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Abstract: A new entry to the synthesis of anthrapyran antibiotics
has been accomplished through the synthesis of a 4H-anthra[1,2-
b]pyran-4,7,12-trione model. The key step features a Diels–Alder
reaction between a substituted 5-vinyl-3,4-dihydro-2H-pyran and
naphthoquinone as the dienophile. The resulting tetracyclic adduct
is then processed towards the targeted trione in a few steps.

Key words: anthrapyran antibiotics, Diels–Alder reaction, quin-
ones, Stille reaction, 4H-anthra[1,2-b]pyran-4,7,12-trione

The pluramycins1 are a group of naturally occurring an-
thrapyran antibiotics with antitumor activity. They dis-
play a 4H-anthra[1,2-b]pyran-4,7,12-trione structure with
C-glycoside moieties typically attached at C8 and C10 (or
C5 and C10 for the subgroup of altromycins) and a lateral
chain branched at C2 bearing one or two epoxide func-
tionalities. These compounds intercalate in DNA with se-
lective positioning of the chain epoxide in the major
groove where it can form an adduct with the N7 of a gua-
nine residue. In addition to the C-glycosylated pluramy-
cins, the family of 4H-anthra[1,2-b]pyran antibiotics also
contains bioactive compounds having no epoxide func-
tionality and compounds bearing no carbohydrate moi-
eties. For the purpose of illustration, Figure 1 gives an
overview of their structural diversity.

The original structure and mode of action of pluramycins
added to the promising antitumoral activity of some mem-

bers of the family have spurred recently some synthetic
interest. While no synthesis of a complete skeleton of a
pluramycin has been achieved to date,2 several syntheses
of 4H-anthra[1,2-b]pyran antibiotics including pluramy-
cin aglycones (pluramycinones) have appeared in the
literature.3 In these reported syntheses, anionic condensa-
tions and Diels–Alder reaction were mainly used to fash-
ion the DCB framework of the molecules whereas ring A
was elaborated by creation of the O1–C2 or the C4–C4a
bonds from a suitable precursor. Our approach to this
class of compounds is different and inspired from our pre-
vious work accomplished in the field of angucycline syn-
thesis.4 We thus planned to construct, in one single
operation, a tetracyclic precursor to the 4H-anthra[1,2-
b]pyran-4,7,12-trione framework with creation of ring B
by means of a hetero Diels–Alder reaction [ABCD → AB
+ CD strategy]. In addition to its convergency this strategy
would allow the preparation of several analogues by
changes in the structure of the diene and (or) of the dieno-
phile. To test the feasibility of such an approach, the 4H-
anthra[1,2-b]pyran-4,7,12-trione (1) was chosen as a
model compound. A retrosynthetic overview of our key
strategic bond disconnections is depicted in Scheme 1.

We thus envisioned that trione 1 could be obtained by ar-
omatisation of the A ring of 2a or 2b, which could in turn
be prepared by aromatisation of the B ring of 3a or 3b, re-
spectively. These latter could be the result of a Diels–

Figure 1 Selected natural anthrapyran antibiotics
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Alder reaction between naphthoquinone 4 and dienes 5
(→ 3a) or 6 (→ 3b). Each of these dienes could be access-
ed from an iodoether precursor (7 or 8) through an orga-
nometallic coupling reaction. Finally, the preparation of 7

and 8 could be envisaged from a same precursor 9, itself
being the result of a heterocyclic Diels–Alder reaction be-
tween aldehyde 10 and Danishefsky’s diene 11.

Scheme 1 Retrosynthetic analysis
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The synthesis of dienes 5 and 6 commenced with the het-
ero Diels–Alder condensation of 3-benzyloxyacetalde-
hyde (10) with the Danishefsky’s diene (11) to afford the
dihydropyran-4-one 9.5 The latter was next treated with an
excess of iodine (ca. 2 equiv) in a 1:1 mixture of CCl4 and
pyridine to give the iododihydropyran-4-one 7 in good
yield.6 Reduction of 7 under Luche conditions7 provided
the sole iodo alcohol 12 which was subsequently
OTBDMS-protected to give the iodo ether 8. Dienes 5 and
6 could then be reached by palladium-catalysed Stille cou-
pling reaction between tributylvinylstannane8 and iodo
ethers 7 and 8, respectively (Scheme 2).

With access to dienes 5 and 6, we were poised to study the
key cycloaddition reaction to form 3a and 3b (Scheme 3).
Initial reaction conducted with naphthoquinone 4 showed
a clear difference of reactivity between dienes 5 and 6. If
diene 6 smoothly condensed with 4 to give adduct 3b in
good yield,9,10 diene 5 failed to react in the same condi-
tions. Diene 5, however, reacted smoothly with the bro-
mo-activated naphthoquinone 13 to give adduct 14 in
good yield.11 Diene 6 reacted similarly to give adduct 15.
Additionally, diene 6 was also reacted with juglone 16 to
furnish adduct 1710 (Scheme 4).

Although our synthetic strategy implies subsequent arom-
atisation of the B-ring of Diels–Alder adducts, it is not
without interest to point out that all the above adducts

were isolated as single diastereomers. The structure of ad-
duct 17 could be fully ascertained by single-crystal X-ray
diffraction12 (Figure 2) and structures of adducts 3b, 14,
and 15 were attributed by analogy. The complete stereo-
selectivity of the cycloaddition process can be accounted
for by an endo transition state with minimisation of steric
interactions (i.e., attack of the dienophile on the face of
the diene opposite the OTBDMS and CH2OBn groups) as
pictured in Scheme 4 for cycloaddition of juglone (16)
with diene 6.

Figure 2 X-ray structure of 17
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Processing further on to reach trione 1, we next consid-
ered the possibility of carrying out the aromatisation of
ring B in adducts 14, 15, and 3b. Treatment of adduct 14
with triethylamine resulted in the formation of the B-ring-
opened product 18 (Scheme 5) and we also failed to iso-
late compound 2a in several other conditions. Adduct 15
behaved similarly in similar conditions.

After several unfruitful research efforts we finally discov-
ered that compound 2b could be derived from 3b through
a two-step process featuring epoxidation13 of 3b to give
epoxide 19 (one single diastereomer) and treatment of the
latter with an excess of triethylamine. Moreover, we
found that a substantial improvement of the yield (49% to
67%) could be achieved when a one-pot procedure was
applied (Scheme 6).

At this point, completion of the synthesis of trione 1 re-
quired deprotection and oxidation of the C4 alcohol and
introduction of the C2–C3 double bond. Treatment of 2b
with the Jones reagent effected both deprotection of the
OTBDMS ether and oxidation of the resulting alcohol to
give ketone 20 (Scheme 7). The same transformation was
also achieved in two steps, that is, OTBDMS deprotection
(CuCl2·7H2O, acetone–H2O, reflux, 48h;  70%)14 and
PCC oxidation (3 equiv of reagent, CH2Cl2, reflux, 3 d;
80%), without significant yield improvement. Finally, in-
troduction of the C2–C3 double bond to reach trione 1 was
best accomplished by exposure of 20 to iodine in DMSO

at 80 °C.15 Under these conditions, the targeted trione 116

could be isolated in 93% yield (Scheme 7).

In summary, we have achieved the synthesis of the 4H-an-
thra[1,2-b]pyran-4,7,12-trione (1) embodying the tetra-
cyclic framework displayed by pluramycins and related
natural products. The key step is a Diels–Alder cycloaddi-
tion, which allows, in one single operation, the regioselec-
tive assemblage of a CD unit to a A-ring precursor with
formation of an advanced tetracyclic intermediate. Inves-
tigations directed towards the implementation of this
strategy for the synthesis of more elaborated targets in-
cluding natural products are ongoing.
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C10), 134.3 (Cq, C11a), 132.3 (Cq, C7a), 132.1 (CH, C6), 128.8 
(2 CH, C17, C17¢), 128.5 (Cq, C4a), 128.3 (CH, C19), 128.0 (2 
CH, C18 and C18¢), 127.3 and 127.2 (2 CH, C8 and C11), 123.3 
(CH, C5), 122.7 (Cq, C12a), 110.1 (CH, C3), 73.8 (CH2, C15), 
67.9 (CH2, C13). IR (KBr): 1674, 1657, 1589, 1418, 1324, 
1283, 1122 cm–1. MS (EI): m/z (%) = 280 (20), 125 (27), 111 
(30), 97 (47), 83 (45), 71 (59), 57 (100), 43 (69). MS (CI, 
NH3): m/z = 397 [(M + H)+]. ESI-HRMS: m/z calcd for 
C25H17O5 [MH]+: 397.1071; found: 397.1056, D = 3.6 ppm.
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