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ABSTRACT

In this work we have reported two novel tetranucl€d(ll) complexes viz. [CALM®)(uy 1-
Na)a(H1,aNa)ln (1) and [Cd(L™)a(k1,-N3)s(OAC)]2 (2) where (HLY) and (HL) are two
important less explored salen-type Schiff basenliga Both of the complexes have been
characterized by using common spectroscopic tedesigelemental analyses (C, H and N), X-
ray powder diffraction pattern (PXRD) and thermablgsis by TGA along with single x-ray
crystallography. The complete structural studyldses that in both cases the fully deprotonated
ligand [L°™% or [L°F9> utilized all potential coordination sites to agumdate four Cd(ll) ions.
Complex1 is a one-dimensional polymer with azidesMnkage having bothyg ; end on) and
(u13 end-to-end) azido bridging but compl@xis a discrete octanuclear ensamble where two
[Cds(O)a(N)-]** units bridged to each other showipg: end on end on azide bridging.
Exploration of photo physical properties in DMSOlvent reveals that Cd(ll) complexes
enhance appreciably the fluorescence behavior freer Schiff base ligands ¢H°M®) and
(H,L®®). DFT calculations performed at B3LYP/def2-TZVRvde of theory reveal both the
energetics and composition of FMOs in these congsleand also show electrophilic and
nucleophilic areasia molecular electrostatic maps [ESP]. The antib&dtenmembrane damage
assay and anti-biofilm properties of complefesnd2 were investigated very carefully against

some important Gram-positive and Gram-negativedngttstrains.

Keywords. Antimicrobial, azide, Cd(ll) coordination compouwmdDFT, photoluminescence,

TGA



1. Introduction

In the past few decades, the design and constructigoolymeric and discrete metal-organic
frameworks (MOFs) of ¥ group 12 metal ions like zinc, cadmium or Hg afey@at interest
and booming field of investigation due to the phesic beauty and potential applications as
functional materials [1-3]. Thus, a major focusealdn drawn towards N,O-donor salen-type
Schiff base complexes due to their preoperationaessibilities, structural varieties, extreme
stability, plasticity, varied denticities [4a] arfthve broad spectrum of bioactivities such as
antibacterial, antimicrobial, anti-allergic, antadi, anti-oxidative, anticonvulsant, antitumor and
anticancer[4b-d]. There are some novel researchehwpotentially supported that microbicidal
and anticancerous activities of Schiff base ligaads appreciably enhanced after complex
formation with transition metal ions. Thus synthethemists will have a target to discover
always new complexes that have medicinal effecless toxic. In nature biofilms are the most
important common path of bacterial growth whichrasponsible to various clinical infections
[4e]. Due to this adverse effect scientists hawen@Cd(ll) Schiff base complexes antibiofilm
properties promoted significantly by different tgpef bacteria.This antibiofilm activity
effectively explored by salen-type {&,) Schiff bases and their associated complexes wikich
potentially significant in biomedical field [4f].TUs scientists around the world are tried to find
out new antibiotics related to new Schiff-base clex@s which have significant antimicrobial
potency. On the other hand utilizing salen-typed Schiff base ligands, inorganic synthetic
chemists have devised zero to three-dimensionaldewion polymers (CPs) in presence of
multifunctional organic or inorganic linkers as diaxy moieties [5]. In this context, azide
widely used as a worthy coordinating ancillary ahd due to their smaller length, rigidity and

versatile coordination modes of donor atoms [6-3, group 12 metal ion such as Cd(ll)



polymeric or discrete complexes which are derivedhfazide ancillary co-ligands are of current
interest because of their unique pale color, higtrearmal stability and possible strong
luminescence properties [31-42]. Till date seveaaaido bridged discrete and coordination
polymers (CPs) have been reported but exploratioiCdill)-azido bridged complexes are
always deserves attention due to the uncertaintthefproduct formation and versatility of
getting new different dimensional structural praguand their associated novel photo physical,
antimicrobial and anti-biofilm properties which awé profound interest to both structural and
synthetic chemists.

In our previous publications, our highly motivategearch group have successfully explored the
luminescent and antimicrobial, antibiofilm propesti of halides and pseudohalides metal
complexes of 3f metal ions where use of Schiff base ligand [N, Bi$(3-
methoxysalicylidenimino)-1,3-diaminopropane] (4% allowed us to isolate a homometallic
trinuclear linear complex [G(L°M®),(Cl)] in presence of NaCl as Gipacer [43].Utilizing the
identical ligand in presence of thiocyanate an&m,1D chain of Zn(ll) coordination polymer
[Zn.LOM(u, +SCN)(*SCN)}, has been reported [44]. Apart from these usuaksydiurther
analyzed two Cd(ll) Azide/thiocyanate linked 1D an2D coordination polymers
{[Cd4(N3)a(L°™®),].H0}n,  [CA(LOME)(SCN)Y],, three  Zn(l) dinuclear complexes
[Zn2(L°)(CH;OH)(SCN)(OAC), [Zn(L°%)(CH:OH)(Na)z],
[Zno(LOFY(Cl)»(CHsOH)].CHsOH, Cd(ll) polynuclear-discrete complexes viz, JCo(u, =
SCN)(*-SCN)},  {Cda(L°)a(H1.-N3)3(7-N3)]2,  [Cob(L°FY)(CI)2.CH;OH].CH;OH] and their
novel luminescent and antimicrobial properties dliyi[45-47]. Taking cues from such novel
research works, we were prompted to explore thetioees of nonessential toxic Cd(ll) metal ion

in presence of two less explored salen-typeOd) ligands (HL°™®)/(H,L°FY) using 1,2-



diamnopropaneRn) instead of 1,3-propane diamine in assisting threnation of complexes
[Cda(LM)a(b1 1-Na)a(a #N3)]n (1) and [CA(L%)a(b1 1-Na)s(OAC)] (2).

The present article primarily focuses on the sysggeof complexl and 2, X-ray crystal
structure, DFT/TD-DFT calculations, photo physiddlermal behavior, antibacterial efficacy,
membrane damage assay and anti-biofilm properties.

2. Experimental

2.1. General remarks and physical measurements

2.1.1. Materials

All chemicals were of reagent grade, purchased frommercial sources and used as received
without further purification. High purity 3-methosalicylaldehyde, 3-ethoxysalicylaldehyde and
1,2-diaminopropaneP) was purchased Sigma Aldrich Company, USA. Cd(QRepL0 was
directly purchased from E. Merck, India. High pyritiaN; was purchased from SDFCL, India.
Solvent methanol was used of AR grade.

2.1.2. Instrumentation

Elemental analyses (C, H, and N) of salen-type fBdidse ligands (bL°"®)/(H,L°F) and
cadmium(ll) complexesvere determined with a Perkin—Elmer CHN analyze®@@4FT-IR
spectra of Cd(ll) complexes were recorded as KBtegewithin the range 4000-400 &m
having 16 scans at a wave number resolution of 4 @ma Perkin—Elmer spectrum RX 1 using
detector DTGS (Deuterated triglycine sulfate). Taebreviations commonly used in this
manuscript stands for vs=very strong, s=strong, ediom, w=weak. The electronic UV-Vis
spectra of both Cd(ll) complexes and free salee-tligands (HL°“®)/(H,L°®) in DMSO
solvent were recorded on a Hitachi model U-3501ctspphotometer. Perkin-Elmer LS50B

spectrofluorimeter model was used directly forflnerescence measurements of comdlend



2 as well as free salen-type ligands at room tenpexg298K). Thermo-gravimetric analyses
(TGA) of both Cd(ll) complexes were carried out anTGA-50H analyzer from ambient
temperature to 70C at a temperature rate of ©@min in a flowing 30ml/min under nitrogen
atmosphere using a platinum cell. X-ray powdenrddfion measurements for tetranuclear Cd(ll)
complexes were carried out using BRUKER AXS, GERMAXHray diffractometer model after
scanning 2 theta from°4o0 5¢.The radiation used for PXRD measurement purposauik-
alpha-1.The fluorescence quantum vyield3 ¢f Cd(ll) complexes have been determined using
the following well known mathematical equation @sociated with fluorescence spectroscopy

where Quinine sulfate is used as the secondargatdrd = 0.57 in water) [48] .

& —&x—(Ab$R xﬁ

= 1
Py Ay (Abys 1 .

According to equation (1) abbreviations used stdndsA terms denote the fluorescence area
under the curve; Abs denotes absorbance; n isefnactive index of the medium® is the
fluorescence quantum vyield; and subscripts S armtemdte parameters for the studied sample

and reference, respectively.

2.2. X-ray crystallography

The crystal data of azido-bridged tetranuclear Ga@mplexes(1-2) have been collected on a
Bruker SMART CCD [49] diffractometer (Mo K radiation,2 = 0.71073 A). The program
SMART was used for collecting frames of data, indexieffections, and determining lattice
parametersSAINT[50] for integration of the intensity of reflectisrand scalingSADAB51] for
absorption correction, and SHELXTL for space gr@ma structure determination and least-

squares refinements dif. The crystal structures of cadmium @Edmplexes(1-2) were fully



solved and refined by full-matrix least-squares hods against~? by using the program
SHELXL-201f2] and Olex-2 software [53]. All the non-hydrogen atoms wereined with
anisotropic displacement parameters. Hydrogen ipasitwere fixed at calculated positions and
refined isotropically. Different types of crystaili@phic figures for cadmium(ll) complexés?2)
were generated using latest Diamond software[54limary of the crystallographic data and
complete structural refinement parameters of cadr{liyl complexeg1-2) are clearly presented
in Table S1[see supplementary materi@lfystallographic data (excluding structure factaf)
tetranuclear cadmium (Il) complexe€l-2) have been deposited with the Cambridge
Crystallographic Data Centre as supplementary patitin nos. CCDC 1811084-1811085.
Copies of the data can be obtained, free of chamgegpplication to CCDC, 12 Union Road,

Cambridge CB2 1EZ, U.K. http://www.ccdc.cam.acagi/bin/catreq.cagi, e-

mail:data_request@ccdc.cam.ac.uk, or fax: +44 BXBR33.

2.2.1. Computational DFT methods

Frontier orbital analyses and global reactivityiaed of both tetranuclear Cd(ll) complexes were
explored using DFT calculations employing ORCA 3.@oftware package [55] using the
Becke’s three-parameter hybrid exchange functioneluding the Lee-Yang—Parr nonlocal
correlation functional (B3LYP) [56] and the tripleeta valence basis set with one set of
polarization function (TZVP) [57]. To accelerateethalculations, we utilized the resolution of
identity (RI) approximation with the decontractaakgiary def2—TZV/J Coulomb fitting basis
sets and the chain—of-spheres (RIJCOSX) approamati exact exchange as implemented in
ORCA [57]. The Initial geometries of the complexesre taken from their crystal coordinates
and the optimized geometries were confirmed to loba) energy minima by performing the

frequency calculations which had no imaginary festpy. The choice of the TZVP basis set was



made since it reduces the basis set superposition(SSE) to negligible in the calculation of
systems with noncovalent interactions. The visaé#ilin of orbitals was done using Avogadro
software [58].For calculating the composition of Frontier orlstaednd distribution of ESP
(Electrostatic potential), Multiwfn program [59, |6@as used and .molden type file generated
using orca_2mkl functionality was employed as tii for the program. The Time Dependent-
Density Functional Theory (TD-DFT) calculation obth tetranuclear Cd(Il) complexes were
performed using Gaussian 09 [60(b)] at DFT/B3LY¥eleusing 6-31+G* basis set for C, H, O
and N atoms and SDD basis set and an effectivepmiential was used for Cd atom. The effect
of the solvent was modeled with the polarized cantm model (PCM) [60(b)].The
crystallographic coordinates have been considevedhie TD-DFT calculation. All generated
molecular orbitals (MOs) during TD-DFT calculatiowgre visualized using common software

Gauss view 5.0.
2.2.2. Experimental of antibacterial and anti-Bofproperties of tetranuclear Cd(Il) complexes

Two Gram positive bacterial strainBgcillus subtilisMTCC 441 andEnterococcus gallinarum
MTCC 7049) and two Gram negative bacterial str&ntérobacter aerogenddTCC 111 and
Proteus vulgarisMTCC 744) was selected fam vitro evaluation of antibacterial potentials of
two complexed and2 and two of their respective ligands,(t""¥/H,L°). The bacterial strains
were obtained from Microbial Type Culture Collectiand Gene Bank (MTCC), Institute of
Microbial Technology, Chandigarh, India. For thdimicrobial assay, two Cd(Il) complexes as
well as the corresponding ligands -($"%/H,L°%) were dissolved in dimethyl sulfoxide
(DMSO) solvent. Selected concentrations of comEd€$e?) were prepared in sterilized Luria-
Bertani medium (modified). The bacterial cultur&¥2® colony forming units, CFU)/mL) was

inoculated to the respective medium maintainingfitie concentration of DMSO set within 1%.



All the bacterial strains were cultured in an inatdv at 37°C and under mechanical shaking
(150 rpm) for 24 h. Antibacterial potential and mam inhibitory concentrations (MIC) of the
complexeg(1-2) and the Schiff base ligands AtYM¢/H,L°) were probed against the selected
bacterial strains belonging to different categorieowing standard protocol prescribed by
Clinical and Laboratory Standards Institute (CLRQLSI, 2012) [61]. The MICs were
determined measuring the turbidity in the brotmgduV-Vis spectrophotometer at 600nm. The
threshold concentrations of the respective Cd@plexes(1-2) and their Schiff base ligands
(HoLOM/H,LOF) at which the bacterial growth (QR< 0.05) was inhibited under 24 h
incubation were considered as individual MICs [@BHividual susceptibilities of the bacterial
strains to the complex@s?) and their ligands (b.°M%/H,L°) were tested following agar well
diffusion method and the antibacterial efficiencedsthose chemical entities were defined by

measuring the diameter (mm) of the growth inhiloittmne developed in the process [63].

The time-kill curves of the bacterial strains wel#ained based on the growth pattern following
chemical treatment of the bacterial strains remainin their mid log phase with the said
complexes(1-2) and ligands (bL°MY¥H,L®F) at their respective MICs [62].The bacterial
cultures without any chemical treatment servedagrol. Optical density of the cultures was
determined with a 30 min interval frequency using-Uis spectrophotometer at 600nm. The
viable cell numbers were enumerated adopting theasp plate method and counting the

bacterial colony forming units (CFU/mL) developeutbe agar plate.

Biofilm biomass was determined following the stamdaethod [64].The bacterial cells of each
representative belonging to Gram posititze gallinarum) and Gram negative®( vulgari9 were
cultured for 16 h in brain-heart infusion mediunmeTinoculums of the bacterial cultures (1 mL)

were added to the fresh media (100 mL) and incabait&7 °C. The bacterial cell suspension (2



mL; ODso= 0.1) derived from the prepared culture passimguiph the mid-log phase was then
transferred to a sterile Petri plates (35 mm) agpt kinder incubation at 37 °C to allow biofilm
formation. The used media was disposed of the plaied media containing respective
concentrations (MIC) of the Cd(ll) complexés2) and ligands (bL°™/H,L°F) were added
afresh to the plates, maintaining triplicates facke treatment. A positive control was set with
biofilm without any chemical treatment, and a nagatontrol was maintained only with sterile
broth. The plate was subsequently incubated atC3fbr 24 h under static condition. Thereafter
aspiration was done for the contents of each pHlte.plates were subjected to vigorous shaking
with 2 mL of phosphate buffer saline (PBS) to wafdll the non-adhering bacteria. Fixation of
the biofilm containing attached bacteria was penka with methanol (2 mL) for 15 min. It was
followed by staining of the biofilm with 2 mL of 2%rystal violet for 5 min at room
temperature. Differentiation of the biofilm matrsceadhered to the plate surface was
accomplished by slowly ringing the plate in steMédi-Q water. Drying of the plates was done
leaving them in the open air at room temperaturesoRibilization of the dye adhering the
biofilm was performed with 2 mL of 33% (v/v) glaticetic acid and absorbance was measured

at 570 nm using UV-Vis spectrophotometer.

Both bacterial strain&. gallinarumandP. vulgariswere grown overnight in a sterile plate (35
mm) to develop biofilm [65].The selected complex€s2) and corresponding ligands
(HoLOMe/H,L°FY) were added following the method as describedoimection with antibiofilm
assay. Positive and negative control sets weretaiagd as defined before. The spent media was
dispensed from the plates and washed with PBSmove planktonic bacteria. The plates were
dried in the air. Fresh media (2 mL) containingaeolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT; 0.5 mg/mL) wasdad to each plate and incubated in the



dark for 2 h at 37 °C. The MTT solution was disleat and DMSO (2 mL) was added
immediately to the plate to solubilize the formazagpstals developed in the plate and mixed
thoroughly. It was left for incubation for 15 mihn 25 °C [66]. The absorbance of the solution

was measured using a UV-Vis spectrophotometer @ns?.

Membrane damage assay was performed to test tbeedy of the Cd(Il) complexed-2) and
their Schiff base ligands in inflicting damage tacterial cell membrane integrity. Membrane
damage was evaluated by quantification of nucleidsareleased from the c&fiThis assay was
performed on one representative each from Grantipegk. gallinarum) and Gram negative>(
vulgaris) bacterial category [67]. Overnight cultures o thoth bacterial strains were subjected
to centrifugation at 8000 rpm for 5 min. The cedllpt was washed three times by phosphate
buffer saline (PBS, pH 7.4) and resuspended inigéd media. The bacterial suspension with a
defined optical density (0.7 at 600 nm) was distielol into different conical flasks. The
concentrations of the complexes (1-2) and ligandeevget at their respective MICs against the
bacterial strains. Control set was maintained witheny chemical treatment. Samples (2 mL)
were collected at 30 min interval and filtered gsisyringe filter (0.2 um), and the filtrate was
measured using UV-Vis spectrophotometer at 260mestimate the nucleic acids released out.
2.3. Synthetic Methodologies

2.3.1. Syntheses of salen-type Schiff base ligéHgls°"/H,L°)

The Schiff base ligands ¢H°™® and HL°®) was synthesized by the condensation of 1 mmol
(0.152g) 3-methoxysalicylaldehyde or (0.16629) [3e&{salicylaldehyde with 0.5 mmol
(0.03719) 1,2-propanediaminen) in (50 mL) of methanol for ca. 1 h (see Schemerhg dark
yellow colored solution was then used directly fetranucear azido-bridged Cd(ll) complex

formation.
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Schemel. Synthetic representation of salen-type ligandg 4¢/H,L°)

2.3.2. Synthesis of complex [gt°M)(u1 1-N3)s(p1.3-Na)]n (1)
To the methanolic solution (30 mL) of cadmium atet#ihydrate (0.266g, 1 mmol), dark orange
yellow solution of Schiff base @H°™®) was added directly followed by mixing a solutioh
sodium azide (0.065g, 1 mmol) in minimum volumeagfieous methanol with constant stirring
for 2 h. (10 mL). Few drops of GBN were then added and the resulting mixture was
additionally refluxed for 1 hour at 7. Finally yellow colored filtrate was kept in regferator
for crystallization by slow evaporation. After 1@ys$ yellow colored single crystal suitable for
X-ray crystallography was obtained. Deep yellowstails was isolated by filtration and air dried.
Yield: 0.358 g (68.75%), Anal. Calc. forsg40N160sCdy: C, 35.15; H, 3.11; N, 17.2@0und:
C, 35.08; H, 3.05; N, 17.30 %. IR (KBr énselected bands: 2986 (w), 2837 (w), 2070 (vs),

1608 (vs), 1473 (s), 1217 (w) 1008 (w), 881 (w),-M¥ (AmaxYnm): 370 nm.

2.3.3. Synthesis of complex [gH%%),(11.1-N3)3(OAC)]- (2)

To synthesize? similar procedure has been adopted as descrilvecofoplex1 except Schiff
base ligand (bL°F) was used. The deep yellow solution was allowedtamd under freezing
condition where yellow crystals were separated ilbsafion and was air dried. Yield: 0.236 g

(63.5 %), Anal. Calc. for £H102N26020Cds: C, 38.53; H, 3.75; N, 13.2&ound: C, 38.47; H,



3.69; N, 13.21%. IR (KBr ci) selected bands: 3792 (b), 2913 (w), 2300 (vs), 2069 (vs),

1803(vs), 1590 (vs), 1526 (w), 1329 (s), 1163 @B¢ (W), UV-ViS {ma/nm): 371 nm.

3. Results and discussion

3.1. Syntheses of Cd(ll) complexes and characterirm

Less explored compartmental salen-typexd) Schiff base ligands @L°M/H,LF) are
employed during complef and 2 formations. Salen-type ligands formation commorily2(
molar ratio) belongs to condensed nature of Sdfaffe involving between 1,2-diaminopropane
(Pn) and o-vaniline/ (OMe / OEt substituted) in metblasolvent ( Generally H. type where H

is a dissociable kind of proton).Schiff base ligameere successfully characterized by FTAR,
NMR and *C spectroscopic studies shown in Fig.S13 (see sompitary material).Both
cadmium (1) complexes were derived by utilizingotwlose resemblance Schiff base ligands
(HoLOMe/H,L°FY). Complex1 and2 were successfully synthesized by using cadmiujrafiétate
dihydrate as metal precursor in methanol solutiod aninimum volume of water-methanol
solution of sodium azide (NaNwere added to methanolic solution of ligands (Sekeme
2).Ligands (HL®M/H,L°F) potentially acts as a strong compartmental hexate (NO,)
nature and thus have strong coordinating abilitthv@d(ll) metal centers during tetranuclear
complex formation. Compleg is a one-dimensional polymer having azide)(lkage exhibit
both (1,1 end on) andy(; 3 end-to-end) bridging fashion but compl2xs a discrete octanuclear
ensemble where two [GE)4(N)2]** units bridged to each othar(; end on end on) by ancillary
azide co-ligands. Both complexes were successistiiated only from CBOH-CH;CN mixed
solvent medium at room temperature. Comdleand?2 is deep yellow colored, highly stable in
air and soluble in most of the common organic sulve Complexes were successfully

characterized by different well known analyticabilike elemental analysis; UV-visible, TGA,



X-ray powder diffraction pattern, single-crystalry diffraction and Fourier transform Infrared
spectroscopic studies. A complete systematic ctemaations approach of both Cd(ll)
complexes using TGA and X-ray powder diffractiortgan (PXRD) will be clearly submitted

in Fig.S14 & Fig.S15(see supplementary material).

Cd(QAC),:2H,0
~ NaN
OHHO T z é—OH Hob
> >

0 o B 2] o]

A Hloge — |2 < | ’OHzLOMe '
[Cd4(LoEt)2(H1,1-N3)3(OAC)], [Cda(Lome)2(H1,1-N3)3(H1,3-N3)],

2 1

Scheme2. Synthetic representations of tetranuclear Cd(Ilhglexes
Fourier transforms Infrared spectroscopy of Cd¢dmplexes were analyzed and compared
systematically with those of the corresponding Baken-type ligands @H°M/H,L°F).The FT-
IR spectrum of both tetranuclear Cd(Il) complexes @ related some other reported Cd(ll)
azide complexes were analyzed very carefully ineortd predict the bridging propensity of
ancillary azide co-ligand (Table S4, see Suppleargninaterial) [68].The appearance of strong
C=N stretching value at 1630 &nindicate positively the well-known salen-type Stiiase
formation. An intense strong band at 1608’camd 1620 cm for both cadmium(ll) complexes
is shifted considerably towards lower frequencies@mpared to free ligands ALPM/H,LOF),
that further supported coordination of binding madehe imino nitrogen atoms of concerned
ligands with the Cd(Il) metal centers. Both Cd@dmplexeq1-2) exhibits bands near at 2070
and 2069 crl strongly attributable ta(N3) binding shown in Fig.S1-S2 (see supplementary

material). Additionally aliphatic C-H stretching sanances for both tetranuclear Cd(ll)



complexes observed in the range 2918-2897. ¢imally Ar-O stretching frequencies in both
Cd(Il) complexes observed near at 1204-1212 which is identical to the other reported salen-
type ligands [69]Thus a careful investigation of different charaister FT-IR stretching bands
for tetranuclear complexes gives an positive idezutithe versatile bridging propensity of azide
co-linker. The UV-Visible spectra of tetranuclead(l) complexes were recorded in DMSO
solvent 200-1100 nm at ambient room temperatureDMSO solvent at room temperature
Cd(Il) complexes exhibits ligand-based transitio820 & 371 nm presumably duete-n or
n—n transitions [70,71]. Since Cd(ll) metal ion haefl d'° configuration hence no metal
centric d-d transition was observed in complex spetl1 or 2. The UV-Visible absorption
spectrum of tetranuclear Cd(ll) complexg&-2) are clearly depicted in Fig.S3 (see

Supplementary material).

4. X-ray crystal structure explanation

4.1. Crystal growth description

X-ray diffraction quality deep yellow colored siegicrystals have grown for both Cd(ll)
complexes in mixed C¥OH-CH;CN solvent medium by slow evaporation at normalmoo
temperature. Full Crystallographic data and dedaiructural refinement parameters for
tetranuclear cadmium(ll) complexes-%) are clearly presented in Table S1[see supplementar

material].

4.2. Crystal structure of complex [§H°%)2(11.--N3)s(OAC)]2 (2)

Single crystal X-ray diffraction study df divulges that it is a neutral octanuclear cadmium
complex [Cd(L°®)2(Ac)(N3)s]. where, Ac=Acetate anion andsMAzide ion. The complex
crystallized in the triclinic space group P-1 (Z=The perspective view of the asymmetric unit

of 2 is given in the Fig.1 and selected bond parametedsbond angle are summarized in Table



S3 (see Supplementary material). From the perspeofidesign, the ligand fi]% having two
types of pockets which are tetradentate (O2N2) éDd) respectively. The formation of
tetranuclear assembly of asymmetric unit2oihvolves by the coordination action of the two
doubly deprotonated ligands{E]?. In 2 each of the two [P¥]% binds to four cadmium metal
ions. Interestingly utilizing tetradentate pock@2(2) accommodate only one Cd(ll) ion. On
contrary, other tetradentate pocket (O4) housingetiCd(1l) ions at a time utilizing bridging p3-
oxygen atom and bridging p2-oxygen atom. Apart frima binding action provide by the
[L°)% the tetranuclear framework is further strengthebedhe two bridgingti --Ns~ groups.
Besides this, one acetate ion attached to oneeoteitminal Cd(ll) ion iny*-OAc fashion to
neutralize the overall charge of the complex in.$g(see supplementary material). A close
inspection reveals that the asymmetric unitg @ifrther grow at the azide bridging (N8-N9-N10)
to give the overall a homometallic octanuclear eride. The coordination modes of the ligands
involved in the assembly & are given in Fig.2. Further investigation of timgstal structure of

2 reveals that the p3-oxygen, p2-oxygen of the Hgf®°¥1* and p2azide leads to the di
cationic tetranuclear core [G(D)s(N);]** featuring a butterfly shaped topology (see Fig.3)
[72,73]. The butterfly shaped Cd4 core is consfstoar cadmium metal ions; Cd2 and Cd3
represents the body where as Cd1 and Cd4 reprakentsng. Among the four cadmium metal
ions the metal ions Cdl and Cd4 are six coordinaed contain a 50, 1IN and 30, 3N
coordination environment respectively with a trigbprismatic structure where as Cd2 and Cd3
are seven coordinated and both contain a 40, 3Mdo@dion environment with square face
monocapped in Fig.S6 (see supplementary mateffée Cd-O bond distance fall in the
following range, the average Cd=€2.465A and CdsO =2.379A and CdeO =2.256A and

Cd-N bond distance fall in the range 2.329-2.34(®yith the small bond distance for Gd--



N3 (average ~ 2.289). The Cd-O-Cd and Cd-N-Cd borgleann compouna@ are in the range
98.108 (2) -103.11 (2). All the bond distances badd angles are similar and are comparable to

found in the literature (Table S5, see supplemgnteaterial) [74].

Fig.1. The perspective view of the asymmetric unit of ptar 2

-

Us-n1:n3:n1:n1:n2 1 Uy N2 py-nlnl

Fig.2. Bindings mode of ligand {51, azido and acetate anion



Fig.3. Butterfly shaped tetrameric core in comp&x

4.3. Crystal structure of complex [gH“"®),(u1.1-N3)s(H1 3-N3)]n (1)

Crystallographic investigation of complek reveals that the asymmetric unit contains four
crystallographic independent cadmium metal ions @ni a neutral tetranuclear complex
[Cda(L°M9),(N3)s] where, N=Azide. CompoundL crystallizes in the monoclinic space group
P2i/n (Z=4). The asymmetric unit is given in the Fig.S7 (see supplementary majesaat
selected bond parameters are summarized in Tabl¢s&®? Supplementary material). Like
H.L° the ligand (HL®M®) having two unsymmetrical tetradentate pocketsprisad of O2N2
and O4 coordination sphere. The formation of tetcéear assembly of asymmetric unit bf
involves by the cumulative coordination action loé two doubly deprotonated ligands’}{9*
.Two of such doubly deprotonated ligands bindsh four cadmium metal ions by using their

above-mentioned pockets. Besides this the asynumenit is further strengthened by the two



bridging p11-N3 groups. Two tetranuclear asymmetric unit joinsitfoadjacent unit by two
equivalent end-on [} coligands which are bridging between two symmaliycgenerated Cd4
atoms forming a octanuclear ensemble JC3"9)x(N3)4]. (see Fig.3). It is exactly showing
resemblance to the structure Bf Further investigation ol reveals that each octanuclear
building unit are linked to each other by meanstwb trans end-to-end (EEuw-1,3)[Ns]
coligands which actually bridging between two syrtmoeally generated Cdl atoms forming a
one-dimensional polymeric chain. Here it is intdrgsto mention that there is an existence of
eight membered ring (Cd2N6) which is unlikely skalkd in chair conformation due toans
end-to-end (EE:-1,3) binding of linear azido ligands in Fig.S8 ssupplementary material).
Perhaps due to presence of more flexible -CH3z moiety in1 creates steric effect and oppose
to the formation of such chair conformation arrangat. It is interesting to note that unliRe¢he
1is a 1D polymeric structure. Perhaps due to peseh more flexible —CHCH;z moiety inl
creates steric effect and oppose to the formatifosuoh chair conformation arrangement. It is
interesting to note that unlik2 the 1 is a 1D polymeric structure. Although both thestay
structure of2 and1 contain C-H---w but the H atom of the different group involving @
H----x are different in Fig.S4 (see supplementary mdjeiiaie different coordination modes of
ligands present i are given in Fig.4.0ut of four cadmium metal idhe Cd1 and Cd4 are six
coordinate both having 30, 3N coordination envirentrwith an octahedral arrangement for the
Cd1 and trigonal prismatic for Cd4 metal ion. Thetahions Cd2 and Cd3 are seven coordinated
and both contain 40, 3N coordination environmernhwguare face monocapped geometry (see
Fig.5).The Cd-O bond distance fall in the range33(2)-2.503(4) and Cd-N bond distance
2.242(5)- 2.364(6) A. All the bond distance and damgles are similar and are comparable to

found in the literature TableS5 (see supplementaaterial) [74].To enhance the broad



coordination chemistry knowledge of structurallacdcterized tetranuclear Cd(ll)-azido bridged
complexes in presence of current investigated tgafibL°™H,L°F), we have also explored
the coordination chemistry in details involving yelose resemblance ligands in the same field
as a concise comparative manner. Apart from, ilerab (see supplementary material) [75] we
have also clearly focused on the importance 8fthemistry [M'=bivalent metal other than Cd
metal ions] involving identical salen-type ligandsth reference to ligand potential donor

centers, azide bridging versality etc.

U;-n1:n3:n1:n1:n2:nl Hy-n2 Hnl:inl

Fig.4. Bindings mode of ligand [{I* and azide ion



Fig.5. Metal coordination geometry in compléx

5. Computational DFT approach

5.1. Frontier molecular orbital analysis

The frontier molecular orbitals, HOMO and LUMO atiekir energy values gives an indication
of the approximate chemical reactivity and kinstiability of tetranuclear Cd(ll) complexes. The
HOMO-LUMO analysis was carried out on the DFT opitieal structures and on analysis it was
found that the energy gap is comparable but highe&twith a difference of about 0.286 eV in
Fig.S9 (see supplementary material). From the HOMDAO energy values the global
reactivity descriptors can be predicted in Table [S&e supplementary material]. Orbital

compositional analysis was carried out on the fesrdrbitals which returned interesting results.



On performing orbital compositional analysis usiglliken method it was found that fdt,
HOMO is mainly centered on two benzenoid rings witbontribution of 21.79% and 35.22% (
type) (one from each ligand unit) and also from #issociated phenoxo and methoxy oxygen
atoms 25.29% (p type) and azide coligands (14.49%pe) with metal having no contribution
whatsoever. In the case of LUMO both the metal resntand azide coligands have no
contribution and the azomethine groups contribigavily with a cumulative contribution of
about 48.729 % followed by the benzenoid ringshefligand units with 39.88% X type). In the
case of2, similar to the case df no contribution from the metal centres were foand here
only one of the ligand contributes with the benzémimgs with a share of 58.35% type). This

is followed by the associated phenoxo and ethoxygem atoms 25.21%, azomethine nitrogen
atom 3.22% (p type) from the same ligand. All thela coligands have some minor share with a
cumulative value of about 4.408%. The LUMO conttibm comes from the ligand unit which
had no share in HOMO. The azomethine groups irligaad have the highest share (78.14%)
followed by the benzenoid rings which gives a cuatiué contribution of about 18.63%*(
type). Due to the similarity in solid state strues similar results were obtained for both the
complexes on performing Mulliken charge analydisvds found that the highest positive charge
is concentrated on the four Cd metal centers ih iod complexes ranging from +0.92 to +1.5.
Oxygen donor atoms have the highest negative chaitbephenoxo type in the range -0.71 to -
0.74 for both complexes while that of the methoxyetfalls in the range -0.55 to -0.57 (-0.58 to
-0.45 in2). The azide co-ligands closely follow with the s ranging from -0.65 to -0.28
(highest for the bonded and least for the middie) ¢f0.67 to -0.38 ir2). The coordinated donor
azomethine nitrogen atoms have a consistent vahging from -0.44 to -0.41 (-0.428 to -0.435

in 2).



5.2. Electrostatic potential maps (ESP) analysis

The electrostatic potential maps (ESP) where gé&sgtran DFT optimized structures at
B3LYP/def2-TZVP level of theory to visualize elemphilic and nucleophilic regions in the
molecule (see Fig 6). The red regions reveal teasaprone to nucleophilic attack while blue
electrophilic ones undergo attacks. Owing to theilarity in their structures both the complexes
1 and 2 have similar solid state architectures and exliligt same type of hydrogen bonding
interactions. This is also reflected in their molec electrostatic potential maps whereby both
the complexes show comparable minimum and maximalieg. From the crystal structure
analysis it is clear that both the complexes exhiimn-classical intramolecular hydrogen
bonding interactions with methoxy carbon as theod@nd azide nitrogen as the acceptor. This
is further evidenced from ESPs where both the cergd showed a positive potential (+9
kcal/mol for complexXt and +11 kcal/mol for comple®) in the proximity of the methoxy carbon
bound hydrogen (C35-H35B in compl&and C39-H39A in compleR) and a negative potential
near azide nitrogen (N12 in compl&xand N6 in comple®) (-38 kcal/mol in complex 1Land -

42 kcal/mol in comple®). Also in complexl, the centroid Cg(5) comprising of atoms C1 to C6
is at a negative potentiak-pasic ring) of about -11 kcal/mol which justifiets CH--x
interaction with methoxy carbon bound hydrogen H3%25 kcal/mol). Similarly in compleg,
Cg(4) comprising of atoms C12 to C17 which is ategative potential of about —15 kcal/mol
interacts with ethoxy bound hydrogen (H39C (+23l/keal)) of adjacent molecule. The trend
for the highest positive and negative potentiasgain similar on both the complexes and in line
with the reported complexes with the highest pesipotentials seen near the azomethine bound

hydrogen (NH), spacer diimine group (+30 to +47lkoal) [76] and the highest negative



potentials are seen near azide coligands (wittonsgnear terminal N atoms reaching up to -48

kcal/maol).

-38 kcalfmeol

SO TEE 50

kcal/mol

Fig.6. Electrostatic potential map of compl&and complexX on electron density isosurface

computed at the B3LYP/def2-TZVP level of theory.
6. Computational TD-DFT analysis

The TD-DFT study of tetranuclear azido-bridged Qd{dbmplexes exhibits electronic transitions
which are mainly due to intra-ligand charge transtée calculated absorption maxima in Figure
S10 black color (see supplementary material) a$e354.13 nm for complek (Experimental
~370 nm) with oscillator strength= 0.0945. HOMO-1 mainly consists of liganébrbitals and
very small contribution from metal orbital and HOMO-2 is consists of ligamebrbitals only.
Whereas the LUMO and LUMO+1 are consist of ligafebrbitals only. In case of comple it

shows calculated peak in Figure S10 red color @g#plementary material) at 359.22 nm



(Experimental ~371 nm) arises mainly due to intga#d transitions with oscillator strengths
0.1586. TD-DFT related all orbital electronic traims are clearly shown in Table S8 [see
supplementary material]. All the MOs generateddanrection of TD-DFT calculations of Cd(Il)

complexes are lucidly presented in Figure S10 $sgplementary material].
7. Photo physical properties of Cd(l1) complexes

Fluorescence behavior of salen-type Schiff basantlg (HL°M¥/H,L°) and tetranuclear
complexes 1-2) were recorded in DMSO solvent at room temperatuiEable 1 and the ligand
centered emission spectra are compared in Fig.€alieg that ligands are practically non-
emissive but the Cd(ll) complexes exhibit strongpfescent behavior. Upon photo excitation at
333 nm, Schiff base Ligands fEPM/H,L°) exhibits a fluorescent emission centered at 500
and 501 nm.Cd(llzomplexes 1-2) upon photo excitation at wavelength 372 & 373 rmoves
photoluminescence with the main emission peak & &1516 nm. The emission bands for
complex1 and2 are nearly similar to those of the other repo@eldil) complexes (Table S9, see
supplementary material) [77]. For complex&<?), no emission emanating from metal-centered
MLCT/LMCT excited states are possible since it &chto oxidize or reduce*dconfiguration
Cd(Il) metal ion. The photo luminescent emissioturea of Cd(ll) metal complexed-£) may
therefore be assigned mainly due to theM charge transfer. As a common popular knowledge
of fluorescence chemistry, the enhancement of tieston intensities ofl(2) may be due to the
metal ligand chelation effect [78-81] or most prolyahe increase in conformational rigidity of
salen-type ligands @°M/H,L°F) chelation imparted via N, O-donor center with hdhetal
[78,79]. Now at the time of metal binding procesthviN,O-donor ligand, non-radiative channels
and flexible bonds are inactive due to strong bigdiThis well known phenomenon popularly

referred as ‘CHEF EFFECT’ which has been mainlyreal in d° configuration metal ions viz.



Cd(In/zn(I/Hg(ll) especially those containingganic backbone fused ring structures involving
nitrogen or oxygen potential donor centers. Thesahhancement of fluorescence phenomenon
through stable chelate complex formation in presevfcsalen-type ligands is more interesting
and attractive as ibpens up the new avenue of opportunity for differphotochemical
applications of these complexes [84]closer inspection of salen-type ligandsI(F"/H,L )
divulges that identical absorption and emission imaxspectra have been observed for ligands
containing a methoxy/ethoxy group in ortho positadrthe phenol moiety [82]. Further, reported
Schiff base ligands (#L°M/H,L°) quantum yield ) values are very low which are nearly
identical to other reported Schiff base ligandsL{#F') [N,N -bis(3-ethoxysalicylidenimino)-1,3-
daminopropane] (4.6x10, (H.L®) [N,N-bis(salicylidene)-1,3-diaminopentane] (918%) as
well as Schiff base @#°™®) [N,N-bis(3-methoxysalicylidenimino)-1,3-daminopropane]
(8.9x10%[83,84]. The quantum vyieldl) values comparison of synthesized Cd(Il) compldges
2) with other reported cadmium complexes are neat@ntical and shown in Table 2 as a
concise supporting evidence [85].

Table 1 Photo-physical parameters of Schiff base ligands tM/H,L°F) and tetranuclear

Cd(ll) complexes in DMSO at room temperature (298 K

Compound Absorption (Amax), Nm | Excitation (Amax), Nm | Emission (Amax), NM
Ligand(H,L°"®) 264, 332,427 333 500
Ligand(H,L°%) 264, 333, 427 333 501
Cd' complex () 285, 372 372 519
Cd' complex @) 285, 373 373 516
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Fig. 7. Ligand centereémission spectra of ligands AtPM/H,L°%Y) and tetranuclear Cd(ll)

complexes in DMSO at 298K



Table 2 Quantum yield ®) values comparison of salen-type ligands, tetrimaucCd(Il)

complexes and other reported important cadmium@inplexes

Compounds Quantum yield (¢) References
Schiff base(HEY®) 0.00353, This work
Schiff base(HE") 0.01308 This work
Identical Schiff base(H.“%) 4.6x10° a
Identical Schiff base (#.°°) 8.9x10° b
Identical Schiff base (3°) 9.3x10° c
[CdzLOME(I.ll,l-N3)(|.11,3-N3)]n (1) 0.02742 This work
[Cda(L°F)2(p1.1-N3)3(OAC)]2 0.02872 This work
[Cda(L%)2(11,1-N3)a(r7-N3)]2 0.03767 d
[Cda(N3)4(LY).H20], 0.03410 e
[Cd(N3)(NOs)(terpy)(HO)] <0.1 f
[Cd2(H1,1-N3)2(N3)o(terpy)] <0.1 '
[Cds" (N3)a(L)2]n 0.0236 g
[Cdy" (N3)s(LY)]n 0.0067
[Cd4a(SCNY(LY)]n 0.0370 n
[Cdy(L?)2(SCN)(CH3OH)] 0.0330 i
[Cd(L®)2(NOs)] 0.03219 ]




8. Antibacterial and anti-biofilm properties of cadmium (I11) complexes

Two Cd(Il) complexes and respective salen-type fSblaise ligands (bL°M%/H,L°) exhibited
antibacterial potency against the four selectedtebat strains. The MIC values of the
complexes, Schiff base ligands and their growthbitibn zone diameters for the tested bacterial
strains are clearly submitted in Table 3A. In th@ntext some reported Cd(ll) Schiff base
complexes and cadmium salts (MIC/GIC) possible emlagainst tested some important bacterial
stains will also be highlighted in Table 3B to erapize better comparison of our synthesized
Cd(Il) complexes antibacterial results [86a-j]. Bohe complexes had the lower MIC (ug/mL)
values compared to their respective ligands impglygneater antimicrobial efficiencies. On the
other hand, those complexes and ligands had lowér &gainst both Gram negative bacterial
strains than those for Gram positive bacterialirsétdt suggests that Gram negative bacteria are
more susceptible to be affected by those chemi€aéll)-azido complexesl(and2) showed
higher growth inhibition zone diameter (mm) thae free salen-type ligands {EPV¢/H,L°F)
which also conform to their MIC values. All the cplexes (-2) and Schiff base ligands had
higher growth inhibition zone diameter against b&@tam negative bacterial strains than the
Gram positive bacterial strains. There appearegtanct variation in MIC and growth inhibition
zone diameter of the complexes and ligands whidhenfollowing order: comple® > complex

1> HyL9F'> H,L°™® (LSD test; P<0.05).

Bacterial growth was inhibited by both Cd(ll) coewes but in case of the ligands
(HoLMH,LO) bacterial growth inhibition was very low at theéiflC against both tested
bacterial strains. Time-kill curves of the seledbedterial strainsH. gallinarumandP. vulgari9
subjected to the complexed4-Z) are showed in Fig.8. They reflected distinct timeent

differences (LSD test; P < 0.05) in the inhibitipattern of bacterial growth in the following



order: complex2>complex 1> HoL°' > H,L°M¢. While subjected to the complexes3), P.
vulgaris exhibited gradually decreasing trend avgh all through although at a slower rate. In
contrast the bacteria showed gradual increaseawtfrrate although remaining much lower
than the growth without having any chemical ergiti€-orE. gallinarumshowed a slight rate of
increase up to 90 min followed by a gradually dasieg trend in presence of the compleand
complex2 with an overall decline of growth by 77 and 84%prectively. While subjected to the
salen-type ligands @ °M/H,L°), the bacterial growth increased gradually butaiemd lower
than the control registering an overall decreasgrowth by 18 and 21% for @H°™®) and
(H2L°F) respectively. Contrarily, complexe$ &nd2) induced great effects in retarding growth
of P. vulgaris from the very beginning to the end of the incutmatiperiod (210 min).
Consequently the bacteria exhibited a continuodsliglining growth pattern registering overall
decline of growth by 91 and 98% respectively. lagence of ligands @H°™/H,L°F) although
the growth rate oP. vulgariswas reduced compared to the control but the bacttiowed a
gradual increasing trend similar Eo gallinarumwith a resultant decrease to the tune of 30 and
41% respectively.

The study on biofilm removal efficiency of Cd(lipmplexes 1-2) and their Schiff base ligands
(HoLOMe/H,LOFY) againstE. gallinarum and P. vulgarisare clearly presented in Fig.S11 (see
supplementary material) showed that all the testeeimicals were proved more effective in
removal of biofilm produced by Gram negative baet@P. vulgarig compared to that of Gram
positive bacteria E. gallinarun). Both complexes 1(2) exerted greater biofilm removal
efficiency compared to their corresponding ligafdsL °™%/H,L°). Complex2 exhibited the

highest biofilm removal efficiency against both tésk strains. In both complexation, there



appeared a significant variation in biofilm remo\edficiency of the Cd(ll) complexes and

ligands in the following order: complé® complexl > H,L ' > H,L°M¢ (LSD test; P<0.05).

The results of MTT assay of the chemical entitigaiastE. gallinarum and P. vulgarisin
Fig.S12 (see supplementary material) showed tleatdimplexesi-2) were more effective than
ligands (HL°M¢/H,L°).Cell mortality percentage was also higher in ceSé&ram negative
bacterial strain than the Gram positive bacteriediis which has a significant implication for
their potential use as candidates against pathodesmiteria in general, and Gram negative
bacteria in particular. Chemicals showed distinatiations in inflicting cell mortality in the
following order: complex2> complex1 > H,L°F' > H,L°M® (LSD test; P<0.05). Membrane
damage assay dE. gallinarum and P. vulgarisin presence of the both tetranuclear Cd(ll)
complexes and Schiff base ligands are shown i@FBpth Cd(ll)-azido bridged complexek (
2) offered an encouraging efficiency to damage bedteell membrane compared to the Schiff
base ligands (HL.°F' and HL°Y®).All the complexes and ligands P and BL°M®) were
more effective on Gram negative bacterial membi@hevulgari9 compared to that of Gram
positive bacterial membrank.(gallinarum. It reflected distinct treatment differences (L&i3t;

P < 0.05) in the release amount of nucleic acidigestito the complexes in the following order:
complex2> complexl > H,L°F >H,L.°™¢. The observed biological activities of both tetralear
Cd(Il) complexes are nearly similar with other reapd cadmium(ll) azide complexes shown in

Table S10 (see Supplementary material) [87].



Table 3A MIC (ug/mL) and bacterial growth inhibition zoneamheter (mm) against the

complexes 1 and2) and the ligands (°™¢/H,L°) of the tested bacterial strains.

OMe
Bacteria | Complex1=S1 Complex 2=S2 HA™ - 11 HLOF =12
MIC Growth | MIC Growth | MIC |Growth |MIC |Growth

inhibition inhibition inhibition inhibition
zone zone zone zone
(mm) (mm) (mm) (mm)

B. subtilis | 58 9.89 + 54 10.62 + 550 413 + 500 4.35 +
0.55 0.91 0.28 0.51

E. 54 11.37 + 42 12.29 + 500 5.89 + 450 5.13 +

gallinarum 0.83 0.74 0.31 0.62

P. vulgaris| 46 12.81 + 40 13.48 + 350 7.94 + 300 8.29 +
0.59 0.62 0.22 0.42

E. 52 10.51 + 38 12.84 + 450 6.67 + 400 7.68 +

aerogenes 0.43 0.59 0.41 0.19

Table 3B MIC (ng/mL) and bacterial growth inhibition zonmheter [GIC] (mm) against some

important reported Cd(Il) Schiff base complexesaHacterial Strains

Bacteria B. subtilis E.gallin P. vulgaris E. aerogenes | Ref
m 86
Complexes MIC| GIC | MIC | GIC | MIC | GIC MIC GIC
(mm) (mm) (mm) (mm)
{[Cd4(N3)s(L1);].(H20)n | 30 |8.4 - 30 7.8 140 5.8
[Cda(SCN)(L1),]n 20 | 7.3 - - 20 8.8 140 6.5 |




[Cd(valp)2(imidazole)2]| 10 | 100% 10 60-70%| b
[Cd(valp)2(phen)H20] | 15 | 60-70% 15
[CdL2](ClO4)2 >128 0.78 c
[Cd(L)Br2] >128 25
[Cd2(L)2(NO3)4] >128 6.25
[Cd2(L)214] , >128 1.56
CdLCI2 125 | 28.20 - - - - - d
CdLBr2 37 28.00
CdLI2 125 | 25.30
CdL(NCS) 125 | 27.42
[CA(NS)Y] 50,00 19 781 2 e
0
[CA(MP;OATA)CI,)> 40 |5.5+0.3| - - 35 3.8+02 175 55+0.3| f
[CAL(CIO4),]CHLCN 4 | 5045 - - - - - g
Table 3B MIC (ug/mL)/GIC of some important Cadmium saltaiagt tested bacterial Strains
Bacteria | B.Cereus S.aureus| S.typi P.aerugin E.coli B.mubtC.albicans| Ref
86
Cd(CIO), 10 8 8 7 - - - h
Cd(NOy), - 125 500 >1000 62.5
CdsQ - 125 500 >1000 - - 62.5




CdCh - 62.5 125 500 - 62.5
Cdl; 42 39 38 - 35 -
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Fig.8. Time-kill curves of (af. gallinarumand (b)P. vulgarisagainst the Cd (II) complexe$ (
and?2) and the ligands (#.°M%H,L°%). All data were taken in triplicate and error bat®ws
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9. Conclusion

Two novel tetranuclear cadmium(ll) polymeric andadete complexes viz, [Gd°M®)(us +-
Na)a(H1.3N3)]n (1) and [Cd(L°F)(u1.1-N3)s(OAC)]2 (2) have been synthesized in presence of
closely identical N,O-donor salen-type Schiff bagands (HL°M¢/H,L°FY and structurally well
characterized. As a consequence of minor changéisubstituent from OMe to OEt in the
benzene ring of salen-type ligands((3""/H,L°), the complexes exhibit different topologies
of their azide bridging sequences. The excellemgbrg propensity of azide @Y as counter
ions in both Cd(Il) complexes is strongly reflectadtheir marvelous bridging fashiop;(; end

on) and (i1 3 end-to-end). Critically, Ligand-based fluorescergeantum yield, thermal behavior
of two novel Cd(Il) polymeric-discrete complexesv@also been discussed. Compleand 2
exhibits strong luminescent emissions which areedurmainly by the ligand based
photoluminescence.The enhanced luminescence belevaadmium (II) complexes further to
be promoted as a strong photoactive material. Theggavimetric analyses have been performed
for complex1 and 2 in order to investigate mainly for the thermalbgity of metal-organic
frameworks present in the complexes. Comdlend?2 exhibited strong antibacterial and anti-
biofilm activities against some important Gram e Gram—ve bacterial strains implying their
prospective use as bacteriostatic and/or antiddigents.
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Appendix A. Supplementary material
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Table 1 Photo-physical parameters of Schiff base ligands tM/H,L°F) and tetranuclear

Cd(ll) complexes in DMSO at room temperature (298 K

Compound Absorption (Amax), Nm | Excitation (Amax), Nm | Emission (Amax), NM
Ligand(H,L°"®) 264, 332,427 333 500
Ligand(H,L°F) 264, 333, 427 333 501
Cd' complex () 285, 372 372 519
Cd' complex @) 285, 373 373 516

Table 2 Quantum yield ®) values comparison of salen-type ligands, tetriaucCd(Il)

complexes and other reported important cadmium@inplexes

Compounds Quantum yield (¢p) References
Schiff base(HEY®) 0.00353, This work
Schiff base(HE™) 0.01308 This work
Identical Schiff base (") 4.6x10° a
Identical Schiff base (b°V) 8.9x10° b
Identical Schiff base (.°) 9.3x10° C
[CdoL “™&(ju1.1-N3) (U1, 3-N3)] n (1) 0.02742 This work
[Cda(LOF)(p1 --N3)3(OAC)]2 0.02872 This work
[Cda(L°F)2(u1.-N2)a(5-N2)]2 0.03767 d
[Cda(N3)4(LY).H20], 0.03410 e
[Cd(N3)(NOs)(terpy)(HO)] <0.1 f




[Cda(H1,1-N3)2(Na)a(terpy)] <0.1
[Cds" (N3)a(L?)2]n 0.0236
[Cdz" (N3)a(L )] 0.0067
[Cd4(SCN)(LY2]n 0.0370
[Cdy(L?)2(SCN)(CH3OH)] 0.0330 i
[Cda(L*)2(NOy)] 0.03219

Table 3A MIC (ug/mL) and bacterial growth inhibition zoneaaheter (mm) against the

complexes1 and2) and the ligands (°™¢H,L°) of the tested bacterial strains.

H2L0Me

Bacteria | Complex1=S1 Complex 2=S2 = L1 HLOF =12
MIC Growth | MIC Growth | MIC |Growth |MIC |Growth

inhibition inhibition inhibition inhibition
zone zone zone zone
(mm) (mm) (mm) (mm)

B. subtilis | 58 9.89 + 54 10.62 + 550 4.13 + 500 4.35 +
0.55 0.91 0.28 0.51

E. 54 11.37 + 42 12.29 + 500 5.89 + 450 5.13 +

gallinarum 0.83 0.74 0.31 0.62

P. vulgaris| 46 12.81 + 40 13.48 + 350 7.94 + 300 8.29 +
0.59 0.62 0.22 0.42

E. 52 10.51 + 38 12.84 + 450 6.67 + 400 7.68 +

aerogenes 0.43 0.59 0.41 0.19




Table 3B MIC (ng/mL) and bacterial growth inhibition zonmaheter [GIC] (mm) against some

important reported Cd(Il) Schiff base complexeseHacterial Strains

Bacteria B. subtilis E.gallin P. vulgaris E. aerogenes | Ref
m 86
Complexes MIC| GIC | MIC | GIC | MIC | GIC MIC GIC
(mm) (mm) (mm) (mm)
{[Cd4(N3)4(L1);].(H20)n | 30 (8.4 - 30 7.8 140 5.8
[Cd4(SCN}(L1),]n 20 |73 - - 20 8.8 140 6.5 :
[Cd(valp)2(imidazole)2]| 10 | 100% 10 60-70%| b
[Cd(valp)2(phen)H20] | 15 | 60-70% 15
[CdL2](ClO4)2 >128 0.78 C
[Cd(L)Br2] >128 25
[Cd2(L)2(NO3)4] >128 6.25
[Cd2(L)214] >128 1.56
CdLCI2 125 | 28.20 - - - - - - d
CdLBr2 37 28.00
CdLlI2 125 | 25.30
CdL(NCS) 125 | 27.42
[CA(NS)Y] 50,00 19 781 2 e
0
[CA(MP,OATA)CI;]» 40 |55+0.3| - - 35 3.8402| 175 |5.5+03| f




[CALY(ClO4),]JCHsCN 4 | 5045 - - - - - - g
Table 3B MIC (ug/mL)/GIC of some important Cadmium saltaiagt tested bacterial Strains
Bacteria | B.Cereus S.aureus| S.typi P.aeruginoa E.coli B.mubtC.albicans| Ref
86
Cd(CIO), 10 8 8 7 - - h
Cd(NOs), - 125 500 >1000 62.5
CdsQ - 125 500 >1000 - - 62.5
CdClh - 62.5 125 500 - - 62.5
Cdl, 42 39 38 - 35 - - i
MIC | GIC MIC | GIC | MIC | GIC
Cd(OAc) - - 6.25| 35| 3.12 40




Fig.1. The perspective view of the asymmetric unit of complex 2

Us-n1:n3:n1:n1:n2 N1 U,n2 py-nlnl

Fig.2. Bindings mode of ligand [L°%]*, azido and acetate anion



Fig.3. Butterfly shaped tetrameric core in complex 2
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Us;-n1:n3:n1:n1:n2:nl H;n2 Hnl:nl

Fig.4. Bindings mode of ligand [L1]* and azideion
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Fig.5. Metal coordination geometry in complex 1
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Fig.6. Electrostatic potential map of complex 1 and complex 2 on electron density isosurface

computed at the B3LY P/def2-TZVP level of theory.
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Fig. 7. Ligand centered emission spectra of ligands (H,L“™¢/H,L°%) and tetranuclear Cd(I1)

complexesin DM SO at 298K
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Fig.8. Time-kill curves of (a) E. gallinarum and (b) P. vulgaris against the Cd (I1) complexes (1
and 2) and the ligands (HoL°M/H,L°F). All data were taken in triplicate and error bars shows

standard deviation
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Fig.9.Membrane damage efficiency of the complexes (1 and 2) and the ligands (H,L “&/H,L°)

against (a) E. gallinarum and (b) P. vulgaris



HIGHLIGHTS

Two Cd(I1) complexes were synthesized and characterized
Single X-ray crystallography

DFT and TD-DFT calculations

Photo physical properties of the complexes were investigated

Antimicrobial and anti bio-film properties were evaluated



