 \mathrm{mg}, 2.86 \mathrm{mmol}$) were added. After being stirred for 24 h , the reaction was diluted with water and extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic layers were washed with water and brine for two times respectively. Dried, filtered and concentrated, the residue was purified by flash chromatography on silica gel (PE/EA = 15/1) to give imide 1a-n.
(2S,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2-p-tolylpyrrolidine-1-carboxylate 1a
White solid ($615 \mathrm{mg}, 53 \%$), m.p. $98-100^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}^{23}}=-4.9$ (c 1.10, CHCl_{3}); IR (film) $v_{\text {max }}$ 2954, 2930, 2857, 1789, 1755, 1721, 1366, 1307, 1153, $1080 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.03(\mathrm{~m}$, 4 H), 4.96-4.90 (m, 1H), 4.10-4.04 (m, 1H), 2.84 (dd, $J=17.2,5.6 \mathrm{~Hz}$, 1 H), 2.41-2.36 (m, 1H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}$, 3 H), $0.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.1, 149.8, 137.8, 136.1, 129.7, 125.2, 83.0, 72.2, 71.4, 41.1, 27.9, 25.8, 21.2, 18.1, $-4.6,-4.7 \mathrm{ppm}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa}: 428.2233$, found: 428.2222 .
(2S,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2-m-tolylpyrrolidine-1-carboxylate $\mathbf{1 b}$
Yellow oil ($696 \mathrm{mg}, 60 \%$). $[\alpha]_{D^{22}}=-2.0\left(c 1.00, \mathrm{CHCl}_{3}\right.$); IR (film) $v_{\text {max }}$ 2954, 2930, 2857, 1790, 1756, 1721, 1367, 1307, 1154, $1081 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.25-7.20 ($\mathrm{m}, 1 \mathrm{H}$), 7.13-7.07 ($\mathrm{m}, 1 \mathrm{H}$), 6.98-6.93 (m, 2H), 4.95-4.90 (m, 1H), 4.12-4.04 (m, 1H), $2.85(\mathrm{dd}, J=$ $17.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, \mathrm{J}=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}$, $9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 173.1,149.8,139.1,138.9,129.0,128.8,125.8,122.5,83.1$, 72.1, 71.6, 41.2, 27.9, 25.8, 21.6, 18.1, -4.6, -4.7 ppm; HRMS (ESITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa}: 428.2233$, found: 428.2233.
(2S,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2-o-tolylpyrrolidine-1-carboxylate 1c

Yellow oil ($360 \mathrm{mg}, 31 \%$). [$\alpha]_{D_{0}}{ }^{22}=-8.1$ (c $1.00, \mathrm{CHCl}_{3}$); IR (film) $v_{\text {max }}$ 2958, 2930, 2850, 1790, 1754, 1721, 1367, 1460, 1306, 1154, 1080, $837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.22-7.17 ($\mathrm{m}, 3 \mathrm{H}$), 7.03-6.98 $(\mathrm{m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.03(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{dd}, \mathrm{J}=17.2$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1$, 149.6, 137.3, 135.0, 131.0, 127.8, 126.7, 123.4, 83.0, 71.2, 68.0, 41.3, 27.8, 25.7, 19.4, 18.0, -4.4, -4.8 ppm; HRMS (ESI-TOF) m / z : [M $+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa}: 428.2233$, found: 428.2231 .

(2S,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2-phenylpyrrolidine-1-carboxylate 1d

White solid ($582 \mathrm{mg}, 52 \%$), m.p. $112-114^{\circ} \mathrm{C} .[\alpha]_{D^{22}}^{22}=-5.5$ (c 1.00, CHCl_{3}); IR (film) $v_{\text {max }}$ 2950, 2929, 2853, 1790, 1754, 1363, 1306,

 $17.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=17.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}$, 9 H), 0.06 (s, 3H), $0.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.0, 149.7, 139.2, 129.1, 128.1, 125.3, 83.1, 72.1, 71.6, 41.2, 27.8, 25.8, 18.1, -4.6, -4.7 ppm; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SiNa}$: 414.2071, found: 414.2066.
(2S,3R)-tert-Butyl
3-(tert-butyldimethylsilyloxy)-2-(4-methoxyphenyl)-5-oxopyrrolidine-1-carboxylate 1e
Yellow oil ($651 \mathrm{mg}, 54 \%$). [$\alpha]_{D_{0}}{ }^{23}=-5.8$ (c $1.00, \mathrm{CHCl}_{3}$); IR (film) $v_{\text {max }}$ 2953, 2930, 2857, 1787, 1720, 1515, 1367, 1306, 1251, 1150, 1075, $836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.12-7.07 (m, 2H), 6.92-6.87 $(\mathrm{m}, 2 \mathrm{H}), 4.93-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{dd}$, $J=17.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, \mathrm{J}=17.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 0.89$ $(\mathrm{s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 173.0, 159.4, 149.8, 131.2, 126.5, 114.4, 83.0, 72.2, 71.1, 55.5, 41.2, 27.9, 25.8, 18.1, -4.6, -4.7 ppm ; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{SiNa}: 444.2182$, found: 444.2172 .

(2S,3R)-tert-Butyl
 3-(tert-butyldimethylsilyloxy)-2-(4-methoxyphenyl)-5-oxopyrrolidine-1-carboxylate $\mathbf{1 f}$

Yellow oil ($675 \mathrm{mg}, 56 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}=+30.5$ (c 1.00, CHCl_{3}); IR (film) $v_{\text {max }}$ 2955, 2930, 2857, 1789, 1755, 1721, 1603, 1473, 1366, 1306, 1153, $1080,837,778 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.25(\mathrm{~m}, 1 \mathrm{H})$, 6.87-6.82 (m, 1H), 6.79-6.74 (m, 1H), 6.72-6.68 (m, 1H), 4.94-4.91 $(\mathrm{m}, 1 \mathrm{H}), 4.12-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{dd}, J=17.6,5.6 \mathrm{~Hz}$, 1 H), 2.40 (dd, J = 17.6, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.33(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}$, 3 H), $0.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,160.3$, 149.7, 140.8, 130.2, 117.4, 113.2, 111.1, 83.1, 72.1, 71.5, 55.4, 41.2, 27.8, 25.8, 18.1, -4.6, -4.7 ppm ; HRMS (ESI-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{SiNa}: 444.2177$, found: 444.2178 .

(2S,3R)-tert-Butyl
 3-(tert-butyldimethylsilyloxy)-2-(2-methoxyphenyl)-5-oxopyrrolidine-1-carboxylate $\mathbf{1 g}$

Yellow oil ($326 \mathrm{mg}, 27 \%$). $[\alpha]_{D^{23}}=+2.3$ (c 1.00, CHCl_{3}); IR (film) $v_{\text {max }}$ 2953, 2930, 2858, 1756, 1720, 1588, 1493, 1366, 1246, 1152, 1083, $1022,836,780 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.27(\mathrm{~m}, 1 \mathrm{H})$, 7.03-6.92 (m, 3H), 5.39-5.31 (m, 1H), 4.18-4.10 (m, 1H), $3.88(\mathrm{~s}, 3 \mathrm{H})$, $2.78(\mathrm{dd}, \mathrm{J}=17.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}$, 9 H), $0.14(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.8, 156.4, 149.9, 129.1, 126.6, 125.1, 120.8, 110.7, 82.7, 70.3, 66.9, 55.2, 41.5, 27.9, 25.8, 18.1, -4.7, -4.9 ppm; HRMS (ESI-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{SiNa}: 444.2177$, found: 444.2170.
(2S,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(3-fluorophenyl)-5-oxopyrrolidine-1-carboxylate 1 h
White solid ($644 \mathrm{mg}, 55 \%$), m.p. $50-52^{\circ} \mathrm{C} .[\alpha]_{D^{24}}=-6.2$ (c 1.00 , CHCl_{3}); IR (film) $v_{\text {max }} 2956,2926,2852,1789,1757,1721,1593$, $1367,1304,1257,1153,1078,921,839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.40-7.30 (m, 1H), 7.05-6.85 (m, 3H), $4.92(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12-4.06(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=17.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (dd, $J=17.6$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,163.3(\mathrm{~d}, \mathrm{~J}=246.1 \mathrm{~Hz}), 149.6$, $142.0(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 120.9(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 115.1$ ($\mathrm{d}, J=21.0 \mathrm{~Hz}$), $112.5(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 83.4,72.0,71.0,71.0,41.1$, 27.9, 25.8, 18.1, -4.7 ppm ; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{FNO}_{4} \mathrm{SiNa}$: 432.1982, found: 432.1985.
(2S,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2-(3(trifluoromethyl) phenyl)pyrrolidine-1-carboxylate $\mathbf{1 i}$

Yellow oil ($670 \mathrm{mg}, 51 \%$). [$\alpha]_{D_{0}}{ }^{22}=-4.2$ (c 1.00, CHCl_{3}); IR (film) $v_{\text {max }}$ 2957, 2932, 2859, 1801, 1366, 1333, 1311, 1252, 1167, 1130, 1097, $890,839 \mathrm{~cm}^{-1}$; ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.37(\mathrm{~m}, 4 \mathrm{H}), 4.96(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.07(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{dd}, \mathrm{J}=17.2,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.48 (dd, $J=17.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.29(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$, 0.01 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,149.4,140.7$, 131.6 (q, J = 32.3 Hz), 129.7, 128.6, 125.0 (q, $J=3.7 \mathrm{~Hz}$), 123.9 (q, J = 270.8 Hz), 122.5 ($q, J=3.6 \mathrm{~Hz}$), 83.6, 72.1, 71.0, 41.2, 27.8, 25.7, 18.1, -4.7, -4.8 ppm ; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:\left[\mathrm{M} \mathrm{+} \mathrm{Na]}{ }^{+}\right.$Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{SiNa}$: 482.1950, found: 444.1951.
(2S,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(naphthalen-1-yl)-5-oxopyrrolidine-1-carboxylate 1 j
Colorless oil ($379 \mathrm{mg}, 30 \%$). $[\alpha]_{D^{23}}=+42.7$ (c 1.00, CHCl_{3}); IR (film) $v_{\text {max }} 2955,2933,2861,1790,1761,1727,1375,1311,1156,1078$, $923,839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס 8.07-8.02 (m, 1H), 7.94$7.90(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 1 \mathrm{H})$, 7.26-7.21 (m, 1H), 5.85-5.82 (m, 1H), 4.24-4.20 (m, 1H), $2.84(\mathrm{dd}, \mathrm{J}=$ $17.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H})$, 0.09 (s, 3H), 0.03 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3$, 149.8, 134.4, 134.1, 130.4, 129.3, 128.6, 126.7, 126.2, 125.4, 122.7, 120.9, 83.2, 70.9, 68.4, 41.4, 27.8, 25.8, 18.0, -4.4, -4.6 ppm; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa}: 464.2233$, found: 464.2223.
(2S,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-ethyl-5-oxopyrrolidine-1-carboxylate $1 \mathbf{k}$
Colorless oil ($383 \mathrm{mg}, 39 \%$). $[\alpha]_{D^{23}}=+29.0\left(c 1.00, \mathrm{CHCl}_{3}\right.$); IR (film) $v_{\text {max }} 2957,2932,2858,1786,1751,1714,1463,1368,1309,1252$, $1156,1072,837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.07(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=17.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.28(\mathrm{~m}$, 1H), 1.80-1.68 (m, 1H), 1.53 (s, 9H), 1.45-1.36 (m, 1H), 1.00-0.95 (m, 3H), 0.86 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H) ppm; ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}$, CDCl_{3}) $\delta 172.8,150.2,82.9,69.4,68.0,41.9,28.2,25.8,25.1,18.1$, 10.4, $-4.5,-4.6 \mathrm{ppm}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SiNa}: 366.2077$, found: 366.2067.

(2S,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-hexyl-5-oxopyrrolidine-1-carboxylate 11

Yellow oil ($389 \mathrm{mg}, 34 \%$). $[\alpha]_{\mathrm{D}^{24}}=+24.7$ (c 1.00, CHCl_{3}); IR (film) $v_{\text {max }}$ 2956, 2930, 2857, 1787, 1754, 1716, 1582, 1471, 1368, 1310, 1255, $1155,1079,837,777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.06(\mathrm{~d}, \mathrm{~J}=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94-3.88 (m, 1H), 2.77 (dd, $J=17.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.34 (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.39-1.27(\mathrm{~m}, 10 \mathrm{H}), 0.93-0.89(\mathrm{~m}, 3 \mathrm{H})$, $\left.0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 172.8,150.2,82.9,68.4,68.1,41.8,32.1,31.8,29.3,28.2,26.1$, 25.8, 22.7, 18.1, 14.2, -4.5, -4.6 ppm; HRMS (ESI-Orbitrap) m / z : [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{SiNa}: 422.2697$, found: 422.2692 .

(2S,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-isobutyl-5-oxopyrrolidine-1-carboxylate 1 m

Colorless oil ($424 \mathrm{mg}, 40 \%$). $[\alpha]_{D^{22}}=+38.7$ (c $2.00, \mathrm{CHCl}_{3}$); IR (film) $v_{\text {max }} 2958,2931,2857,1788,1752,1716,1471,1368,1312,1157$, $1078,837 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.06(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.00 (dd, $J=10.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (dd, $J=17.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.50-1.44(\mathrm{~m}, 1 \mathrm{H})$,

 150.0, 82.9, 68.6, 66.5, 41.6, 41.2, 28.2, 25.7, 25.4, 23.9, 21.8, 18.0, $-4.5,-4.7 \mathrm{ppm}$; HRMS (ESI-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{NO}_{4} \mathrm{Si}: 372.2565$, found: 372.2566 .
(2S,3R)-tert-Butyl 2-benzyl-3-(tert-butyldimethylsilyloxy)-5-oxopyrrolidine-1-carboxylate 1 n
Yellow oil ($534 \mathrm{mg}, 46 \%$). $[\alpha]_{\mathrm{D}^{23}}=+11.0$ (c 2.00, CHCl_{3}); IR (film) $v_{\text {max }}$ 2956, 2930, 2857, 1787, 1754, 1713, 1368, 1312, 1258, 1148, 1075, $827 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.37-7.24 (m, 3H), 7.21-7.17 $(\mathrm{m}, 2 \mathrm{H}), 4.15$ (dd, $J=10.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ (dd, $J=13.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=17.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=$ $13.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{~s}, 9 \mathrm{H})$, $-0.24(\mathrm{~s}, 3 \mathrm{H}),-0.25(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9$, 150.1, 136.8, 129.4, 129.0, 127.2, 83.2, 69.3, 67.0, 41.5, 38.1, 28.3, 25.7, 18.0, -5.1, -5.2 ppm ; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa}: 428.2228$, found: 428.2221 .
General procedure for synthesis of 9 :
Compound $\mathbf{1}$ (1.13 mmol) was dissolved in anhydrous THF (5 mL) and treated with TBAF ($1.7 \mathrm{~mL}, 1.70 \mathrm{mmol}, 1 \mathrm{M}$ in THF) for overnight at room temperature. The resulted mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine. Dried and concentrated, the residue was purified by flash chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=1 / 1$) to give imide 9 .
(2S,3R)-tert-Butyl 3-hydroxy-5-oxo-2-p-tolylpyrrolidine-1carboxylate 9a
White solid ($227 \mathrm{mg}, 69 \%$), m.p. $142-143^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}^{23}}=+28.1$ (c 1.00, CHCl_{3}); IR (film) $v_{\text {max }} 3459,2978,2926,1775,1368,1305,1152$, $1019,751 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.13-$ $7.06(\mathrm{~m}, 2 \mathrm{H}), 5.09-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.16(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=18.0$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.8,149.7,138.0,135.7,129.8,125.2$, 83.3, 71.5, 70.8, 40.6, 27.9, 21.2 ppm; HRMS (ESI-Orbitrap) m / z : [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{4}: 292.1543$, found: 292.1543.
(2S,3R)-tert-Butyl $\quad 3$-hydroxy-5-oxo-2-m-tolylpyrrolidine-1-
carboxylate 9 b carboxylate $9 b$

White solid ($240 \mathrm{mg}, 73 \%$), m.p. $151-153^{\circ} \mathrm{C} .[\alpha]_{{ }^{2}}^{23}=+28.2$ (c 1.00, CHCl_{3}); IR (film) $v_{\text {max }} 3480,2978,2926,1766,1366,1329,1292$, $1279,1152,778 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.21(\mathrm{~m}, 1 \mathrm{H})$, 7.17-7.08 (m, 1H), 7.05-6.96 (m, 2H), 5.12-5.02 (m, 1H), 4.26-4.16 (m, 1H), 2.92 (dd, $J=18.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ $(\mathrm{s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.2, 149.7, $138.9,138.8,129.0,128.9,125.9,122.4,83.3,71.3,71.0,40.6,27.9$, 21.5 ppm ; HRMS (ESI-Orbitrap) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{4}$: 292.1543, found: 292.1544.

(2S,3R)-tert-Butyl 3-hydroxy-2-(4-methoxyphenyl)-5-oxopyrrolidine-1-carboxylate 9e

White solid ($139 \mathrm{mg}, 40 \%$), m.p. $127-129^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}^{23}}=+23.7$ (c 0.35, CHCl_{3}); IR (film) $v_{\text {max }}$ 2981, 2930, 2838, 1772, 1515, 1368, 1306, $1250,1151,1029,844 \mathrm{~cm}^{-1}$; 1 H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.10$ $(\mathrm{m}, 2 \mathrm{H})$, 6.93-6.86 (m, 2H), 5.09-5.04 (m, 1H), 4.22-4.14 (m, 1H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{dd}, J=18.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H})$,
1.31 ($\mathrm{s}, 9 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,159.5,149.8$, 130.9, 126.5, 114.5, 83.2, 71.4, 70.6, 55.5, 40.6, 27.9 ppm; HRMS (ESI-Orbitrap) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{5}: 308.1493$, found: 308.1494.

(2S,3R)-tert-Butyl 2-(3-fluorophenyl)-3-hydroxy-5-oxopyrrolidine-1-carboxylate 9h

White solid (204 mg, 61\%), m.p. $169-170^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{23}=+21.6$ (c 1.00, CHCl_{3}); IR (film) $v_{\max } 2978,2915,1771,1368,1333,1291,1154$, 1069, $778 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.06-$ $6.98(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}$, 1 H), 3.03 (brs, 1 H), 2.90 (dd, $J=18.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=18.0 \mathrm{~Hz}$, 1H), $1.32(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,163.4$ (d, J $=247.5 \mathrm{~Hz}), 149.6,141.6(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 120.8$ ($\mathrm{d}, J=3.1 \mathrm{~Hz}$), $115.1(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 112.6(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 83.6,71.1$, 70.5, 40.5, 27.9 ppm ; HRMS (ESI-Orbitrap) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{FNO}_{4}$: 296.1293, found: 296.1292.
(2S,3R)-tert-Butyl 3-hydroxy-5-oxo-2-(3-(trifluoromethyl)phenyl)pyrrolidine-1-carboxylate 9i
White solid ($242 \mathrm{mg}, 62 \%$), m.p. $138-139^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{23}=+22.9$ (c 1.00, CHCl_{3}); IR (film) $v_{\max } 2983,2930,1776,1331,1310,1152,1126$, $1074 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.64-7.57 (m, 1H), 7.57-7.49 $(\mathrm{m}, 2 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.14(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.21(\mathrm{~m}, 1 \mathrm{H})$, $3.10-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=18.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=18.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,149.5$, $140.2,131.7(q, J=32.4 \mathrm{~Hz}), 129.8,128.5,125.1(q, J=3.4 \mathrm{~Hz})$, 124.0 ($q, J=272.0 \mathrm{~Hz}$), 122.6 ($q, J=3.4 \mathrm{~Hz}$), $83.8,71.1,70.6,40.6$, 27.8 ppm ; HRMS (ESI-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4}$: 346.1261, found 346.1260 .
(2S,3R)-tert-Butyl 3-hydroxy-2-(naphthalen-1-yl)-5-oxopyrrolidine-1-carboxylate 9j
Colorless oil (211 mg, 57\%). [$\alpha]_{\mathrm{D}}{ }^{23}=+56.4$ (c $0.25, \mathrm{CHCl}_{3}$); IR (film) $v_{\max }$ 2981, 2921, 1776, 1369, 1307, 1150, 1045, $777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-8.07(\mathrm{~m}, 1 \mathrm{H}), 7.95-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.80$ $(\mathrm{m}, 1 \mathrm{H}), 7.65-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H})$, 5.97-5.93 (m, 1H), 4.35-4.31 (m, 1H), $2.88(\mathrm{dd}, J=18.0,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.75 (brs, 1H), 2.51 (d, J = $18.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.25 (s, 9H) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.2,149.8,134.2,133.8,130.4,129.3,128.8$, 127.0, 126.3, 125.4, 122.5, 120.8, 83.4, 70.1, 67.7, 41.1, 27.9 ppm; HRMS (ESI-Orbitrap) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4}$: 328.1543, found: 328.1544.

(2S,3R)-tert-Butyl
 2-ethyl-3-hydroxy-5-oxopyrrolidine-1carboxylate 9 k

White solid ($142 \mathrm{mg}, 55 \%$), m.p. $122-124^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{24}=+45.5$ (c 1.36, CHCl_{3}); IR (film) $v_{\max } 2973,2932,2882,1773,1715,1370,1300$, 1155, 1041, $1019 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.21-4.14(\mathrm{~m}$, $1 \mathrm{H}), 3.96(\mathrm{dd}, J=9.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=18.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (d, J = $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~s}$, $9 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.08-0.93(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.1,150.1,83.1,68.8,67.3,41.4,28.1,25.1,10.2 \mathrm{ppm} ;$ HRMS (ESI-Orbitrap) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{4}: 230.1387$, found: 230.1386.

(2S,3R)-tert-Butyl carboxylate 9m

3-hydroxy-2-isobutyl-5-oxopyrrolidine-1-

(3R,4S)-4-Amino-3-hydroxy-4-(4-methoxyphenyl)butanoic hydrochloride 9 e

Yellow oil ($80 \mathrm{mg}, 60 \%$). $[\alpha]_{\mathrm{D}^{24}}=+17.4$ (c $1.00, \mathrm{H}_{2} \mathrm{O}$); IR (film) $v_{\text {max }}$ $1715,1613,1518,1256,1182,1032,837 \mathrm{~cm}^{-1}$; $^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) 8 8.69-8.40 (m, 2H), 7.42-7.37 (m, 2H), 7.00-6.94 (m, 2H), 5.68 (brs, 1 H), 4.41-4.33 (m, 1H), $4.23(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 2.29 (dd, $J=15.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=15.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6}) δ 171.8, 159.3, 130.0, 125.9, 113.5, 67.2 , 56.9, 55.1, 38.7 ppm ; HRMS (ESI-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{4}: 226.1074$, found: 226.1072.
(3 R,4S)-4-Amino-4-(3-fluorophenyl)-3-hydroxybutanoic acid hydrochloride $\mathbf{2 h}$
White solid ($92 \mathrm{mg}, 72 \%$), m.p. $176-178^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}^{24}}=+15.2$ (c 1.79, $\mathrm{H}_{2} \mathrm{O}$); IR (film) $v_{\text {max }} 3033,2921,1713,1593,1494,1454,1403,1250$, 1181, 1052, $793 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.90-8.60(\mathrm{~m}$, 2H), 7.51-7.35 (m, 2H), 7.33-7.18 (m, 2H), 5.77 (brs, 1H), 4.47-4.39 (m, 1H), $4.36(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=16.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95$ (dd, $J=16.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 171.7$, 161.7 (d, J = 243.3 Hz), 136.7 (d, $J=7.6 \mathrm{~Hz}$), 130.1 (d, $J=8.1 \mathrm{~Hz}$), $125.1(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 115.3(\mathrm{~d}, J=20.8 \mathrm{~Hz})$, 67.0, 57.0, 38.8 ppm ; HRMS (ESI-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FNO}_{3}$: 214.0874, found: 214.0873.

(3R,4S)-4-Amino-3-hydroxy-4-(3-(trifluoromethyl)phenyl)butanoic

 acid hydrochloride 2iYellow oil ($116 \mathrm{mg}, 76 \%$). $[\alpha]_{\mathrm{D}}^{23}=+9.3$ ($c 1.00, \mathrm{H}_{2} \mathrm{O}$); IR (film) $v_{\text {max }}$ 2921, 1715, 1630, 1328, 1167, 1127, 1075, $1054 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.00-8.50(\mathrm{~m}, 2 \mathrm{H}), 7.95-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.73(\mathrm{~m}$, 2H), 7.70-7.62 (m, 1H), 5.84 (brs, 1H), 4.51-4.39 (m, 2H), 2.45-2.35 (m, 1H), 1.88 (dd, $J=15.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) δ 171.6, 135.4, 133.1, 129.2, 128.9 ($q, J=31.3 \mathrm{~Hz}$), 125.5 (q, $J=3.1 \mathrm{~Hz}$), $125.2(\mathrm{q}, J=3.0 \mathrm{~Hz}), 124.1(\mathrm{q}, J=272.4 \mathrm{~Hz}), 66.9,56.8$, 38.9 ppm ; HRMS (ESI-Orbitrap) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{3}$: 264.0842, found: 264.0842.

(3R,4S)-4-Amino-3-hydroxy-4-(naphthalen-1-yl)butanoic hydrochloride 2 j

 acidWhite solid ($96 \mathrm{mg}, 67 \%$), m.p. $148-150^{\circ} \mathrm{C} .[\alpha]_{D^{25}}=+47.4$ (c 0.61, $\mathrm{H}_{2} \mathrm{O}$); IR (film) $v_{\text {max }} 1635,1203,1142,1054 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 8.60-8.52(\mathrm{~m}, 2 \mathrm{H}), 8.25-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.06-7.96(\mathrm{~m}, 2 \mathrm{H})$, 7.82-7.74 (m, 1H), 7.68-7.55 (m, 3H), 5.99-5.86 (m, 1H), 5.33-5.20 (m, 1H), 4.59-4.44 (m, 1H), 2.26 (dd, $J=16.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.03$ (dd, J $=16.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d 6) $\delta 171.8$, 133.1, 130.9, 130.3, 128.9, 128.8, 126.8, 126.0, 125.5, 125.1, 122.8, 67.5, 52.8, 37.7 ppm ; HRMS (ESI-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}: 246.1125$, found: 246.1122 .

($3 R, 4 S$)-4-Amino-3-hydroxyhexanoic acid hydrochloride 2 k

Light yellow oil ($79 \mathrm{mg}, 84 \%$). $[\alpha]_{\mathrm{D}^{25}}=-0.2$ (c 1.00, $\mathrm{H}_{2} \mathrm{O}$); IR (film) $v_{\text {max }}$ 1671, 1200, 1142, $1047 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 7.92-7.80 (m, 2H), 5.57 (brs, 1H), 4.17-4.10 (m, 1H), 3.05-2.99 (m, 1 H), 2.46 (dd, $J=15.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=15.6,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.60-1.45(\mathrm{~m}, 2 \mathrm{H}), 0.96-0.90(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 172.2,66.6,56.2,37.5,20.3,10.0 \mathrm{ppm}$; HRMS (ESIOrbitrap) $m / z:[2 \mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}: 295.1864$, found: 295.1867.
acid (3R,4S)-4-Amino-3-hydroxy-6-methylheptanoic acid hydrochleride 2m

DOI: 10.1039/C6OB02523D
White solid ($87 \mathrm{mg}, 81 \%$), m.p. $160-162^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}^{24}}=-8.10$ (c 1.00, $\mathrm{H}_{2} \mathrm{O}$); IR (film) $v_{\text {max }} 2964,1676,1202,1142,1041 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 7.92-7.80 (m, 2H), 5.58 (brs, 1H), 4.16-4.10 (m, 1 H), 3.19-3.12 (m, 1H), $2.44(\mathrm{dd}, \mathrm{J}=15.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, \mathrm{J}=$ $15.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.43$ (ddd, $J=14.8,9.2,5.2 \mathrm{~Hz}$, 1 H), 1.28 (ddd, $J=14.8,9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.92-0.86(\mathrm{~m}, 3 \mathrm{H}), 0.85-$ $0.83(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6}) $\delta 172.1,67.0,52.9$, 37.3, 36.2, 23.5, 22.9, 21.5 ppm ; HRMS (ESI-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{NO}_{3}$: 176.1281 , found: 176.1282 .
($3 R, 4 S$)-4-Amino-3-hydroxy-5-phenylpentanoic acid hydrochloride $2 n$
Yellow oil ($96 \mathrm{mg}, 77 \%$). $[\alpha]_{\mathrm{D}^{25}}=-19.9$ ($c 1.00, \mathrm{H}_{2} \mathrm{O}$); IR (film) $v_{\text {max }}$ 2937, 1672, 1414, 1143, 1055, $1033 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSOd_{6}) $\delta 8.20-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.66$ (brs, 1H), 4.16-4.08 (m, 1H), 3.44-3.42 (m, 1H), 2.89 (dd, J=14.4, 6.4 Hz, 1H), $2.81(\mathrm{dd}, J$ $=14.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=15.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=15.6$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 172.2, 136.6, 129.2, 128.6, 126.8, 66.4, 56.3, 37.4, 33.4 ppm; HRMS (ESI-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{3}: 210.1125$, found: 210.1125 .

(2S,3S)-tert-Butyl 2-benzyl-3-hydroxy-5-oxopyrrolidine-1carboxylate 10

To a solution of $\left(\mathrm{COCl}_{2}(0.7 \mathrm{~mL}, 8.10 \mathrm{mmol})\right.$ in dry DCM $(15 \mathrm{~mL})$ was treated with DMSO ($1.1 \mathrm{~mL}, 16.20 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After the mixture was stirred for 1 h , a solution of $9 \mathrm{n}(1.18 \mathrm{~g}, 4.05 \mathrm{mmol})$ in DCM (5 mL) was dropped and stirred for another 3 h . Then TEA (3.4 $\mathrm{mL}, 24.30 \mathrm{mmol}$) was added and stirred at room temperature for 1 h . The reaction mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{DCM}(50 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine. Dried and concentrated, the residue was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Then NaBH_{4} ($153 \mathrm{mg}, 4.05 \mathrm{mmol}$) was added in one portion. After being stirred for 30 min , the mixture was concentrated and the residue was dissolved in EtOAc (30 mL) and water (30 mL). The resulted mixture was separated and extracted with EtOAc ($50 \mathrm{~mL} \times$ 3). The combined organic layers were washed with brine. Dried and concentrated, the residue was purified by flash chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=1 / 1$) to give $\mathbf{1 0}(1.06 \mathrm{~g}, 90 \%)$ as a white solid. M.p. $98-100^{\circ} \mathrm{C} .[\alpha]_{D^{23}}=+26.0\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (film) $v_{\max } 3400,2970$, 1760, 1650, 1355, 1280, $1167 \mathrm{~cm}^{-1}$; ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.33-7.27 (m, 4H), 7.26-7.20 (m, 1H), 4.55-4.42 (m, 2H), 3.17-3.13 $(\mathrm{m}, 2 \mathrm{H}), 2.63(\mathrm{dd}, J=16.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=17.2,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.01-1.94 (m, 1H), $1.50(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.4, 149.9, 137.8, 129.9, 128.8, 126.8, 83.5, 65.8, 62.7, 40.3, 34.1, 28.1 ppm ; HRMS (ESI-TOF) m / z : [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}$: 314.1363, found: 314.1372.
(2S,3S)-tert-Butyl 2-benzyl-3-((tert-butyldimethylsilyl)oxy)-5-
oxopyrrolidine-1-carboxylate 11
To a solution of $\mathbf{1 0}(1.00 \mathrm{~g}, 3.43 \mathrm{mmol})$, $\operatorname{TBSCl}(773 \mathrm{mg}, 5.15 \mathrm{mmol})$ and DMAP ($419 \mathrm{mg}, 3.43 \mathrm{mmol}$) in DMF (14 mL) was added imidazole ($700 \mathrm{mg}, 10.29 \mathrm{mmol}$) in one portion at $0^{\circ} \mathrm{C}$. After being stirred for 24 h , the mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc ($50 \mathrm{~mL} \times 4$).

The combined organic layers were washed with water and brine for two times respectively. Dried and concentrated, the residue was purified by flash chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=15 / 1$) to give $11(1.29 \mathrm{~g}, 93 \%)$ as a white solid. M.p. $96-98^{\circ} \mathrm{C} .[\alpha]_{D^{23}}=+34.9$ (c $0.49, \mathrm{CHCl}_{3}$); IR (film) $v_{\text {max }} 2958,2927,2854,1797,1582,1507,1360$, 1294, 1256, 1167, 1150, 1120, 1019, 850, $777 \mathrm{~cm}^{-1} \mathrm{H}^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.29-7.18 (m, 5H), 4.56-4.41 (m, 2H), 3.18 (dd, $J=$ $14.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=14.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=16.8$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, \mathrm{J}=16.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, 0.06 (s, 3H), 0.05 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.2, 149.7, 137.8, 130.3, 128.5, 126.6, 83.2, 67.0, 62.4, 40.6, 34.2, 28.0, 25.9, 18.2, -4.7, -4.9 ppm; HRMS (ESI-Orbitrap) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa}: 428.2228$, found: 428.2224 .

(2S,3S,5R)-2-Benzyl-3-((tert-butyldimethylsilyl)oxy)-1-methyl-5nonylpyrrolidine 12

To a solution of compound $\mathbf{1 1}$ ($600 \mathrm{mg}, 1.48 \mathrm{mmol}$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ was slowly added $n-\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{MgBr}(4.5 \mathrm{~mL}, 4.44 \mathrm{mmol}, 1 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$) at $-78^{\circ} \mathrm{C}$. After being stirred for 3 h at this temperature, the mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and warmed to room temperature. The resulted mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$) and the combined organic layers were washed with brine. Dried, and concentrated, the residue was directly dissolved in $\mathrm{CF}_{3} \mathrm{COOH}(18 \mathrm{~mL}$) and stirred for 1 h . Then the mixture was alkalized with 30% aqueous solution of NaOH to pH to $10 \sim 12$. The resulted mixture was extracted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL} \times 5)$ and the combined organic layers were washed with brine. Dried and concentrated to give crude middle product without further purification. The above middle product, $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ and $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(100 \mathrm{mg})$ were stirred in $\mathrm{MeOH}(300 \mathrm{~mL})$ under H_{2} atmosphere for 8 h . The reaction mixture was treated with paraformaldehyde (750 mg). After being stirred for 3 h , the mixture was filtered and concentrated. The residue was purified by flash chromatography on silica gel ($\mathrm{DCM} / \mathrm{MeOH}=40 / 1,1 \% \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$) to give $12(326 \mathrm{mg}, 51 \%)$ as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{23}=+46.4\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (film) $v_{\text {max }} 2956,2929,2895,2857,1463,1427,1116,1028 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H})$, 4.21-4.14 (m, 1H), 3.08 (dd, $J=14.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=14.0$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.79-$ $1.68(\mathrm{~m}, 1 \mathrm{H}), 1.45$ (ddd, $J=12.8,8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 16 \mathrm{H})$, $0.93-0.88(\mathrm{~m}, 12 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.8,129.2,128.2,125.8,73.5,71.3,66.1,40.8,40.5$, $34.7,34.3,32.0,30.1,29.8,29.7,29.7,29.5,26.8,26.2,22.8,18.3$, 14.3, -4.2, -4.9 ppm ; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{50}$ NOSi: 432.3656 , found: 432.3656 .

(+)-Preussin 4

Compound 12 ($151 \mathrm{mg}, 0.35 \mathrm{mmol}$) was dissolved in anhydrous THF $(2 \mathrm{~mL})$ and treated with TBAF ($0.53 \mathrm{~mL}, 0.53 \mathrm{mmol}, 1 \mathrm{M}$ in THF) at room temperature for overnight. The resulted mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine. Dried and concentrated, the residue was purified by flash chromatography on silica gel ($\mathrm{DCM} / \mathrm{MeOH}=40 / 1,1 \% \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$) to give $4(68 \mathrm{mg}, 61 \%)$ as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{25}=+33.6\left(c 0.4, \mathrm{CHCl}_{3}\right)$ $\left\{\right.$ lit. $\left.{ }^{18 g}[\alpha]_{D_{0}} 25=+32\left(c 1.1, \mathrm{CHCl}_{3}\right)\right\} ;$ IR (film) $v_{\max } 3356,2950,2830$, 2597, 2512, 2220, 2046, 1650, 1455, 1402, 1111, $1031 \mathrm{~cm}^{-1}$; $^{1} \mathrm{H}$ NMR

 (ddd, $J=9.6,4.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20 (ddd, $J=15.6,9.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.12-2.09 (m, 1H), 1.76-1.68 (m, 1H), 1.41 (dd, $J=14.4,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.32-1.25 (m, 16H), 0.90-0.86 (m, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (139.6, 129.5, 128.5, 126.2, 73.7, 70.5, 66.0, 39.5, 38.8, 35.1, $33.8,32.0,30.0,29.8,29.8,29.8,29.7,29.4,26.5,22.8,14.2 \mathrm{ppm} ;$ HRMS (ESI-Orbitrap) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}$: 318.2791, found 318.2790.
tert-Butyl ((2S,3R)-3,5-dihydroxy-1-phenylpentan-2-yl)carbamate 16
To a stirred solution of $9 n(630 \mathrm{mg}, 2.16 \mathrm{mmol})$ in THF/ $\mathrm{H}_{2} \mathrm{O}(4 / 1)(25$ mL) at room temperature, $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(272 \mathrm{mg}, 6.48 \mathrm{mmol})$ and a 30% aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2}(0.6 \mathrm{~mL})$ were added sequentially. The mixture was stirred at room temperature for 12 h . Then the reaction mixture was added an aqueous solution of 1 M NaOH (50 mL) and extracted with EtOAc (20 mL). The aqueous layer was dropped with 1 M HCl until $\mathrm{pH}=2-3$ and the resulted mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine. Dried and concentrated to give acid without further purification. The crude acid was dissolved in anhydrous THF (8 mL) at $0^{\circ} \mathrm{C}$. NMM ($0.24 \mathrm{~mL}, 2.16 \mathrm{mmol}$) and $\mathrm{ClCO}_{2} \mathrm{Et}(0.21 \mathrm{~mL}, 2.16 \mathrm{mmol})$ were added sequentially. After being stirred for 1 h at this temperature, the mixture was filtered and $\mathrm{NaBH}_{4}(245 \mathrm{mg}, 6.48 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added in the filtrate. After being stirred for another 1 h , the reaction mixture was added water and extracted with EtOAc ($50 \mathrm{~mL} \times 4$). The combined organic layers were washed with brine. Dried and concentrated, the residue was purified by flash chromatography on silica gel (PE/EA = 1/1) to give $16(530 \mathrm{mg}, 83 \%)$ as a white solid. M.p. $128-130^{\circ} \mathrm{C} .[\alpha]_{D^{25}}=$ +23.2 (c 0.50, CHCl_{3}); IR (film) $v_{\max } 3356,3351,2978,2930,2919$, $1683,1526,1392,1367,1251,1169,1055,1021,760 \mathrm{~cm}^{-1}$; $^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.70-4.60(\mathrm{~m}, 1 \mathrm{H})$, 4.15-3.80 (m, 6H), 2.97-2.87 (m, 1H), 2.82-2.73 (m, 1H), 1.91-1.80 $(\mathrm{m}, 1 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 156.0,154.8,137.3,136.9,128.9,128.8$, $128.7,128.6,127.9,127.8,125.9,125.8,79.3,78.8,73.6,73.4,61.5$, 61.1, 56.2, 54.0, 35.2, 34.8, 34.0, 33.7, 29.1, 27.6 ppm; HRMS (ESIOrbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}: 318.1676$, found: 318.1676.

tert-Butyl ((2S,3R)-3,5-bis((tert-butyldimethylsilyl)oxy)-1-phenylpentan-2-yl)carbamate 17

To a solution of $\mathbf{1 6}$ ($479 \mathrm{mg}, 1.62 \mathrm{mmol}$), TBSCI ($729 \mathrm{mg}, 4.86 \mathrm{mmol}$) and DMAP ($40 \mathrm{mg}, 0.32 \mathrm{mmol}$) in DMF (6 mL) was added imidazole ($551 \mathrm{mg}, 8.10 \mathrm{mmol}$) in one portion at $0^{\circ} \mathrm{C}$. After being stirred for 24 h , the mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc ($40 \mathrm{~mL} \times 4$). The combined organic layers were washed with water and brine for two times respectively Dried and concentrated, the residue was purified by flash chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=40 / 1$) to give 17 (594 mg , 70%) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{23}=+17.0$ ($c 0.50, \mathrm{CHCl}_{3}$); IR (film) $v_{\text {max }}$ 2953, 2927, 2857, 1704, 1581, 1497, 1391, 1254, 1172, 1098, 836, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.15$ $(\mathrm{m}, 3 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.71(\mathrm{~m}, 1 \mathrm{H})$, $3.69-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{dd}, \mathrm{J}=14.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.64(\mathrm{~m}, 1 \mathrm{H})$,
1.80-1.65 (m, 2H), 1.39-1.29 (m, 9H), $0.90(\mathrm{~s}, 18 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06$ $(\mathrm{s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 155.5, 138.9, 129.3, 128.4, 126.2, 78.9, 70.7, 59.6, 56.0, 36.6, 36.1, 28.5, 26.1, 26.0, 18.4, 18.3, -4.4, -4.5, -5.2 ppm ; HRMS (ESI-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{NO}_{4} \mathrm{Si}_{2}$: 524.3586, found: 524.3586.
tert-Butyl ((2S,3R)-3,5-bis((tert-butyldimethylsilyl)oxy)-1-phenylpentan-2-yl)(methyl)carbamate 18
Compound 17 ($398 \mathrm{mg}, 0.76 \mathrm{mmol}$) and HMPA ($0.2 \mathrm{~mL}, 1.14 \mathrm{mmol}$) were dissolved in dry THF (3 mL). LiHMDS ($1.1 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was dropped at $-78^{\circ} \mathrm{C}$ and stirred for 1 h . Then the mixture was allowed to stir at ice-salt baths for 10 min and MeOTf (249 mg , 1.52 mmol) was added dropwise. The resulting mixture was stirred for another 10 min and quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$) and the combined organic layers were washed with brine. Dried, filtered and concentrated, the residue was purified by flash chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=40 / 1$) to give 18 (339 mg , 83%) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}=+24.9$ (c 1.00, CHCl_{3}); IR (film) $v_{\text {max }}$ 2956, 2929, 2886, 2857, 1697, 1472, 1390, 1365, 1254, 1095, 956, 837, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.25-7.21(\mathrm{~m}$, $2 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 3 \mathrm{H}), 4.10-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.77-$ $3.67(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.57(\mathrm{~m}, 3 \mathrm{H}), 2.55-2.53(\mathrm{~m}, 1 \mathrm{H})$, 1.82-1.76 (m, 1H), 1.74-1.68 (m, 1H), 1.34-1.20 (m, 9H), 0.97-0.93 $(\mathrm{m}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.15-0.11(\mathrm{~m}, 6 \mathrm{H}), 0.05-0.03(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6, $\left.70^{\circ} \mathrm{C}\right) \delta$ 7.27-7.22 (m, 2H), 7.19-7.12 (m, $3 \mathrm{H}), ~ 4.05-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}$, $3 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.06-0.03(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) δ 155.8, 139.7, 139.5, 129.2, 128.5, 128.3, 126.2, 126.0, 79.5, 79.1, 71.1, 70.9, 59.4, 59.0, 38.1, 37.7, 34.8, 28.5, 28.3, 26.1, 26.1, 18.4, 18.4, 18.3, 18.2, -3.7, -3.7, -4.3, 5.1 ppm ; HRMS (ESI-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{56} \mathrm{NO}_{4} \mathrm{Si}_{2}$: 538.3742, found: 538.3742.
tert-Butyl ((2S,3R)-3-((tert-butyldimethylsilyl)oxy)-5-hydroxy-1-phenylpentan-2-yl)(methyl)carbamate 13

A solution of 18 ($247 \mathrm{mg}, 0.46 \mathrm{mmol}$) and CSA ($85 \mathrm{mg}, 0.37 \mathrm{mmol}$) was stirred in DCM (2 mL) and $\mathrm{MeOH}(2 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$ for 8 h . Then TEA ($64 \mu \mathrm{~L}, 0.46 \mathrm{mmol}$) was added and the mixture was warmed to room temperature. The mixture was concentrated and the residue was purified by flash chromatography on silica gel (PE/EA=5/1) to give 13 (193 mg, 99\%) as a colorless oil. $[\alpha]_{D^{25}}=+35.0$ (c 1.00, CHCl_{3}); IR (film) $v_{\max } 3407,2955,2930,2857,1692,1670,1391$, 1366, 1254, 1168, 1063, 955, 836, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, rotamers) δ 7.29-7.23 (m, 2 H), 7.21-7.12 $(\mathrm{m}, 3 \mathrm{H}), 4.32-3.65$ $(\mathrm{m}, 3 \mathrm{H}), 3.20-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.20(\mathrm{~m}, 5 \mathrm{H}), 2.00-1.65(\mathrm{~m}, 3 \mathrm{H})$, 1.34-1.12 (m, 9H), 0.98-0.93 (m, 9H), 0.21-0.11 (m, 6H) ppm; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6, $70^{\circ} \mathrm{C}$) δ 7.27-7.22 (m, 2H), 7.19-7.12 (m, $3 \mathrm{H}), ~ 4.05-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}$, $3 \mathrm{H})$, 1.83-1.74 (m, 1H), 1.71-1.63 (m, 1H), $1.24(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.06-0.03(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) δ 156.3, 155.6, 139.3, 139.2, 129.2, 129.1, 128.5, 128.4, 126.4, 126.2, 79.9, 79.7, 72.5, 72.3, 59.2, 58.9, 36.4, 35.5, 35.1, 34.5, 28.4, 28.2, 26.0, 18.1, -3.7, -3.8, -4.5, -4.5 ppm; HRMS (ESI-Orbitrap) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}$: 424.2878, found: 424.2878.
(S)-1-(Benzyloxy)-3-methyl-1-oxobutan-2-yl (2R,3R)-3-I((3Re4S)-4-((tert-butoxycarbonyl)(methyl)amino)-3-hydroxy-5039/C6OB02523D phenylpentanoyl)oxy)-2-methyldecanoate 19

To a solution of 13 (102 mg, 0.24 mmol) in dry DCM (2 mL) was treated with DMP ($204 \mathrm{mg}, 0.48 \mathrm{mmol}$) at room temperature for 0.5 h . The reaction was carefully quenched with a saturated aqueous solution of NaHCO_{3} and the resulted mixture was extracted with DCM ($10 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine. Dried and concentrated to give crude middle compound without further purification. The above crude was dissolved in t-BuOH/2-methyl-2-butene ($1 \mathrm{~mL} / 0.5 \mathrm{~mL}$) and treated with a solution of $\mathrm{NaClO}_{2}(80 \%, 217 \mathrm{mg}, 1.92 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ $(288 \mathrm{mg}, 2.40 \mathrm{mmol})$ in water (5 mL). After being stirred for 2 h , the mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine. Dried, filtered and concentrated to give the crude acid. A solution of 14 ($94 \mathrm{mg}, 0.24$ mmol) and TEA ($0.1 \mathrm{~mL}, 0.72 \mathrm{mmol}$) in anhydrous THF (1 mL) was treated with $\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{COCl}(45 \mu \mathrm{~L}, 0.29 \mathrm{mmol})$ for 30 min . Then a mixture of the crude acid and DMAP ($59 \mathrm{mg}, 0.48 \mathrm{mmol}$) in toluene $(2 \mathrm{~mL})$ was added dropwise. After the mixture was stirred for 18 h , the reaction was quenched with water and extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine. Dried, filtered and concentrated, the residue was dissolved in anhydrous THF (2 mL). Then TBAF ($0.36 \mathrm{~mL}, 0.36 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added and stirred for 24 h at room temperature. The resulted mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine. Dried, filtered and concentrated, the residue was purified by flash chromatography on silica gel ($\mathrm{DCM} / \mathrm{MeOH}=10 / 1$) to give 19 ($99 \mathrm{mg}, 59 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{23}=-23.5$ (c 1.00, CHCl_{3}); IR (film) $v_{\max } 3458,2964,2926,1636$, 1450, 1405, 1167, $1045 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) ס7.40-7.29 (m, 5H), 7.28-7.22 (m, 2H), 7.21-7.14 (m, 3H), 5.29-5.23 $(\mathrm{m}, 1 \mathrm{H}), 5.22-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{dd}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-3.95(\mathrm{~m}$, $2 \mathrm{H})$, 3.33-3.13 (m, 1H), 2.88-2.80(m, 1 H$), 2.76-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.65-$ $2.51(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{dd}, J=16.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H})$, 1.76-1.67 (m, 1H), 1.60-1.54 (m, 1H), 1.35-1.13 (m, 24H), 1.00-0.97 $(\mathrm{m}, 3 \mathrm{H}), 0.96-0.93(\mathrm{~m}, 3 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 173.8,173.7,172.1,172.1,169.7,169.5$, $156.3,155.8,139.1,135.4,135.3,129.2,128.7,128.6,128.6,128.5$, $128.4,128.3,126.3,126.2,79.7,74.5,74.5,70.2,69.1,67.2,67.1$, 65.7, 58.6, 42.7, 42.3, 39.6, 39.5, 33.4, 31.9, 31.6, 31.2, 30.2, 29.8, 29.4, 29.3, 28.4, 28.2, 25.8, 25.7, 22.7, 18.9, 18.6, 17.3, 14.2, 12.0, 11.6 ppm ; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{NO}_{9}$: 698.4263, found 698.4251.

Hapalosin 5

A solution of compound 19 ($51 \mathrm{mg}, 0.073 \mathrm{mmol}$) in DCM (1 mL) was treated with TFA $(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 2 h and then concentrated. The residue and $10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ were stirred under H_{2} atmosphere in $\mathrm{EtOH}(5 \mathrm{~mL})$ for 6 h . Then the mixture was filtrated and concentrated. The residue was dissolved in DMF (100 $\mathrm{mL})$ at $0^{\circ} \mathrm{C}$. Then DPPA $(47 \mu \mathrm{~L}, 0.22 \mathrm{mmol})$ and DIPEA $(73 \mu \mathrm{~L}, 0.44$ mmol) were added dropwise. After being stirred at $0^{\circ} \mathrm{C}$ for 5 h and then at room temperature for 4 d , the mixture was quenched with water and extracted with EtOAc ($100 \mathrm{~mL} \times 5$). The combined organic layers were washed with brine. Dried and concentrated, the
residue was purified by flash chromatography on silica gel (PE/EA = $2 / 3$) to give 5 ($14.6 \mathrm{mg}, 41 \%$) as a colorless oil that solidified on standing. $[\alpha]_{D^{25}}=-42.1$ (c 0.15, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) \{lit. ${ }^{22 b}[\alpha]_{D^{18}}=-41$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); lit. $\left.{ }^{22 \mathrm{~d}}[\alpha]_{\mathrm{D}}{ }^{25}=-41.2\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers) $\delta 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}$, $2 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=11.4,1 \mathrm{H}$), $4.31(\mathrm{~d}, \mathrm{~J}=8.4,1 \mathrm{H}), 3.90-3.81(\mathrm{~m}, 1 \mathrm{H})$, 3.73-3.65 (m, 1H), 3.41 (dd, J=13.8, 2.4 Hz, 1H), 3.25-3.18 (m, 1H), $2.91(\mathrm{dd}, J=18.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 2.82(\mathrm{~d}, J=11.4,1 \mathrm{H})$, $2.80(\mathrm{~s}, 1 \mathrm{H}), 2.65-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.99(\mathrm{~m}, 1 \mathrm{H})$, 1.96-1.88 (m, 1H), $1.28-1.24(\mathrm{~m}, 10 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $0.23(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}(150$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 172.9,172.1,170.4,170.1,168.9,168.7$, 137.6, 131.1, 129.9, 129.4, 129.1, 129.0, 128.6, 127.2, 126.6, 83.0, $76.7,76.0,74.0,70.5,70.4,61.5,58.7,41.2,40.8,40.7,37.2,36.6$, 35.5, 31.9, 31.8, 31.6, 30.7, 30.3, 29.8, 29.5, 29.4, 29.2, 29.1, 29.0, 28.2, 26.2, 25.5, 22.8, 19.8, 18.4, 17.7, 16.9, 14.2, 12.2, 10.9 ppm; HRMS (ESI-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{NO}_{6}: 490.3163$ found: 490.3166 .

Acknowledgements

We thank the National Natural Science Foundation of China (21472022, 21272041, 21072034) and the China Postdoctoral Science Foundation (KLF301012) for financial support. The authors thank Dr. Han-Qing Dong (Arvinas, Inc.) for helpful suggestions. The authors also thank Dr. Wei Huang and Mr. Xiao-Yun Wei for trying the method to asymmetric synthesis of hapalosin.

Notes and references

${ }^{\S}$ These two authors contributed equally to this work.
1 (a) B. M. Trost, Science, 1983, 219, 245; (b) I. Ojima, Catalytic Asymmetric Synthesis; Wiley-VCH: Weinheim, 2000; (c) J. Tsuji, Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis; Wiley: Chichester, 2000; (d) J. G. de Vries and G. A. Molander, in Science of Synthesis Workbench Edition: Stereoselective Synthesis (Ed.: P. A. Evans), Thieme, Stuttgart, 2011, Vols. 1-3. For selected reviews and accounts, see: (e) P. A. Wender, V. A. Verma, T. J. Paxton and T. H. Pillow, Acc. Chem. Res., 2008, 41, 40; (f) T. Newhouse, P. S. Baran and R. W. Hoffmann, Chem. Soc. Rev., 2009, 38, 3010; (g) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. Rev., 2010, 110, 624; (h) R. A. Sheldon, Chem. Soc. Rev., 2012, 41, 1437; (i) K. M. Engle, T.-S. Mei, M. Wasa and J.-Q. Yu, Acc. Chem. Res., 2012, 45, 788; (j) B. G. Hashiguchi, S. M. Bischof, M. M. Konnick and R. A. Periana, Acc. Chem. Res., 2012, 45, 885.
2 For selected recent reviews on p-toluenesulfinimines, see: (a) P. Zhou, B.-C. Chen and F. A. Davis, Tetrahedron, 2004, 60, 8003; (b) D. Morton and R. A. Stockman, Tetrahedron, 2006, 62, 8869 (c) M. Carmen Carreno, G. Hernandez-Torres, M. Ribagorda and A. Urbano, Chem. Commun., 2009, 41, 6129.
3 For selected reviews on the chemistry of t-BS-imines, see: (a) J. A. Ellman, T. D. Owens and T. P. Tang, Acc. Chem. Res., 2002, 35, 984; (b) G.-Q. Lin, M.-H. Xu, Y.-W. Zhong and X.-W. Sun, Acc. Chem. Res., 2008, 41, 831; (c) F. Ferreira, C. Botuha, F. Chemla and A. Pérez-Luna, Chem. Soc. Rev., 2009, 38, 1162; (d) M. T. Robak, M. A. Herbage and J. A. Ellman, Chem. Rev.,

2010, 110, 3600; (e) F. Foubelo and M. Yus, Euriew fiticle Orifie Chem., 2014, 485.

DOI: 10.1039/C6OB02523D
4 For some recent examples, see: (a) H.-C. Xu, S. Chowdhury and J. A. Ellman, Nat. Protoc. 2013, 8, 2271; (b) X.-Y. Chen, L.S. Sun, X. Gao and X.-W. Sun, J. Chem. Educ., 2015, 92, 714; (c) A. Flores-Gaspar, S. Orgue, A. Grabulosa, A. Riera and X. Verdaguer, Chem. Commun., 2015, 51, 1941; (d) P. V. Ramachandran, W. Mitsuhashi and B. Biswas, Org. Chem. Front., 2015, 2, 885; (e) C. N. Rao, D. Lentz and H.-U. Reissig, Angew. Chem., Int. Ed., 2015, 54, 2750; (f) X. Su, W. Zhou, Y. Li and J. Zhang, Angew. Chem., Int. Ed., 2015, 54, 6874; (g) J.L. Ye, Y.-F. Zhang, Y. Liu, J.-Y. Zhang, Y.-P. Ruan and P.-Q. Huang, Org. Chem. Front., 2015, 2, 697; (h) S. P. Lathrop, M. Pompeo, W.-T. T. Chang and M. Movassaghi, J. Am. Chem. Soc., 2016, 138, 7763; (i) X. Li, Y. Li and H. Shang, Org. Biomol Chem., 2016, 14, 6457; (j) E. Macia, F. Foubelo and M. Yus, Tetrahedron, 2016, 72, 6001; (k) J. L. H. Madsen, C. U. Hjorringgaard, B. S. Vad, D. Otzen and T. Skrydstrup, Chem. Eur. J., 2016, 22, 8358; (I) D. M. Sedgwick, P. Barrio, A. Simon, R. Roman and S. Fustero, J. Org. Chem., 2016, 81, 8876; (m) R. P. Wilkie, A. R. Neal, C. A. Johnston, N. Voute, C. S. Lancefield M. D. Stell, F. Medda, E. F. Makiyi, E. M. Turner, O. Stephen Ojo, A. M. Z. Slawin, T. Lebl, P. Mullen, D. J. Harrison, C. M. Ireland and N. J. Westwood, Chem. Commun., 2016, 52, 10747; (n) J.-L. Ye, H. Chen, Y.-F. Zhang and P.-Q. Huang, Org. Chem. Front., 2016, 3, 683; (o) B.-H. Yuan, Z.-C. Zhang, W.-J. Liu and X.-W. Sun, Tetrahedron Lett., 2016, 57, 2147; (p) S. Zhao, G. Sirasani, S. Vaddypally, M. J. Zdilla and R. B. Andrade, Tetrahedron, 2016, 72, 6107.
5 For books on pyridine alkaloids, see: (a) G. B. Fodor and B. Colasanti, The Pyridine and Piperidine Alkaloids: Chemistry and Pharmacology InPelletier, S. W., Ed. Alkaloids: Chemical and Biological Perspectives; Wiley-Interscience: New York, NY, 1985; Vol. 3, pp 1-90; (b) M. J. Schneider, Pyridine and Piperidine Alkaloids: An Update InPelletier, S. W., Ed. Alkaloids: Chemical and Biological Perspectives; Pergamon: Oxford, UK, 1996; Vol. 10, pp 155-299.
6 For selected reviews, see: (a) P.-Q. Huang, Synlett, 2006, 1133; (b) B. L. Stocker, E. M. Dangerfield, A. L. Win-Mason, G. W. Haslett and M. S. M. Timmer, Eur. J. Org. Chem., 2010, 1615; For selected examples, see: (c) R. G. Andrew, R. E. Conrow, J. D. Elliott, W. S. Johnson and S. Ramezani, Tetrahedron Lett., 1987, 28, 6535; (d) S. Ishibuchi, Y. Ikematsu, T. Ishizuka and T. Kunieda, Tetrahedron Lett., 1991 32, 3523; (e) D. W. Ma, J. Y. Ma, W. L. Ding, and L. X. Dai, Tetrahedron: Asymmetry, 1996, 7, 2365; (f) P.-Q. Huang, S.-L. Wang, H. Zheng and X.-S. Fei, Tetrahedron Lett., 1997, 38, 271; (g) P.-Q. Huang, S.-L. Wang, J.-L. Ye, Y.-P. Ruan, Y.-Q. Huang, H. Zheng and J.-X. Gao, Tetrahedron, 1998, 54, 12547; (h) G. C. G. Pais and M. E. Maier, J. Org. Chem., 1999, 64, 4551; (i) Y.-A. Kim, S.-M. Oh and S.-Y. Han, Bull. Korean Chem Soc., 2001, 22, 327; (j) B.-Y. He, T.-J. Wu, X.-Y. Yu and P.-Q. Huang, Tetrahedron: Asymmetry, 2003, 14, 2101; (k) W. Huang, J.-Y. Ma, M. Yuan, L.-F. Xu and B.-G. Wei, Tetrahedron, 2011, 67, 7829; (I) X.-G. Wang, A.-E. Wang and P.-Q. Huang, Chin. Chem. Lett., 2014, 25, 193. (m) C.-M. Si, Z,-Y, Mao, Y,-W, Liu, Z.-T. Du, B.-G. Wei and G.-Q. Lin Org. Chem. Front., 2015, 2, 1485; (n) B.-L. Zhao, Y. Lin, H.-H. Yan and D.-M. Du, Org. Biomol. Chem., 2015, 13, 11351; (o) X.-H. Meng, Z.-B. Jiang, C.-G. Zhu, Q.-L. Guo, C.-B. Xu and J.-G. Shi, Chin. Chem. Lett., 2016, 27, 993.
7 (a) H. Takahata, K. Yamazaki, T. Takamatsu, T. Yamazaki and T. Momose, J. Org. Chem., 1990, 55, 3947; (b) P.-Q. Huang, J.-L. Ye, Z. Chen, Y.-P. Ruan and J.-X. Gao, Synth. Commun., 1998, 28, 417; (c) H.-Q. Dong and G.-Q. Lin, Chin. J. Chem., 1998, 16, 458; (d) D. K. Pyun, B. J. Kim, H. J. Jung, J. H. Kim, J. S. Lee, W. K. Lee and C. H. Lee, Chem. Pharm. Bull., 2002, 50, 415; (e) N. Fukuda, K. Sasaki, T. V. R. S. Sastry, M. Kanai and
M. Shibasaki, J. Org. Chem., 2006, 71, 1220; (f) J. Nöth, K. J. Frankowski, B. Neuenswander, J. Aubé and O. Reiser, J. Comb. Chem., 2008, 10, 456; (g) T. G. Elford, A. Ulaczyk-Lesanko, G. De Pascale, G. D. Wright and D. G. Hall, J. Comb. Chem., 2009, 11, 155; (h) S. Cren, P. Schar, P. Renaud and K. Schenk, J. Org. Chem., 2009, 74, 2942; (i) J.-D. Yu, W. Ding, G.-Y. Lian, K.-S. Song, D.-W. Zhang, X. Gao and D. Yang, J. Org. Chem., 2010, 75, 3232; (j) Z.-G. Li, G.-Q. Dong, S.-Z. Wang, Z.-Y. Miao, J.-Z. Yao, W.-N. Zhang and C.-Q. Sheng, Chin. Chem. Lett., 2015, 26, 267; (k) M. Wan, M. Yao, J.-Y. Gong, P. Yang, H. Liu and A. Li, Chin. Chem. Lett., 2015, 26, 272; (I) X.-G. Hu, A. Lawer, M. B. Peterson, H. Iranmanesh, G. E. Ball and L. Hunter, Org. Lett., 2016, 18, 662; (m) Y. Yasuno, M. Hamada, M. Kawasaki, K. Shimamoto, Y. Shigeri, T. Akizawa, M. Konishi, Y. Ohfune and T. Shinada, Org. Biomol. Chem., 2016, 14, 1206; (n) Y. Yasuno, M. Hamada, Y. Yoshida, K. Shimamoto, Y. Shigeri, T. Akizawa, M. Konishi, Y. Ohfune and T. Shinada, Bioorg. Med. Chem. Lett., 2016, 26, 3543.
8 For the original isolation of epohelmin A, see: (a) Y. Sakano, M. Shibuya, Y. Yamaguchi, R. Masuma, H. Tomoda, S. Omura and Y. Ebizuka, J. Antibiot., 2004, 57, 564. For the revised the structure of epohelmins A and B, see: (b) B. B. Snider and X. Gao, Org. Lett., 2005, 7, 4419.
9 For the original isolation of preussin, see: (a) R. E. Schwartz, J. Liesch, O. Hensens, L. Zitano, S. Honeycutt, G. Garrity, R. A. Fromtling, J. Onishi, R. Monaghan, J. Antibiot., 1988, 41, 1774; For the relative and absolute stereochemical assignment of preussin, see: (b) J. H. Johnson, D. W. Phillipson, A. D. Kahle, J. Antibiot., 1989, 42, 1184; For the isolation of preussin B, see: (c) T. Fukuda, Y. Sudoh, Y. Tsuchiya, T. Okuda and Y. Igarashi, J. Nat. Prod., 2014, 77, 813.

10 K. Stratmann, D. L. Burgoyne, R. E. Moore, G. M. L. Patterson and C. D. Smith, J. Org. Chem., 1994, 59, 7219.
11 H. Choi, E. Mevers, T. Byrum, F. A. Valeriote and W. H. Gerwick, Eur. J. Org. Chem., 2012, 5141.
12 T. F. Molinski, K. A. Reynolds and B. I. Morinaka J. Nat. Prod. 2012, 75, 425.
13 (a) C.-M. Si, W. Huang, Z.-T. Du, B.-G. Wei and G.-Q. Lin, Org. Lett., 2014, 16, 4328; (b) C.-M. Si, Z.-Y. Mao, H.-Q. Dong, Z.-T. Du, B.-G. Wei and G.-Q. Lin, J. Org. Chem., 2015, 80, 5824. (c) C.-M. Si, Z.-Y. Mao, Z. Zhou, Z.-T. Du and B.-G. Wei, Tetrahedron, 2015, 71, 9396; (d) G.-C. Li, A.-M. Yang, Z.-Y. Mao, Z. Zhou and B.-G. Wei, Chin. J. Org. Chem., 2016, 36, 2157; (e) C.-M. Si, Y.-W. Liu, Z.-Y. Mao, P. Han, Z-T. Du, B.-G. Wei, Tetrahedron 2016, 72, 8091; (f) Y.-W. Liu, P. Han, W. Zhou, Z.-Y. Mao, C.-M. Si and B.-G. Wei, Org. Biomol. Chem., 2016, 14, 10714.
14 (a) R.-C. Liu, J.-H. Wei, B.-G. Wei and G.-Q. Lin, Tetrahedron: Asymmetry, 2008, 19, 2731. (b) X. Sun, W. Zheng and B.-G. Wei, Tetrahedron Lett., 2008, 49, 6195. (c) C. Xarnod, W. Huang, R.-G. Ren, R.-C. Liu and B.-G. Wei, Tetrahedron, 2012, 68, 6688. (d) W. Huang, J.-L. Ye, W. Zheng, H.-Q. Dong and B.-G. Wei, J. Org. Chem., 2013, 78, 11229. (e) Q.-R. Zhou, X.-Y. Wei, Y.-Q. Li, D. Huang and B.-G. Wei, Tetrahedron, 2014, 70, 4799. (f) W. Tao, W. Zhou, Z. Zhou, C.-M. Si. X. Sun, B.-G. Wei Tetrahedron 2016, 72, 5928.
15α-Chiral aldimines 8 was prepared from D-malic acid according to the known procedure of the following steps ${ }^{61}$: double esterification, reduction, protection and regioselective desilylation, oxidation with Dess-Martin periodinane and subsequent condensation with sulfinamide.
16 For reviews, see: (a) W. Zhang, Chin. J. Org. Chem., 2012, 32, 2203; For selected recent examples, see: (b) A. Bandyopadhyay, A. Malik, M. G. Kumar and H. N. Gopi, Org. Lett., 2014, 16, 294; (c) L. V. B. Hoelz, P. H. R. d. A. Azevedo, L. R. S. Dias, B. C. Zorzanelli, S. Pinheiro, S. G. Passos, S. L. R. de, M. Zani, L. Puzer and E. M. F. Muri, Eur. J. Med. Chem., 2016,

112, 39; (d) A. Malik, M. Ganesh Kumar, A. Bandyopadhyay

17 (a) K. Kasahara, M. Yoshida, J. Eishima, K. Takesako, T. Beppu and S. Horinouchi, J. Antibiot., 1997, 50, 267; (b) T. V. Achenbach, E. P. Slater, H. Brummerhop, T. Bach and R. Muller, Antimicrob. Agents Chemother., 2000, 44, 2794; (c) T. Goss Kinzy, J. W. Harger, A. Carr-Schmid, J. Kwon, M. Shastry, M. Justice and J. D. Dinman, Virology, 2002, 300, 60;

18 For early syntheses of preussin, see: (a) C. S. Pak, G. H. Lee, J. Org. Chem., 1991, 56, 1128; (b) M. Shimazaki; F. Okazaki, F. Nakajima, T. Ishikawa, A. Ohta, Heterocycles, 1993, 36, 1823; (c) P. L. McGrane, T. Livinghouse, J. Am. Chem. Soc., 1993, 115, 11485; (d) W. Deng, L. E. Overman, J. Am. Chem. Soc., 1994, 116, 11241; (e) M. Overhand, S. M. Hecht, J. Org. Chem., 1994, 59, 4721; (f) T. Bach, H. Brummerhop, Angew. Chem. Int. Ed., 1998, 37, 3400; (g) A. Kanazawa, S. Gillet, P. Delair and A. E. Greene, J. Org. Chem., 1998, 63, 4660.
19 For a recent review, see: (a) B. Basler; S. Brandes, A. Spiegel, T. Bach, Top. Curr. Chem., 2005, 243, 1; For seleted recent syntheses of preussin, see: (b) N. Gogoi, J. Boruwa, N. C. Barua, Eur. J. Org. Chem., 2006, 1722; (c) M. B. Bertrand, J. P. Wolfe, Org. Lett., 2006, 8, 2353; (d) F. A. Davis, J. Zhang, H. Qiu, Y. Wu, Org. Lett., 2008, 10, 1433; (e) K.-J. Xiao, Y. Wang, K.-Y. Ye, P.-Q. Huang, Chem. Eur. J., 2010, 16, 12792; (f) J. A. Draper, R. Britton, Org. Lett., 2010, 12, 4034; (g) I. G. Rosset, R. M. P. Dias, V. D. Pinho and A. C. B. Burtoloso, J. Org. Chem. 2014, 79, 6748; (h) Y. Natori, S. Kikuchi, T. Kondo, Y. Saito, Y. Yoshimura and H. Takahata, Org. Biomol. Chem., 2014, 12, 1983; (i) P.-Q. Huang, H. Geng, Y.-S. Tian, Q.-R. Peng and K.-J. Xiao, Sci. China: Chem., 2015, 58, 478; (j) M. Buchman, K. Csatayova, S. G. Davies, A. M. Fletcher, I. T. T. Houlsby, P. M. Roberts, S. M. Rowe and J. E. Thomson, J. Org. Chem., 2016, 81, 4907.
20 K. Omura and D. Swern, Tetrahedron, 1978, 34, 1651.
21 H. Yoda, H. Yamazaki and K. Takabe, Tetrahedron: Asymmetry, 1996, 7, 373.
22 For a review on the synthesis of hapalosin, see: (a) Nishiyama, S. J. Syn. Org. Chem. Jpn. 2001, 59, 938. For selected recent syntheses of hapalosin, see: (b) T. Okuno, K. Ohmori, S. Nishiyama, S. Yamamura, K. Nakamura, K. N. Houk and K. Okamoto, Tetrahedron, 1996, 52, 14723; (c) C. Palomo, M. Oiarbide, J. M. Garcia, A. Gonzalez, R. Pazos, J. M Odriozola, P. Banuelos, M. Tello and A. Linden, J. Org. Chem., 2004, 69, 4126; (d) C.-F. Dai, F. Cheng, H.-C. Xu, Y.-P. Ruan and P.-Q. Huang, J. Comb. Chem., 2007, 9, 386; (e) M. S. R. Krishna and B. Srinivasulu, Int. J. Pharm. Technol., 2011, 3, 2583; (f) H. Kumar, A. S. Reddy, J. S. Yadav and B. V. S. Reddy, Synlett, 2013, 24, 1415.
23 (a) D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4155; (b) D. B. Dess and J. C. Martin, J. Am. Chem.Soc., 1991, 113, 7277.

24 (a) G. A. Kraus and B. Roth, J. Org. Chem., 1980, 45, 4825; (b) G. A. Kraus and M. J. Taschner, J. Org. Chem., 1980, 45, 1175; (c) B. S. Bal, W. E. Childers and H. W. Pinnick, Tetrahedron, 1981, 37, 2091.
25 Compound 14 is a known compound which was easily prepared by well-established Evans' asymmetric aldol methodology, For selected: D. A. Evans, J. Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981, 103, 2127.

26 CCDC 1517141 (compound $9 m$) contains the supplementary crystallographic data for this paper.

[^0]: a. Department of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China, bgwei1974@fudan.edu.cn
 b. Institutes of Biomedical Sciences, Fudan University, 130 Dongan Road, Shanghai 200032, China
 Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

