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Abstract: Using 2-(2,4-difluorophenyl)-4-(trifluoromethyl)pyrimidine as main ligand 

and tetraphenylimidodiphosphinate as ancillary ligand, one iridium complex was 

synthesized. This complex shows a green emission peaking at 543 nm with a quantum 

efficiency yield as 48% in deareated CH2Cl2 solution. It also has good thermal 

stability with a decomposition temperature of 351 oC. Using this material as emitter, 

the organic light-emitting diode shows good performances with a maximum 

luminance 42 898 cd/m2, a maximum current efficiency up to 54.29 cd/A with low 

efficiency roll-off. At the luminance of 5000 and 10 000 cd/m2, the current 

efficiencies are still kept at 46.70 and 40.63 cd/A, respectively.  

 

Keywords: pyrimidine; tetraphenylimidodiphosphinate; organic light-emitting diode; 

efficiency; efficiency roll-off 

 

1. Introduction  

Organic light-emitting diodes (OLEDs) have attracted enormous interest in last 

decades as are expected to be used in large-size, flexible-panel display technologies 

and solid-state lighting [1-16] Notably, iridium(III) complexes are the most widely 
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investigated phosphorescent emitting materials for highly efficient OLEDs owing to 

their encouraging properties including thermal stability, flexible color tunability, short 

excited lifetime and high quantum yields [17-21]. Furthermore, the phosphorescence 

of Ir(III) complexes originates from the metal-to-ligand charge transfers (MLCT) and 

ligand-centered (LC) transition [17-21], so that the energy level of the excited state 

can be controlled by tuning the energy levels of the ligands through substituent effects, 

resulting a wide flexible emission color range.  

However, for many OLEDs based on Ir(III) complexes, the device efficiency 

roll-off ratios are serious, which can mainly be attributed to the deterioration of 

charge carrier balance and the increase of nonradioactive quenching processes, 

including triplet-triplet annihilation (TTA), triplet-polaron annihilation (TPA), and 

electric field induced dissociation of excitons at high current density. At present, 

because the hole mobility of most hole transport materials is roughly 2-3 orders of 

magnitude higher than the electron mobility of the electron transport materials and 

most hosts are also hole transport materials, the efficiency and efficiency roll-off of 

OLEDs rely on the capability of electron transport. Thus, it is necessary to use the 

ambipolar host materials and synthesize Ir(III) dopants with outstanding electron 

mobility to obtain phosphorescent OLEDs with low efficiency roll-off.   

In this work, we synthesized a green Ir(III) complexes using  

2-(2,4-difluorophenyl)-4-(trifluoromethyl)pyrimidine (dfptfmpm) as the main ligand 

with two fluorine atoms substituted on phenyl ring and trifluoromethyl on pyrimidine. 

Fluorination can enhance the electron mobility of the complexes resulting in a better 

balance of charge injection and transfer, and the lower vibrational frequency of C-F 

bond can reduce the rate of nonradiative deactivation and the bulky CF3 substituents 

can affect the molecular packing and the steric protection around the metal can 

suppress the self-quenching behavior [23-26]. In addition, nitrogen heterocycle will 

increase the electron affinity and a more negative framework of ligand C^N may 

improve the electron mobility. Furthermore, Htpip (tetraphenylimidodiphosphinate 

acid) derivatives reported by our group previously were introduced as ancillary 

ligands, which have two diphenyl phosphoryl (Ph2P=O) groups [27-32]. Thus, not 
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only the electron transport ability of the complex be improved, the four bulky phenyl 

groups also lead to a larger spatial separation of the neighboring molecules of the 

complexes [24-27], resulting high device efficiency and low efficiency roll-off.  

2. Experimental Section 

2.1 General Information  

High resolution mass spectra (HR EI-MS) were recorded from Agilent 6540 UHD 

Accurate-Mass Q-TOF LC/MS. TGA measurements were carried out on STA 449F3 

(NETZSCH). Absorption and emission spectra were measured on a Shimadzu 

UV-3100 and a Hitachi F-4600 luminescence spectrophotometer, respectively. The 

thermogravimetric analysis (TGA) curve of the complex was carried out with an STA 

449F3 instrument (NETZSCH) under nitrogen with a temperature increasing rate of 

10 oC/min. Cyclic Volta metric experiments were carried out with an CHI 600E 

system (Chenhua, Shanghai) using three electrode cell assemblies in deaerated 

dichloromethane solution with tetrabutylammoniumperchlorate as supporting 

electrolyte at a scan rate of 100 mV/s. Each oxidation potential was calibrated with 

ferrocene as a reference. 

2.2 Synthesis of dfptfmpm and Ir(dfptfmpm)2tpip complex  

All reactions were performed under nitrogen. Solvents were carefully dried and 

distilled from appropriate drying agents prior to use for syntheses of ligands. 

Tetraphenylimidodiphosphinate (tpip) and its potassium (Ktpip) were synthesized 

according to our former publications. 

2-Chloro-4-(trifluoromethyl)pyrimidine (20 mmol), 2,4-difluorophenylboronic acid 

(30 mmol), Na2CO3 (36 mmol) and Pd(PPh3)4 (0.20 mmol) were dissolved in toluene : 

ethanol : water (30 mL, 2 : 1 : 2, v / v). The mixture was refluxed for 24 h and 

extracted twice with CH2Cl2 at room temperature. The mixed organic solution was 

washed with brine and the solid obtained was purified with column chromatography 

on SiO2 using ethyl acetate and petroleum ether (v : v = 10: 1) as eluant to afford 

white solid 2-(2,4-difluorophenyl)-4-(trifluoromethyl)pyrimidine (dfptfmpm, yield: 
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75%). 1H NMR (400 MHz, CDCl3) δ 9.01 (d, J = 5.0 Hz, 1H), 8.14 (td, J = 8.7, 6.6 

Hz, 1H), 7.48 (d, J = 5.0 Hz, 1H), 6.98 – 6.83 (m, 2H). 19F NMR (376 MHz, CDCl3) δ 

-70.12 (s, 3F), -105.06 (d, J = 11.0 Hz, 1F), -108.14 (d, J = 11.0 Hz, 1F). MS (ESI) 

m/z calcd for C11H5F5N2H [M+H]: 261.05, found: 260.95. 

A mixture of IrCl3⋅3H2O (1.8 mmol) and dfptfmpm (4 mmol) in 2-ethoxyethanol 

and water (6 mL, 3 : 1, v / v) was refluxed for 24 h. After cooling, the yellow solid 

precipitate was filtered to give the crude cyclometalated Ir(III) chloro-bridged dimer. 

MS (ESI) m/z calcd for C44H16Cl2F20Ir2N8H [M+H]: 1492.99, found: 1492.95. 

Then, the slurry of crude chloro-bridged dimer (0.5 mmol) and Ktpip (1.4 mmol) 

in 2-ethoxyethanol (6 mL) was refluxed for 24 h. The solvent was evaporated at low 

pressure and the crude product was washed with water, and then chromatographed 

with CH2Cl2 gave complex Ir(dfptfmpm)2tpip, which were further purified by 

sublimation in vacuum (yield: 56%). 1H NMR (400 MHz, CDCl3) δ 9.25 (d, J = 6.0 

Hz, 2H), 7.83 (ddd, J = 12.4, 7.6, 1.7 Hz, 4H), 7.48 – 7.30 (m, 10H), 7.25 – 7.18 (m, 

2H), 7.04 (td, J = 7.7, 3.1 Hz, 4H), 6.71 (d, J = 6.0 Hz, 2H), 6.45 (ddd, J = 11.4, 9.5, 

2.2 Hz, 2H), 5.51 (dd, J = 8.6, 2.2 Hz, 2H). 19F NMR (376 MHz, CDCl3) δ -69.77 (s, 

3F), -103.00 (d, J = 13.1 Hz, 1F), -105.19 (d, J = 13.1 Hz, 1F). 31P NMR (162 MHz, 

CDCl3) δ 24.32 (s). MS (ESI) m/z calcd for C46H28F10IrN5O2P2H [M+H]: 1128.13, 

found: 1128.00. HR-MS (m/z) Calcd for C46H28F10IrN5O2P2H [M+H]: 1128.1261. 

Found: 1128.1260 [M+H]+. 

2.3 OLEDs fabrication and measurement 

OLEDs with the emission area of 0.1 cm2 were fabricated on the pre-patterned 

ITO-coated glass substrate with a sheet resistance of 15 Ω sq-1. Substrate was cleaned 

by ultrasonic in organic solvents followed by ozone treatment for 20 min. All 

materials used for EL devices were sublimed in vacuum (2.2 × 10-4 Pa) prior to use. 

The 40 nm hole transport material of 1,1-bis(4-(di-p-tolyl-amino)phenyl) cyclohexane 

(TAPC) film was first deposited on the ITO glass substrate. The phosphor (10 wt%) 

and host (mCP, N,N’-dicarbazolyl-3,5-benzene) were co-evaporated to form 20 nm 

emitting layer from two separate sources. Successively, 
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1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (TmPyPB, 30 nm) as electron transport 

material, LiF (1 nm) as electron injection material, and Al (100 nm) as the cathode 

were evaporated. The vacuum was less than 1×10-5 Pa during all materials deposition. 

The device characteristics were measured with a computer controlled KEITHLEY 

2400 source meter with a calibrated silicon diode in air without device encapsulation. 

The electroluminescence (EL) spectra were measured with a Hitachi F-4600 

photoluminescence spectrophotometer. On the basis of the uncorrected PL and EL 

spectra, the Commission Internationale de l’Eclairage (CIE) coordinates were 

calculated using a test program of the Spectra Scan PR650 spectrophotometer. 

 

3. Results and discussion 

3.1 Thermal stability 

The thermal stability of emitter is very important for efficient OLEDs. If a complex 

is suitable for application, the decomposition temperature (Td) should be high enough 

to guarantee that the complex could be deposited onto the solid face without any 

decomposition on sublimation. The thermogravimetric analysis (TGA) curve of 

Ir(dfptfmpm)2tpip is listed in Figure 2. It can be observed that the decomposition 

temperature (5% loss of weight) is 351 oC, indicating that the complex is suitable for 

application in OLEDs. 

3.2 Photophysical property 

The absorption spectrum of Ir(dfptfmpm)2tpip complex was recorded at room 

temperature in CH2Cl2 at 1 × 10-5 mol/L (Fig. 3). Like other heteroleptic iridium 

complexes, this complex exhibits two major absorption regions. The intense band at 

high energy before 300 nm is assigned to the spin-allowed ligand-centered (π→π*) 

transition of dfptfmpm and tpip ligands. The relatively weak absorption bands in the 

range 350 - 450 nm are due to the mixing of 1MLCT and 3MLCT (metal-to-ligand 

charge-transfer) states, or LLCT (ligand-to-ligand charge-transfer) transition through 

strong spin-orbit coupling of iridium atom. [17-33]. 
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For phosphorescent emitters used in OLEDs, significant mixing of the lowest triplet 

and higher-lying singlet excited states caused by efficient SOC favors high 

phosphorescent quantum efficiency. At room temperature, Ir(dfptfmpm)2tpip complex 

shows broad emission spectrum in deareated CH2Cl2 solution with maxima at 543 nm, 

generated by the electronic 0-0 transition between the lowest triplet excited state and 

the ground state, which makes it green phosphors. In general, the emission band from 

MLCT states are broad and featureless, while the highly structured emission band 

mainly originates from the 3
π-π* state. Accordingly, the complex emit sfrom a mixture 

of MLCT states and the dominant ligand-based 3
π-π* state. The emission quantum 

efficiency yield of Ir(dfptfmpm)2tpip complex is 48%, referenced to fac-(Ir(ppy)3) (Φp 

= 0.4) [33]. Furthermore, the phosphorescence excited state lifetime τp of an Ir(III) 

complex is a crucial factor that determines the rate of TTA and TPA in OLEDs. The 

lifetime of Ir(dfptfmpm)2tpip complex is 2.66 µs measured in degassed CH2Cl2 with 

excitation at 370 nm at room temperature, is indicative of a phosphorescent origin of 

the excited state. 

3.3 Theoretical and Electrochemical Property 

The frontier molecular orbitals, especially the HOMO and LUMO, are crucial for 

the photophysical properties and also important in designing the structure of OLEDs. 

To determine the HOMO and LUMO energy levels, cyclic voltammetry (CV) and 

theoretical calculations were carried out. 

To calculate the HOMO and LUMO energy levels of the Ir(dfptfmpm)2tpip 

complex, cyclic voltammetry experiment was carried out using ferrocene as the 

internal standard (Figure 4). During the anodic scan in CH3CN, the complex exhibited 

an obvious oxide peak with oxidation potential attributed to the metal-centered 

Ir(III)/Ir(IV) oxide couple in accordance with reported cyclometallated Ir(III) systems. 

The HOMO level of the complex was calculated from the oxidation potential and the 

LUMO level was estimated from the HOMO and the band gap obtain from UV-vis 

absorption spectrum [34]. Therefore, HOMO/LUMO energy levels of the 

Ir(dfptfmpm)2tpip complex can be estimated as –5.55/–3.21 eV, from the empirical 
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formulas EHOMO = -(Eox
onset+4.8) and ELUMO = EHOMO + Eg [34].  

In the theoretical calculation, the density functional theory (DFT) calculations for 

Ir(III) complexes are conducted to gain insights into the electronictates and the orbital 

distribution employing the Gaussian09 software12 with B3LYP functional; the 

accurate energy and location of HOMO/LUMO were calculated with QMForge 

program [35-37]. The basis set used for C, H, O, N, F and P atoms was 6-31G(d,p), 

while the LanL2DZ basis set were employed for Ir atoms [38]. According to the 

Figure 4, it is obvious that the HOMO is mainly located on dfptfmpm main ligand 

(38.07%) and the d orditals of iridium atom (55.14%), while the LUMO is mainly 

located on the cyclometalated main ligands (91.73%). Both HOMO and LUMO are 

rarely located on ancillary ligand, which are only 6.79% and 2.29%, respectively.  

3.4 OLEDs Performance 

To investigate the possibility of Ir(dfptfmpm)2tpip as emitter, PhOLED with the 

structure of TAPC (1,1-bis[4-(di-p-tolylamino)phenyl]cyclohexane, 40 nm) / 

Ir(dfptfmpm)2tpip (10 wt%): mCP (1,3-bis(9H-carbazol-9-yl)benzene, 20 nm) / 

TmPyPB (1,3,5-tri(m-pyrid-3-yl-phenyl)benzene, 30 nm) / LiF (1 nm) / Al (100 nm) 

was fabricated. The molecule structures and energy level diagrams of the materials 

and devices are shown in Figure 5. TAPC and TmPyPB were used as the hole and 

electron transport materials due to their good carrier mobility [39,40], respectively, 

and mCP was used as the host material. Apparently, the HOMO/LUMO levels of the 

Ir(III) complex are within those of mCP, thus, carriers are expected to transport easily 

between layers and excellent carrier trapping would be the main mechanism in the 

devices. Notably, carriers would be well confined and recombined within the EML 

and the TTA/TPA effects would be effectively avoided. The EL spectra, 

luminance-voltage, current efficiency-luminance and power efficiency-luminance 

characteristics of all the devices are shown in Fig. 6.  

The device exhibits typical emission with the peak maxima at 536 nm in 

accordance with the PL spectrum of Ir(dfptfmpm)2tpip in CH2Cl2 solution (Fig. 2) 

indicating that the EL emissions of the devices originate from the triplet excited states 
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of the phosphors. The Commission Internationale de 1’Eclairage (CIE) color 

coordinates operated at 8 V are (0.35, 0.62), corresponding to the green region. And 

the emission spectra are almost invariant of the current density and also do not show 

any concentration dependence. No emission from TAPC, mCP and TmPyPB 

suggested that the exciton was only formed in the emissive layer and the complete 

energy transfer from host to dopant. 

The device shows good performances with a maximum luminance 42 898 cd/m2 at 

13.0 V. And the maximum current efficiency, external quantum efficiency and power 

efficiency are up to 54.29 cd/A, 14% and 25.44 lm/W, respectively, at a luminance of 

1186 cd/m2. Furthermore, the device efficiency roll-off is not serious. For example, at 

the luminance of 5000 cd/m2, the current efficiency is 46.70 cd/A. Even at the 

luminance of 10 000 cd/m2, the current efficiency is still remain as 40.63 cd/A. From 

the good device performances it can be conclude that the introduction of 

2-(2,4-difluorophenyl)-4-(trifluoromethyl)pyrimidine and 

tetraphenylimidodiphosphinate ligands has definitely improved the electron mobility 

of the iridium complex. As a result, the recombination chance of electrons and holes 

has been strengthened, which is beneficial to the improvement of OLEDs’ 

performances.  

4. Conclusion. 

In conclusion, one iridium complex with 2-(2,4-difluorophenyl)- 

4-(trifluoromethyl)pyrimidine as main ligand and tetraphenylimidodiphosphinate as 

ancillary ligand was reported. This green material has an emission peak at 543 nm 

with a quantum efficiency yield as 48% in deareated CH2Cl2 solution. The OLED 

using this complex as emitter shows good performances with a maximum luminance 

42 898 cd/m2, a maximum current efficiency up to 54.29 cd/A with low efficiency 

roll-off. At the luminance of 5000 and 10 000 cd/m2, the current efficiencies are still 

kept at 46.70 and 40.63 cd/A, respectively.  
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Figure captions 

 

Fig. 1. The synthetic route of the ligands and Ir(dfptfmpm)2tpip complex. 

 

Fig. 2. The TGA curve of Ir(dfptfmpm)2tpip complex. 

 

Fig. 3. The absorption and emission spectra of Ir(dfptfmpm)2tpip complex in CH2Cl2 

at 1 × 10-5 mol/L at room temperature. 

 

Fig. 4. The Cyclic voltammogram in CH3CN and spatial distributions of the 

HOMO/LUMO levels of the Ir(dfptfmpm)2tpip complex.  

 

Fig. 5. Energy level diagrams of HOMO/LUMO levels (relative to vacuum level) for 

device and molecular structures of materials investigated in this study. 

 

Fig. 6. Device characteristics: (a) normalized EL spectra at 8 V; (b) 

luminance-voltage (L-V), (c) current efficiency-luminance (ηc-L) and (d) power 

efficiency-luminance (ηp-L) curves. 
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Fig. 1. The synthetic route of the ligands and Ir(dfptfmpm)2tpip complex. 
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Fig. 2. The TGA curve of Ir(dfptfmpm)2tpip complex. 
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Fig. 3. (a) The normalized absorption spectra of the complex Ir(dfptfmpm)2tpip and ligands 

dfptfmpm, tpip; (b) the absorption (with molar extinction coefficient) and emission spectra of 

complex Ir(dfptfmpm)2tpip in CH2Cl2 at 1 × 10-5 mol/L at room temperature. 
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Fig. 4. The Cyclic voltammogram in CH3CN and spatial distributions of the HOMO/LUMO levels 

of the Ir(dfptfmpm)2tpip complex.  
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Fig. 5. Energy level diagrams of HOMO/LUMO levels (relative to vacuum level) for device and 

molecular structures of materials investigated in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

 

 

300 400 500 600 700 800

 

 

N
o

rm
al

iz
ed

 In
te

n
si

ty
 (

a.
u

.)

Wavelength (nm)

(a)

   

0 3 6 9 12
0

1x104

2x104

3x104

4x104

 

 

L
u

m
in

an
ce

 (
cd

/m
2 )

Voltage (V)

(b)

 

0 2000 4000 6000 8000 10000
0.1

1

10

100

 

 

C
u

rr
en

t 
E

ff
ic

ie
n

cy
 (

cd
/A

)

Luminance (cd m-2)

(c)

   

0 2000 4000 6000 8000 10000
1

10

 

 

P
o

w
er

 E
ff

ic
ie

n
cy

 (
lm

/W
)

Luminance (cd/m2)

(d)

 

Fig. 6. Device characteristics: (a) normalized EL spectra at 8 V; (b) luminance-voltage (L-V), (c) 

current efficiency-luminance (ηc-L) and (d) power efficiency-luminance (ηp-L) curves. 
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Highlights 

• One efficient green iridium(III) complex was synthesized. 

• The complex shows good thermal stability. 

• The OLED based on this complex displays maximum current efficiency of 54.29 

cd/A. 

• The device shows low efficiency roll-off. 


