

Tetrahedron Letters 39 (1998) 6099-6102

TETRAHEDRON LETTERS

Synthetic Studies Towards Phorboxazole A. A Convergent Synthesis of the C31-C46 Polyene Oxane-Hemiacetal Side Chain

Gerald Pattenden*, Alleyn T. Plowright, James A. Tornos and Tao Ye

Department of Chemistry, Nottingham University, Nottingham NG7 2RD, England

Received 4 June 1998; accepted 15 June 1998

Abstract: A convergent and stereoselective synthesis of the C31-C46 side chain unit in the marine natural product phorboxazole A, which accommodates five asymmetric centres, three carbon-to-carbon double bonds and an oxane-hemiacetal unit, is described. © 1998 Elsevier Science Ltd. All rights reserved.

Phorboxazole A 1 is a unique marine natural product which has been isolated from the Indian Ocean sponge *Phorbas* sp.¹ The molecule exhibits profoundly potent cytostatic activity against human tumour cell lines and it has an unprecedented structure based on a macrolactone core, four oxane and two oxazole rings, and accommodates fifteen asymmetric centres and five *E*- and one *Z*- olefinic bonds. The pronounced biological activity of this novel structure has aroused considerable interest in its total synthesis.² In recent work we have disclosed a synthesis of the 2,6-*cis*-oxane unit **3** in phorboxazole A.³ In this communication we present a concise synthesis of the C31-C46 side chain portion 2^4 of the natural product which is appropriately functionalised for subsequent connection to the oxane unit **3** *via* an oxazole ring forming sequence.⁵

Our approach to the C31-C46 portion 2 in phorboxazole A was based on a convergent approach using an *E*-selective Julia benzothiazole sulfone olefination reaction⁶ between the sulfone 4 and the α,β unsaturated aldehyde 5 as a key step. Furthermore, we planned to synthesise the sulfone 4 and the aldehyde 5 from the chiral pool compounds *D*-malic acid 6 and *D*-xylose 12 respectively.

Thus, D-malic acid **6** was first converted into the differentially protected triol **7** using six straightforward steps in 43% overall yield as shown in Scheme 1.⁷ Deprotection of the PMB ether group in **7**, using DDQ,⁸ followed by oxidation of the resulting primary alcohol under Swern conditions next led to the 0040-4039/98/\$ - see front matter © 1998 Elsevier Science Ltd. All rights reserved.

PII: S0040-4039(98)01258-1

aldehyde 8 which was then converted into the terminal acetylene 9 using Seyferth's reagent.⁹ The primary alcohol function in 9 was unmasked and the terminal acetylene residue was then protected as the corresponding trimethylsilane derivative 10. Treatment of 10 with 2-mercaptobenzothiazole in the presence of Ph₃P - DEAD next gave the sulfide 11,⁶ which on oxidation using *m*-CPBA finally produced the benzothiazole sulfone intermediate 4 as a stable crystalline solid.⁷

Reagents: i, BH₃.SMe₂, B(OEt)₃; ii, Me₂CO, *p*TSA, Cu(II)SO₄, 77% (2 steps); iii, PMBCl, KOBu^t, NBu₄I; iv, *p*TSA, MeOH, 69% (2 steps); v, TBDPSCl, Et₃N, DMAP, 94%; vi, NaH, Mel, 87%; vii, DDQ, 95%; viii, (COCl)₂, DMSO, Et₃N, 90%; ix, (MeO)₂PCHN₂, KOBu^t, 75%; x, TBAF, 96%; xi, TMSCl, BuLi, 70%; xii, 2-mercaptobenzothiazole, PPh₃, DEAD, 94%; xiii, *m*-CPBA, NaHCO₃, 85%.

Scheme 1

The E- α , β -unsaturated aldehyde 5 required for coupling to the sulfone 4 was elaborated from *D*-xylose as outlined in Scheme 2. Thus, *D*-xylose 12 was first converted into the thioacetal 13 in four steps based on procedures described by Gray *et al.*¹⁰ Protection of the alcohol group in 13 as its PMB ether followed by hydrolysis of the thioacetal next gave the aldehyde 14. Treatment of the aldehyde 14 with (-)- β -allyl diisopinocampheylborane¹¹ followed by oxidation with H₂O₂ - NaOH led to the homoallylic alcohol 15 which on methylation and deprotection of the acetonide was then converted into the 1,2-diol 16. After

Reagents: i, EtSH, HCl, 65%; ii, Me₂CO, H₂SO₄, 90%; iii, KOBu^t, DMSO, 68%; iv, LiAlH₄, 92%; v, KOBu^t, PMBBr, 98%; vi, Hg(ClO₄)₂, CaCO₃, 91%; vii, a) (-)- β -allyl diisopinocampheylborane, b) H₂O₂, NaOH, 82%; viii, KOBu^t, MeI, 98%; ix, pTSA, MeOH, 88%; x, TBDMSOTf, Et₃N, 98%; xi, OsO₄, NaIO₄, 94% (2 steps); xii, CSA, MeOH, 89%; xiii, Dess-Martin periodinane, 93%; xiv, CH₃C(PPh₃)CO₂Et, 91%; xv, DIBAL, 89%; xvi, Dess-Martin periodinane, 94%.

Scheme 2

protection of **16** as the corresponding *bis*-TBS derivative, oxidative cleavage of the terminal double bond gave rise to the aldehyde **17**. Treatment of the aldehyde **17** with camphorsulfonic acid in methanol resulted in simultaneous acetal formation and deprotection of the primary alcohol leading to **18**.Oxidation of **18** with Dess-Martin periodinane¹² followed by a Wittig reaction between the resulting aldehyde and CH₃C(PPh₃)CO₂Et then led to the *E*-unsaturated ester 19.¹³ Finally, reduction of 19 using DIBAL and oxidation of the product alcohol with Dess-Martin periodinane gave the E- α , β -unsaturated aldehyde 5.

Deprotonation of the sulfone 4 using NaHMDS in THF at -78°C in the presence of the *E*-unsaturated aldehyde 5 resulted in stereoselective formation of the *E*,*E*-diene 20 in a satisfying 74% yield.¹³ Deprotection of the dimethyl acetal group in 20, and treatment of the resulting aldehyde with ethyl diazoacetate next led to the β -keto ester 21.¹⁴ Removal of the PMB protecting group in 21 using DDQ in CH₂Cl₂⁸ resulted in spontaneous cyclisation of the intermediate δ -hydroxy ketone producing a single diastereoisomer of the cyclic hemiacetal 22 in 90% yield. The synthesis of the target molecule 2 was then completed following protection of 22 as its methyl ether, deprotection of the terminal acetylene unit, hydrostannylation of 23 and treatment of the resulting vinylstannane with NBS in CH₃CN at 0°C. A significant amount of the p.m.r and c.m.r chemical shift and coupling data recorded for 2 matched, and could be superimposed on corresponding data for the C31-C46 side chain in natural phorboxazole A.¹

Reagents: i, NaHMDS, -78°C, 74%; *ii*, Me₂BBr, -78°C, 95%; *iii*, EtO₂CCHN₂, SnCl₂, 75%; *iv*, DDQ, 90%; *v*, PPTS, MeOH, 50%; *vi*, AgNO₃, KCN, 75%; *vii*, Bu₃SnH, AIBN, C₆H₆, Δ; *viii*, NBS, 60% (2 steps). Scheme 3

Acknowledgements: We thank the EPSRC (Fellowship to T.Y.), Merck, Sharp and Dohme and Pfizer Central Research (Studentships to A.T.P. and J.A.T. respectively) for support of this work. We also thank Drs L. Castro (Merck) and C. Barber (Pfizer) for their interest in this study.

References and Notes:

- (a) Searle, P.A. and Molinski, T.F., J. Am. Chem. Soc. 1995, 117, 8126-8131; (b) Searle, P.A., Molinski, T.F., Brzezinski, L.J. and Leahy, J.W., J. Am. Chem. Soc. 1996, 118, 9422-9423; (c) Molinski, T.F., Tetrahedron Lett. 1996, 37, 7879-7880.
- For published studies see: (a) Lee, C.S. and Forsyth, C.J., *Tetrahedron Lett.* 1996, 37, 6449-6452; (b) Cink, R.D. and Forsyth, C.J., J. Org. Chem. 1997, 62, 5672-5673; (c) Ahmed, F. and Forsyth, C.J., *Tetrahedron Lett.* 1998, 39, 183-186.
- 3. Pattenden, G. and Ye, T., Tetrahedron Lett. 1998, 39, 319-322.

- 4. During the completion stages of our work, Ahmed and Forsyth described an alternative synthesis of a derivative of **2** using a conceptually different approach; see ref. 2c.
- 5. For oxazole ring forming reactions applicable to this study see: Chattopadhyay, S.K. and Pattenden, G., *Synlett*, **1997**, *12*, 1342-1343 and references therein.
- (a) Baudin, J.B., Hareau, G., Julia, S.A. and Ruel, O., Bull. Soc. Chim. Fr. 1993, 130, 336-357; (b) Baudin, J.B., Hareau, G., Julia, S.A., Lorne, R. and Ruel, O., Bull. Soc. Chim. Fr. 1993, 130, 856-878; For an illustration of this approach in total synthesis see: (c) Bellingham, R., Jarowicki, K., Kocienski and P.J., Martin, V., Synthesis, 1996, 2, 285-296; (d) Kocienski, P.J., Smith, N.D. and Street, S.D.A., Synthesis, 1996, 5, 652-666.
- All new compounds showed satisfactory spectroscopic data together with mass spectrometry and/or 7. combustion analysis. Selected data; Compound 4: $\delta_{\rm H}$ (360MHz) 8.24-8.21 (m, 1H), 8.03-8.00 (m, 1H), 7.66-7.57 (m, 2H), 4.07-4.02 (m, 1H), 3.94 (dd, J 14.8, 8.9, 1H), 3.81 (dd, J 14.8, 3.0, 1H), 3.25 (s, 3H), 2.66 (dd, J 17.0, 4.6, 1H), 2.46 (dd, J 17.0, 7.4, 1H), 0.15 (s, 9H); δ_C (90MHz) 166.8 (s), 152.6 (s), 136.8 (s), 127.9 (d), 127.5 (d), 125.5 (d), 122.2 (d), 100.6 (s), 88.7 (s), 74.5 (d), 58.7 (t), 57.5 (q), 24.1 (t), -0.1 (q); Compound 5: $\delta_{\rm H}$ (360MHz) 9.42 (s, 1H), 7.26 (d, J 8.7, 2H), 6.87 (d, J 8.7, 2H), 6.38 (dbrq, J 8.6, 2.3, 1H), 4.71 (dd, J 8.6, 5.2, 1H), 4.67 (d, J 11.1, 1H), 4.53 (d, J 11.1, 1H), 4.48 (t, J 5.6, 1H), 3.80 (s, 3H), 3.72 (ddd, J 10.2, 5.2, 2.2, 1H), 3.51-3.45 (m, 1H), 3.31 (s, 3H), 3.30 (s, 3H), 3.24 (s, 3H), 1.86 (ddd, J 14.2, 6.1, 5.6, 1H), 1.76-1.68 (m, 2H), 1.77 (d, J 2.3, 3H), 1.54 (ddd, J 13.6, 10.2, 3.2, 1H), 0.90 (s, 9H), 0.07 (s, 3H), 0.00 (s, 3H); δ_{C} (90MHz) 195.1 (d), 159.3 (s), 152.5 (d), 139.2 (s), 130.5 (s), 129.6 (d), 113.8 (d), 101.9 (d), 79.0 (d), 74.2 (d), 73.1 (t), 71.0 (d), 56.1 (q), 55.3 (q), 52.8 (q), 52.6 (q), 37.1 (t), 35.6 (t), 25.8 (q), 18.1 (s), 10.1 (q), -4.6 (q), -4.8 (q); Compound 20: δ_H (360MHz) 7.29 (d, J 8.6, 2H), 6.88 (d, J 8.6, 2H), 6.25 (d, J 15.7, 1H), 5.54 (dd, J 15.7, 7.8, 1H), 5.46 (d, J 9.2, 1H), 4.76 (d, J 11.0, 1H), 4.57 (dd, J 9.2, 5.8, 1H), 4.51 (d, J 11.0, 1H), 4.48 (t, J 5.6, 1H), 3.81 (s, 3H), 3.77 (ddd, J 10.0, 5.8, 1.8, 1H), 3.63-3.58 (m, 1H), 3.50-3.46 (m, 1H), 3.30 (s, 6H), 3.29 (s, 3H), 3.23 (s, 3H), 2.59 (dd, J 16.7, 5.6, 1H), 2.44 (dd, J 16.7, 7.1, 1H), 1.87-1.68 (m, 3H), 1.79 (s, 3H), 1.48 (ddd, J 13.8, 10.4, 3.3, 1H), 0.89 (s, 9H), 0.14 (s, 9H), 0.05 (s, 3H), 0.00 (s, 3H); δ_C (90MHz) 159.1 (s), 137.6 (d), 133.9 (s), 133.0 (d), 131.1 (s), 129.5 (d), 127.5 (d), 113.7 (d), 103.3 (s), 102.0 (d), 86.5 (s), 80.8 (d), 79.8 (d), 74.4 (d), 73.2 (t), 71.7 (d), 56.6 (q), 56.1 (q), 55.3 (q), 52.9 (q), 52.5 (q), 37.3 (t), 35.8 (t), 27.1 (t), 25.9 (q), 18.1 (s), 13.4 (q), 0.1 (q), -4.3 (q), -4.7 (q); Compound **2**: $\delta_{\rm H}$ (360MHz) 6,19 (d, J 16.0, 1H), 6.21-6.17 (m, 1H), 6.10 (d, J 13.6, 1H), 5.45 (dd, J 15.7, 7.9, 1H), 5.39 (d, J 9.2, 1H), 4.42 (d, J 9.1, 7.0, 1H), 4.18-4.13 (m, 2H), 3.67-3.54 (m, 2H), 3.48 (ddd, J 12.0, 7.1, 1.7, 1H), 3.33 (s, 3H), 3.27 (2xS, 6H), 2.83 (d, J 14.0, 1H), 2.57 (d, J 14.0, 1H), 2.45-2.41 (m, 1H), 2.37-2.23 (m, 2H), 1.92-1.89 (m, 1H), 1.78 (s, 3H), 1.44 (dd, J 12.7, 11.1, 1H), 1.28 (t, J 7.2, 3H), 1.05 (dd, J 13.6, 11.9, 1H), 0.88 (s, 9H), 0.07 (s, 3H), 0.02 (s, 3H).
- 8. Oikawa, Y., Yoshioka, T. and Yonemitsu, O., Tetrahedron Lett. 1982, 23, 885-888.
- 9. (a) Hilbert, P., Marmor, R.S. and Seyferth, D., J. Org. Chem. 1971, 36, 1379-1386; (b) Gilbert, J.C. and Weerasooriya, U., J. Org. Chem. 1979, 44, 4997-4998.
- 10. Gray, G.R. and Wong, M.Y.H., J. Am. Chem. Soc. 1978, 100, 3548-3553.
- 11. (a) Brown, H.C. and Jadhav, P.K., J. Am. Chem. Soc. 1983, 105, 2092-2093; (b) Brown, H.C. and Ramachandran, P.V., J.Organomet. Chem. 1995, 500, 1-19.
- 12. Dess, D.B. and Martin, J.C., J. Am. Chem. Soc. 1991, 113, 7277-7287.
- 13. We obtained no evidence for the co-formation of the Z-isomer corresponding to 19 resulting from the Wittig reaction involving $CH_3C(PPh_3)CO_2Et$. The *E,E* geometry assigned to 20 followed unambiguously from examination of the *J*-values for the relevant olefinic signals in the p.m.r. spectrum (*ie J*vic 15.7Hz); <5% of the Z-olefination product was detected by spectroscopy.
- 14. Holmquist, C.R. and Roskamp, E.J., J. Org. Chem. 1989, 54, 3258-3260.