



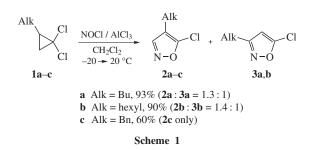
Mendeleev Communications

## New system for nitrosation of alkyl-substituted gem-dichlorocyclopropanes

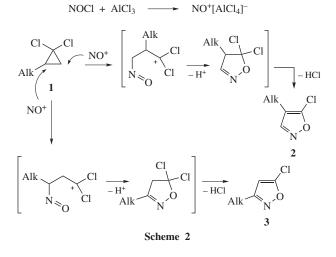
## Oksana B. Bondarenko,\* Anna Yu. Gavrilova, Dilovar S. Murodov, Nikolai V. Zyk and Nikolai S. Zefirov

Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation. Fax: +7 495 939 4652; e-mail: bondarenko@org.chem.msu.ru

DOI: 10.1016/j.mencom.2011.07.004


Treatment of alkyl-substituted gem-dichlorocyclopropanes with NOCl-AlCl<sub>3</sub> system affords alkyl-5-chloroisoxazoles.

*gem*-Dihalocyclopropanes play a noticeable role in organic synthesis foremost due to their exceptional availability.<sup>1</sup> Today they put together a really tremendous massive of organic compounds which differ by great structural variety; therefore, their application as synthons is very promising.<sup>1(c),2</sup> Earlier we have successfully applied an adduct of NOCl with sulfur trioxide as nitrosating reagent for transformation of alkyl-*gem*-dichlorocyclopropanes into alkyl-5-chloroisoxazoles.<sup>3</sup>


Note that isoxazole derivatives every year find more wide application as objects for pharmacological investigations. They exhibit antibacterial, antiasthmatic, and other pharmacological activities and are active principle of some drugs<sup>†</sup> different in their functions.<sup>4</sup>

Taking into account the practical value of isoxazoles we directed our efforts at searching for alternative conditions for nitrosation of alkyl-substituted *gem*-dichlorocyclopropanes. For this purpose we used here cheap and available reagents: nitrosyl chloride and aluminum chloride.

In fact, 2-alkyl-1,1-dichlorocyclopropanes **1a,b** under the action of nitrosyl chloride activated with aluminum chloride afford a mixture of regioisomeric 4-alkyl- **2a,b** and 3-alkyl-5-chloroisox-azoles **3a,b** in high yields (Scheme 1).<sup>‡</sup>



<sup>&</sup>lt;sup>†</sup> Arava (treatment: leflunomide which is a pyrimidine synthesis inhibitor indicated in adults for the treatment of active rheumatoid arthritis); Bextra (treatment: valdecoxib which is used for its anti-inflammatory, analgesic, and antipyretic activities in the management of osteoarthritis and for the treatment of dysmenorrhea or acute pain); Marplan (treatment: isocarboxazid which is effective in the treatment of major depression, dysthymic disorder and atypical depression and useful in the treatment of panic disorder and the phobic disorders); Sulfafurazole (a short-acting sulfonamide with antibacterial activity against a wide range of gram-negative and grampositive organisms).<sup>4</sup>

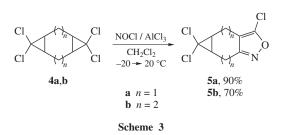


The formation of isoxazoles **2**, **3** can be presented as outlined in Scheme 2.

We have also studied the behaviour of 2-benzyl-1,1-dichlorocyclopropane **1c** under the suggested conditions of nitrosation. 2-Benzyl-1,1-dichlorocyclopropane **1c** is of certain interest, as on the one hand it can be classified as alkyl-substituted cyclopropane, and on the other hand it has an additional reaction site, benzene ring. Note, that the reaction of compound **1c** with the other previously known nitrosating reagents proceeds non-selectively. Thus, nitrosation of cyclopropane **1c** with sodium nitrite in trifluoroacetic acid is accompanied by nitration of the aromatic ring that results in the formation of a mixture of products.<sup>5</sup> The treatment of compound **1c** with complex NOCl·2SO<sub>3</sub> leads, foremost, to sulfochlorination of the aromatic ring.<sup>6</sup> The excess of the reagent makes it possible to nitrosate the cyclopropane ring in the products of sulfochlorination affording isoxazolylarylsulfochlorides.

<sup>&</sup>lt;sup>4</sup> The <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker Avance-400 spectrometer with working frequencies of 400 and 100 MHz in CDCl<sub>3</sub> with TMS as an internal standard. The mass spectrum was registered on a Finnigan MAT SSQ 7000 GC-MS instrument equipped with 25 m quartz capillary OV-1 column in the electron-impact ionization mode at an ionization energy of 70 eV with temperature programming from 70 (2 min) to 280 °C (10 min) at a rate of 20 K min<sup>-1</sup>. The melting point was measured in a block in an open capillary.

General procedure for preparing 5-chloroisoxazoles. A glass ampoule was loaded in sequence with 0.001 mol of AlCl<sub>3</sub> and cooled (-20 °C) solution of 0.002 mol of NOCl in 2 ml of dichloromethane, quickly closed with a joint stopper, and the mixture was vigorously stirred under ambient conditions for 0.5 h without any additional cooling. Then, the ampoule was placed into an ice bath, and 0.001 mol of corresponding alkyl-gemdichlorocyclopropane was added, whereupon the ampoule was additionally cooled to -20 °C and sealed. The reaction mixture was stirred for 24 h being gradually heated to room temperature. Afterwards, the ampoule was opened, the resultant mixture was quenched with 1 M sodium bicarbonate solution and extracted with CH2Cl2 (3×10 ml). The combined organic layers were washed with water and dried over Na2SO4. The solvent was evaporated under reduced pressure and the products were isolated by chromatography (Silica gel 40/100, blend - ethyl acetate:light petroleum, 1:10). The <sup>1</sup>H and <sup>13</sup>C NMR spectra of isoxazoles 2a,b and 3a,b were as described elsewhere.3


The reaction of 2-benzyl-1,1-dichlorocyclopropane 1c with nitrosyl chloride in the presence of aluminum chloride proceeded chemo- and regioselectively with the formation of 4-benzyl-5chloroisoxazole 2c (Scheme 1).<sup>§</sup> The structure of compound 2c was unambiguously proved based on its <sup>1</sup>H and <sup>13</sup>C NMR spectra and elemental analysis data.<sup>¶</sup> The <sup>1</sup>H and <sup>13</sup>C NMR spectra of **2c** absolutely correlate with those of **2a** and **2b**. Thus, the <sup>1</sup>H NMR spectrum of isoxazole 2c exhibits a narrow singlet in the field of C=N double bond at  $\delta$  8.13 ppm with intensity equal to one proton referred to hydrogen atom of heterocycle. The <sup>13</sup>C NMR spectrum contains a set of eight signals three of which at  $\delta$  113.4, 151.4, and 153.1 ppm are referred to isoxazole ring, the signals at  $\delta$  113.4 and 151.4 ppm belonging to tertiary carbon atoms and that in the field of C=N double bond ( $\delta$  153.1), to the carbon atom connected with hydrogen. These data confirm that benzyl substituent is located at C(4) carbon atom of the heterocycle.

Thus, in the case of 2-benzyl-1,1-dichlorocyclopropane **1c**, the suggested nitrosation system allows us to get the result which is impossible while using the other known nitrosating reagents.

By the example of biscyclopropanes **4a**,**b** we have shown that polycyclic *gem*-dichlorocyclopropanes can also be smoothly transformed into the corresponding isoxazoles **5a**,**b**.<sup> $\dagger$ †</sup> In both cases,

<sup>††</sup> **5a**: yield 90%.  $R_f 0.37$  (ethyl acetate:light petroleum, 1:7), mp 58–60 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 2.11 (dd, 1H, CH, <sup>3</sup>J 11.0 Hz, <sup>3</sup>J 7.7 Hz), 2.18 (dd, 1H, CH, <sup>3</sup>J 11.0 Hz, <sup>3</sup>J 7.3 Hz), 2.82 (d, 1H, CH<sub>2</sub>, <sup>2</sup>J 17.7 Hz), 2.98 (dd, 1H, CH<sub>2</sub>, <sup>2</sup>J 17.7 Hz, <sup>3</sup>J 7.7 Hz), 3.10 (d, 1H, CH<sub>2</sub>, <sup>2</sup>J 18.6 Hz), 3.20 (dd, 1H, CH<sub>2</sub>, <sup>2</sup>J 18.6 Hz, <sup>3</sup>J 7.3 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 14.7 (CH<sub>2</sub>), 17.0 (CH<sub>2</sub>), 25.0 (CH), 25.7 (CH), 63.2 (CCl<sub>2</sub>), 107.0 (*C*=CCl), 149.2 (C=CCl), 159.8 (C=N). MS (EI) *m*/*z* (*I*<sub>rel</sub>, %): 237 (M<sup>+</sup>, 10), 202 (M<sup>+</sup> - Cl, 11), 174 (M<sup>+</sup> - Cl - CO, 11), 166 (M<sup>+</sup> - Cl - HCl, 16), 138 (M<sup>+</sup> - Cl - HCl - CO, 28), 122 (CH<sub>2</sub>CHCHCCl<sup>2</sup>, 40), 109 (CH<sub>2</sub>CHCCl<sup>1</sup><sub>2</sub>, 100), 87 (CH<sub>2</sub>CHCHCCl<sup>+</sup>, 28), 51 (21). Found (%): C, 40.31; H, 2.46; N, 5.92. Calc. for C<sub>8</sub>H<sub>6</sub>Cl<sub>3</sub>NO (%): C, 40.25; H, 2.51; N, 5.87.

The  $^1\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR spectra of isoxazole **5b** were as described elsewhere.^3



the reaction occurs with participation of only one of the cyclopropane rings (Scheme 3).

In summary, we have developed a chemoselective reagent system for transformation of alkyl-substituted *gem*-dichlorocyclo-propanes into substituted 5-chloroisoxazoles in high yields.

This work was supported by the Russian Foundation for Basic Research (project no. 11-03-00707) and the program of the Presidium of the Russian Academy of Sciences 'Development of Methods for Synthesizing Chemical Compounds and Creating New Materials'.

## References

- 1 (a) W. P. Weber and G. W. Gokel, *Phase Transfer Catalysis in Organic Synthesis*, Springer, Berlin, 1977; (b) W. Kirmse, *Carbene Chemistry*, Academic Press, New York, 1964; (c) N. S. Zefirov, I. V. Kazimirchik and K. L. Lukin, *Tsikloprisoedinenie dikhlorkarbena k olefinam (Cycloaddition of Dichlorocarbene to Olefins)*, Nauka, Moscow, 1985 (in Russian).
- 2 M. Fedorynski, Chem. Rev., 2003, 103, 1099 and references therein.
- 3 N. V. Zyk, O. B. Bondarenko, A. Yu. Gavrilova, A. O. Chizhov and N. S. Zefirov, *Izv. Akad. Nauk, Ser. Khim.*, 2011, 321 (in Russian).

- 5 A. Z. Kadzhaeva, E. V. Trofimova, R. A. Gazzaeva, A. N. Fedotov and S. S. Mochalov, Vestn. Mosk. Univ., Ser. 2: Khim., 2009, 35 (Moscow Univ. Chem. Bull., 2009, 64, 28).
- 6 O. B. Bondarenko, A. Yu. Gavrilova, L. G. Saginova and N. V. Zyk, Abstracts of Papers, All-Russian Conference on Organic Chemistry (devoted to 75<sup>th</sup> anniversary of the foundation of N.D. Zelinsky Institute of Organic Chemistry), Moscow, 2009, p. 108.

Received: 4th February 2011; Com. 11/3681

 $<sup>^{\$}</sup>$  According to the <sup>1</sup>H NMR spectrum of the reaction mixture isoxazole **3c** was formed only in trace amounts (< 10%).

 $<sup>^{\</sup>P}$  **2c**: yield 60%.  $R_{\rm f}$  0.51 (ethyl acetate:light petroleum, 1:10). Red oil.  $^{1}{\rm H}$  NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 3.77 (s, 2H, CH<sub>2</sub>Ph), 7.22 (dm, 2H, CH<sub>aryl</sub>,  $^{3}J$  7.3 Hz), 7.29 (tt, 1H, CH<sub>aryl</sub>,  $^{3}J$  7.3 Hz,  $^{4}J$  1.7 Hz), 7.37 (tt, 2H, CH<sub>aryl</sub>,  $^{3}J$  7.3 Hz,  $^{4}J$  1.7 Hz), 8.13 (s, 1H, HC=N).  $^{13}{\rm C}{}^{1}{\rm H}$  NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 28.4 (CH<sub>2</sub>Ph), 113.4 (=C–Bn), 127.0 (CarH), 128.3 (2CarH), 128.9 (2CarH), 137.7 (CarH), 151.4 (=CCl), 153.1 (HC=N). Found (%): C, 61.88; H, 4.30; N, 7.07. Calc. for C<sub>10</sub>H<sub>8</sub>CINO (%): C, 62.02; H, 4.13; N, 7.24.

<sup>4</sup> http://www.nextbio.com.