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Summary: (?)-8,14-Cedranoxide has been synthesized starting from 3,4-dimethoxyphenol, 

wherein 6-acetoxymethyl-2,6-dimethyl-9-methoxytricyclo[5.3.1.01~5]undec-9-en-8,1l-dione as a 

key intermediate has been produced efficiently by means of electrochemical methods. 

In connection with our synthetic work on bioactive substances using electrochemical 

methods, helminthosporal, a toxic sesquiterpene, has been synthesized in racemic form start- 

ing from the bicyclo[3.2.l]oct-3-en-2,8-dione which is formed electrochemically.' We 

describe herein a total synthesis of (f)-8,14-cedranoxide (1),2s3 a constituent of the plant 

Juniperus foetidissima Willd, whose retrosynthesis is shownyn Scheme 1, wherein 6-acetoxy- 

methyl-2,6-dimethyl-9-methoxytricyclo[5.3.1.01*5 ]undec-9-en-8,11-dione (5) as a key inter- 

mediate must be produced on anodic oxidation of the corresponding phenol (3) derivable from 

3,4-dimethoxyphenol. 
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Scheme 1. Retrosynthesis of 8,14-cedranoxide 

On treatment with crotyl chloride (2 equiv.) - K2CO3 (2 equiv.) in acetone (refluxing 

temp., 2 days) followed by Claisen rearrangement (200 "C, 2 h, under argon), 3,4-dimethoxy- 

phenol was quantitatively converted into the corresponding phenol (f?),4 which was further 

treated with t-butyldimethylsilyl chloride (1.2 equiv.) - imidazole (2.4 equiv.) in DMF 

under argon (room temp., 18.5 h) to afford a silyl ether (2)' in quantitative yield. The 

compound (2) was subjected to hydroboration [8H3.Me2S (1.5 equiv.) in THF under argon (0 "C, 

30 min and then room temp., 2 h)] followed by oxidation with 30% H202 - aq.NaOH (0 "C, 1.5 h) 

to afford a hydroxy compound (A),4 in 66% yield, which was further oxidized with DMSO (16 

equiv.) - DCC (4 equiv.) - pyridine (1.5 equiv.) - TFA (catalytic amount) in benzene under 
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argon (room temp., 2.5 h) to give rise to the corresponding aldehyde (7)4 in 93% yield. This 

aldehyde was further subjected to Wittig reaction [Ph3P+CH20Me.Cl-(l.5>quiv.) - MeLi (1.5 

equiv.) in THF under argon (room temp., 20 min)] followed by hydrolysis with p-TsOH in acetone 

under argon (room temp., 1.3 h) to give another aldehyde (8)4 with one more methylene group 

at the side chain, in 60% yield. On Wittig reaction [Ph3P=C(Me)COOMe (2 equiv.) in benzene 

under argon (room temp., 

saturated ester (9_),4 

18 h)], this compound (2) was readily converted into an d,Q-un- 

in 92% yield, which was reduced with Bu'2AlH (4 equiv.) in THF under 

argon (-70 "C, 2.8 h) and then acetylated with Ac20 - pyridine to afford the corresponding 

acetate (lO)4 in 99% yield. Finally, the acetate (E) was deprotected with Bun4NF (1.5 equiv.) 

in THF unzr argon (room temp., 15 min) to give rise to the desired phenol (3)4,in quantita- 

tive yield, anodic oxidation of which was carried out under various conditio;. 

When electrolyzed at a constant current [2.5 mA (+900 - 1200 mV vs SCE); ca. 2 F/mol15 _. - 

in acetic anhydride containing Bun 4NBF4 as a supporting electrolyte, the phenol (3) was 

converted into an inseparable mixture of two tricyclo[5.3.1.01y5]undec-9-en-8,11-diones (_2_ 

and lJ)6 in 80% yield [relative ratio: g/s = 41. 7 When a mixed solvent of Ac20 and AcOH 

(3 : 2) was used as a solvent system, the total yield of both 2_ and 5 was 44%. Their 

4_R=H 5 R = CH2OH 9 
5_ R = Si(But)Me2 5 R = CHO 

z 

5 R = CH2CH0 

12 R = d-Me 

12J R = g-Me 

O- "OH 
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stereostructures are based on 'H NMR spectral data: particularly, the methyl doublet (61.42) 

in 2 is observed in lower magnetic field as compared with the corresponding one (61.15) in 

$, because of an anisotropic effect of the carbonyl group at Cll-position. 

This mixture (2_ and 2) so far obtained was treated with MeMgI (1.4 equiv.) in THF 

(-78 "C, 2.2 h) to afford an inseparable mixture of two hydroxy compounds (2 and g),4 in 

51% yield, which was further hydrolyzed with oxalic acid in MeOH (room temp., 14 h) to give 

rise to the desired diketone (1_3)4 as colorless needles, in 93% yield.* Furthermore, this 

diketone (13) was treated with BF3-etherate (6 equiv.) in toluene under argon (refluxing 

temp., 2.77) to afford a tetrahydrofuran derivative (14_)4 in 72% yield. Finally, the compound 

(2) was subjected to Wolff-Kishner reduction [KOH (excess amount) - NH2NH2 (excess amount) in 

ethyleneglycol under argon (refluxing temp., 1.5 h)] to afford 8,14-cedranoxide (J2$' and 

8-cedren-14-01 (E)2s4 in 20 and 50% yields, respectively. When treated with catalytic amount 

of e-TsOH in toluene under argon (refluxing temp., 1 h), the latter was readily converted 

into 8,lbcedranoxide (1) in 88% yield. Therefore, the total yield of (f)-cedranoxide (I) 
cv N 

from 3 was 65%. 
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4. The spectral data for the new compounds were in accord with the structures assigned, and 

only selected data are cited: 5 Cl2Hl603 [m/z 208.1081(Mt)]; IR (film) 3460, 1600, and 

1590 cm-'; 6(CDCl3) 1.34(3H, d, J = 8 Hz), 3.65(lH, m), 3.77(3H, s), 3,80(3H, s), 5.0 - 

5.27(2H, complex), 6.03(1H, ddd, J = 6, 11, 18 Hz), 6.4l(lH, s), and 6.63(lH, s). 5: 

Cl8H3003Si [m/z 322.1945(Mt)]; IR (film) 1630 and 1600 cm-'; J(CDCl,) 0.21(6H, s) and 

l.O0(9H, s). ,$: Cl8H3204Si [m/z 340.2072(Mt)]; IR (film) 3450 cm-l; &(CDCl3) 1.3 - 2.0 

(2H, m) and 3.1 - 3.6(3H, complex). 3: Cl8H3004Si [m/z 338,1913(M+)]; IR (film) 1720 cm-'; 

$(CDC13) 2.5 - 2.7(2H, m), 3.5 - 4.0(lH, m), and 9.66(lH, t, J = 2 Hz). g: Cl9H3204Si 

[m/z 352.2049(M+)]; IR (film) 1720 cm-l; s(CDC1,) 9.67(lH, t, J = 1 Hz). 9_: C23H3805Si 

[m/z 422.2465(Mt)]; IR (film) 1710, 1640, 1600 cm-'; &(CDCl,) 1.72(3H, br.s), 3.66(3H, s), 

3.77(3H, s), 3.80(3H, s), and 6.7l(lH, m). 12: C24H4005Si [m/z 436.2626(Mt)]; g(CDCl3) 

1.57(3H, br.s), 2.03(3H, s), 4.30(2H, br.s), and 5.43(lH, m). 2: C18H2605 [m/z 322.1754 

(M+)]; IR (film) 3450, 1730, 1710sh., and 1610 cm-l; S(CDC13) l.l9(3H, d, J = 7 Hz), 1.53 

(3H, br.s), 1.5 - 1.8(2H, complex), 1.8 - 2.1(2H, complex), 2.03(3H, s), 2.96(lH, sextet, 

J = 7 Hz), 3.75(3H, s), 3.78(3H, s), 4.41(2H, s), 5.17(lH, s), 5.42(lH, br.t, J = 7 Hz), 

6.40(lH, s), and 6.63(lH, s). A mixture of 3 and G: Cl8H2605 [m/z 322.1758(Mt)]; IR 

3450, 1740, and 1630 cm-'; the NMR signals due to %a: d(COC13) 1.39(3H, s), 3.58(3H, s), 
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4.30(lH, d, J = 11 Hz), 4.38(lH, d, J = 11 Hz), and 4.84(lH, s). The NMR signals due to 

sb: 5 (CDC13) 1.40(3H, s), 3.58(3H, s), 4.27(1H, d, J = 11 Hz), 4.36(1H, d, J = 11 Hz), 

and 4.70(lH, s). 12: mp 142 - 145 'C; Cl7H24O5 [m/z 308.1607(M+)]; IR (film) 3500, 1740, 

and 1720 cm-'; &(CDCl,) 0.91(3H, d, J = 7 Hz), 0.93(3H, s), 1.31(3H, s), 2.05(3H, s), 

2.63(1H, d, J = 16 Hz), 2.70(lH, d, J = 16 Hz), 3.61(lH, s), 4.05(lH, d, J = 11 Hz), and 

4.18(lH, d, J = 11 Hz). 12: Cl5H2OO3 [m/z 248.1382(M+)]; IR (film) 1760, 1740, and 1720 

cm -'; $(CDCl,) 2.67(lH, d, J = 19 Hz), 2.99(lH, d, J = 19 Hz), 3.87(lH, d, J = 8 Hz), 

and 4.00(1H, d, J = 8 Hz). 5: CT5H24O [m/z 220.1832(M+)]; 

(3H, d, J = 7 Hz), l.O3(3H, s), 1.70(3H, br.s), 3.49(lH, d, 

10 Hz), and 5.27(lH, br.s). 

A glassy carbon beaker and a platinum wire tip were used as 

respectively. 

IR 3400 cm-'; 6(CDC13) 0.85 

3 = 10 Hz), 3.55(1H, d, J= 

an anode and a cathode, 

, 
A mixture of Land Vi_!: CT7H22O5 [m/z 306.1442(Mt)]; IR (film) 1740, 1680, and 1590 cm-'; 

the NMR signals due tot &(CDC13) l.O7(3H, s), l.l5(3H, d, J = 7 Hz), 1.53(2H, 

complex), 1.76(lH, m), 1.9l(l.H, m), 2.03(3H, s), 2.34(lH, t, J = 8 Hz), 2.68(1H, m), 3.43 

(lH, s), 3.70(3H, s), 3.85(lH, d, J = 11 Hz), 3.96(1H, d, J = 11 Hz), and 6.38(lH, s). 

The NMR signals due to E: 6(CDCl,) l.O9(3H, s), 1.42(3H, d, J = 7 Hz), 1.53(2H, complex), 

1.76(lH, m), 1.91(lH, m), 2.02(3H, s), 2.34(lH, t, J = 8 Hz), 2.68(lH, m), 3.3l(lH, s), 

3.71(3H, s), 3.81(lH, d, J = 11 Hz), 3.95(lH, d, J = 11 Hz), and 6.25(lH, s). 

In addition to both 2_ and ll, the quinone [A] was obtained in 18% yield. 

-'LOAc 

[Al 

Fortunately, the desired diketone (E) was easily crystallized from hexane - EtOAc. 

The synthetic sample as racemic form has the following spectral data: C15H240 [m/z 220.1833 

(M+)]; IR (film) 1040 cm-'; g(CDC13) 0.84(3H, d, J = 7 Hz), l.O0(3H, s), l.l7(3H, s), 

1.2 - 1.9(13H, complex), 3.46(lH, d, J = 8 Hz), and 3.58(lH, d, J = 8 Hz). The 1~ NMR 

(400 MHz) spectrum of the synthetic sample is compatible with that of natural 8,14- 

cedranoxide (1) cited in the reference 2. 
N 

(Received in Japan 12 October 1987) 


