Development of a Functionalizable External β-Turn Mimic Based on a *cis*-Fused 1,7-Naphthyridine Scaffold

Frederik J. R. Rombouts,^[a] Wim M. De Borggraeve,^[a] David Delaere,^[b] Matheus Froeyen,^[c] Suzanne M. Toppet,^[a] Frans Compernolle,^[a] and Georges J. Hoornaert*^[a]

Keywords: Bioorganic chemistry / Conformation analysis / Cycloaddition / Naphthyridine / Peptidomimetics

An intramolecular Diels–Alder strategy using 2(1H)-pyrazinones was applied to generate a substituted perhydro-1,7naphthyridine ring system that served as a scaffold to construct the type VI β -turn mimic **2**, featuring a *cis*-amide linkage between the central *i*+1 and *i*+2 residues. The synthesis permits mimicking of the amino acid side chains of the central dipeptide, a unique feature for external-turn mimics. Modeling studies indicated that the *cis*-fused bicyclic system adopts a conformation suitable for induction of a β -turn when the angular position 8a bears a non-H substituent. Extensive NMR analysis of an 8a-methyl derivative **25** confirmed its β turn-inducing properties in various solvents, including water. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

Introduction

With helices and sheets, turns comprise the third major motif of peptide and protein secondary structure. A turn can be defined as the site at which a peptide changes its overall direction. Different types of turns have been described, including δ -, γ -, β -, α -, and π -turns corresponding to loops involving two to six residues, respectively.^[1] Of these, the most common naturally occurring type is the β turn, which reverses direction over four residues, often with a hydrogen bond between the carbonyl group of residue *i* and the NH moiety of residue i+3. The prevalence of β turns in peptides and on protein surfaces suggests that they play essential roles in molecular recognition events in biological systems, such as receptor-ligand, enzymesubstrate, and antigen-antibody interactions. This has raised the challenge of the development of functionalizable β -turn mimics^[2] to study these interactions or to enhance in vivo absorption and the metabolic stability of peptide probes.^[3] Moreover, the incorporation of rigid β-turn analogues might render peptides more active by limiting solu-

 [a] Laboratorium voor Organische Synthese, K. U. Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium Fax: (internat.) + 32-16/327990
 E-mail: losh@chem.kuleuven.ac.be

- [b] Groep Kwantumchemie, K. U. Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium Fax: (internat.) + 32-16/327393 E-mail: David.Delaere@chem.kuleuven.ac.be
- [c] Laboratorium voor Medicinale chemie, K. U. Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium Fax: (internat.) + 32-16/337379
- E-mail: Mathy.Froeyen@rega.kuleuven.ac.be
- Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.

tion conformations, thus lowering the entropy cost for binding and enhancing selectivity by preclusion of conformers that give rise to undesired bioactivity. In a previous communication^[4] we reported the synthesis of the potential β turn mimic **1** (Figure 1), which meets the criteria of functionalizability and rigidity. In a next phase of this investigation, we wanted to impose additional conformational restrictions into **1** in order further to rigidify its presumed β turn-inducing structure. We thus envisioned the incorporation of the acetamide nitrogen atom in a six-membered ring, which should be *cis*-annelated to the piperidinone core in order to retain the spatial proximity to the carboxamide, as shown in structure **2**.

Figure 1. Type VI β -turn mimics 1 and 2 and the natural β -turn

Compounds 1 and 2 can be viewed as rigidified mimics of *cis*-amide turns such as the type VI β -turn, which has *cis*-proline at the *i*+2 position of a tetrapeptide entity. The type VI β -turn has been implicated in the bioactive conformations of several peptides.^[5] Notably, *cis*-amide models might also serve as mimics of *cis*-amide moieties other than *cis*-proline, which, according to X-ray data, may occur more frequently than previously thought.^[6] In our current approach, application of the 1,7-naphthyridine scaffold **2** for mimicking *cis*-amide β -turns is based on the following criteria:

(a) The *cis*-amide linkage between the central residues; this is constrained in a rigid bicyclic lactam system representing the i+1 and i+2 residues of the tetrapeptide.

(b) The spatial proximity of the residues attached to the N- and C-termini of the central dipeptide is enabled by the *cis* disposition of the N1 atom and the carboxamide group.

(c) The similarity of the bicyclic lactam structure **2** with that of other successful mimics of the type VI β -turn:^[7] the latter mimics were also based on a lactam structure but they lacked the capacity to mimic various amino acid side chains, in contrast to the broad functionalization enabled by the variable R³ and R⁶ substituents in the general structure **2**.

Results and Discussion

In the following sections we first describe our synthetic approach to the 8a-H and 8a-substituted target molecules 2. Next, we examine the conformational behavior of 2, by use both of molecular modeling and of detailed NMR analysis. Finally the β -turn-inducing potential of 8a-substituted molecules is evaluated.

Synthesis

To construct the 1,7-naphthyridine scaffold we applied our recently reported intramolecular Diels-Alder reaction strategy using N-pentenyl-substituted 2(1H)-pyrazinones (Scheme 1; $R^3 = Ph$, $R^6 = H$).^[8] Cycloaddition to form a bridged imidoyl chloride intermediate, followed by hydrolysis, provides stable tricyclic compounds exhibiting both a distorted tertiary amide and a nonstrained secondary amide function. The nonplanar tertiary amide can in turn be subjected to selective methanolysis to generate cis-fused bicyclic ring systems of type 2. In a first approach we decided to use the already reported substitution pattern ($R^3 = Ph$, $R^6 = H$), but this did not provide the desired β -turn-inducing properties. According to modeling studies, an appropriate conformation should be imposed on the cis-fused bicyclic system through the introduction of a substituent $R^6 = alkyl.$

Scheme 1

Eur. J. Org. Chem. 2003, 1868-1878

Synthesis of 11

N-(*p*-Methoxybenzyl)pyrazinone **4** was generated by cyclization of 2-[N-(4-methoxybenzyl)aminolacetonitrile (HCl salt) 3 with oxalyl chloride (Scheme 2).^[9] Subsequent Stille coupling, with tetraphenyltin and $[Pd(PPh_3)_4]$ as a catalyst, provided the corresponding 3-phenyl derivative 5,^[10] which was N-debenzylated by heating with trifluoroacetic acid to produce pyrazinone 6. This was converted into the desired *N*-alkenylated pyrazinone 7 by heating with 5-bromo-1-pentene and Cs₂CO₃ in dioxane. Intramolecular cycloaddition of pyrazinone 7 and subsequent conversion of the resulting adduct 8 into bis(lactam) 9 were accomplished by heating 7 in bromobenzene at reflux temperature, followed by hydrolysis of the imidoyl chloride intermediate in water-saturated ethyl acetate. The strained tricyclic bis(lactam) 9 was converted into cis-fused 1,7-naphthyridine 10 by selective acid methanolysis of the tertiary amide group, effected by heating with 2.5 equiv. of methanesulfonic acid in boiling methanol. In the two final steps, amino ester 10 was transformed into target diamide 11 by N-acetylation of the free amino group, followed by aminolysis of the ester function by treatment with methylamine.

Scheme 2. a) (COCl)₂, Et₃N·HCl, PhCl, room temp., 2 d; b) SnPh₄, [Pd(PPh₃)₄], toluene, 120 °C, 7 d; c) CF₃CO₂H, reflux, 5 h; d) Br(CH₂)₃CH=CH₂, Cs₂CO₃, dioxane, 50 °C, 7 d; e) PhBr, reflux, overnight; f) EtOAc satd. with H₂O, room temp., overnight; g) MeOH, 2.5 equiv. CH₃SO₃H, reflux, overnight; h) Ac₂O, 40 °C, 1 h; i) 33 wt% CH₃NH₂/EtOH, room temp., overnight

Synthesis of 25

The sequence described above, used for the preparation of 11, suffers from a very critical N-alkenylation step, in which cesium carbonate is used for selective N-alkenvlation of pyrazinone 6 (Scheme 2, step d). Indeed, all methods other than the use of cesium carbonate tried out for this crucial step were found to give mainly O-alkylation. To investigate the tolerance of the cesium carbonate method for substituents attached to the 6-position of the pyrazinone, we first attempted the reaction with the 3-methyl-substituted pyrazinone 15 (Scheme 3). This was prepared by treatment of 2-[(4-methoxybenzyl)amino]propanenitrile 12 with oxalyl chloride to form 13, followed by Stille coupling with tetramethyltin (14) and trifluoroacetic acid catalyzed removal of the N-(p-methoxybenzyl) protecting group (Scheme 3). It is noteworthy that the signals of the two methyl groups of 14 appear in the NMR spectrum as quadruplets with a rare ^{7}J value of ca. 1 Hz when the Gaussian-Lorentz enhance function (lb: -2.0 Hz; gb: 0.5 Hz) is applied prior to the FID processing. Unfortunately, the undesired *O*-alkenylated compound **16** was isolated almost exclusively when **15** was heated with 5-bromo-1-pentene and Cs₂CO₃ in dioxane, demonstrating that selective *N*-alkenylation of 6-substituted pyrazinones is not feasible.

Scheme 3. a) (COCl)₂, Et₃N·HCl, PhCl, room temp., 2 d; b) $Sn(CH_3)_4$, [Pd(PPh_3)_4], toluene, 120 °C, 1 d; c) CF₃CO₂H, reflux, 10 h; d) $Br(CH_2)_3CH=CH_2$, Cs₂CO₃, dioxane, 50 °C, 5 d

To solve this N-alkenylation problem, we envisaged a different strategy based on the use of 5-(phenylselenyl)pentan-1-amine (17) as a substitute for direct incorporation of the acid-sensitive pent-4-en-1-amine into the pyrazinone ring system (Scheme 4). Amine 17 was converted into the corresponding aminonitrile 18 through a Strecker reaction with acetaldehyde, and the hydrochloride salt of crude 18 was treated with oxalyl chloride to provide the 3,5-dichloropyrazinone 19. Subsequent Stille coupling with tetraphenyltin and [Pd(PPh₃)₄] as a catalyst afforded the corresponding 3phenyl derivative 20, which was converted into 21 in high vield by application of a one-pot oxidation/elimination procedure with mCPBA. Intramolecular cycloaddition of 21 to form 22 proceeded more slowly than the analogous conversion of 7 (typically 7 d in refluxing PhBr) but with the same regioselectivity to provide bis(lactam) 23 upon hydrolysis of the intermediate imidoyl chloride adduct. As observed for bis(lactam) 9, ¹³C NMR analysis of 23 revealed the existence of a distorted nonplanar tertiary amide group (δ_{C2} = 179.0 ppm versus $\delta_{C10} = 171.2$ ppm for the secondary amide) implying a ketone-like character for the carbonyl moiety and an increased basicity for N-3. Accordingly, selective acid-catalyzed solvolysis of the tertiary amide could again be effected by heating of 23 with 2.5 equiv. of methanesulfonic acid in methanol to furnish cis-1,7-naphthyridine 24 in almost quantitative yield (99%). The final conversion of amino ester 24 into the diamide 25 was carried out under the conditions described above for the preparation of the 8a-H analogue 11.

Even though the synthesis of **25** is entirely diastereoselective, it still delivers two enantiomers. Both are potential β turn mimics: the (4a*R*,6*S*,8a*R*) isomer, which mimics two Lamino acids upon deletion of the bridging elements, and the (4a*S*,6*R*,8a*S*) isomer, which mimics two conformationally constrained D-residues. While we were unable to separate

Scheme 4 . a) CH₃CHO, KCN, NaHSO₃, MeOH/H₂O, 60 °C, overnight; b) HCl bubbling, 0 °C, 15 min; c) (COCl)₂, Et₃N·HCl, PhCl, room temp., 2 d; d) SnPh₄, [Pd(PPh₃)₄], toluene, 120 °C, 7 d; e) *m*CPBA, CH₂Cl₂, -15 °C to room temp., 30 min; f) reflux, overnight; g) PhBr, reflux, 7 d; h) EtOAc satd. with H₂O, room temp, overnight; i) MeOH, 2.5 equiv. CH₃SO₃H, reflux, overnight; j) Ac₂O, 40 °C, 2 h; k) 33 wt% CH₃NH₂/EtOH, room temp., overnight

the enantiomers of amine precursor **24** by HPLC on a chiral stationary phase, we did succeed in analytical-scale separation of the bis(lactam) enantiomers **23** (see Exp. Sect.).

Conformational Analysis of Amines 10 and 24

Amino esters 10 and 24 predominantly exist as two opposite *cis*-fused conformers 10A and 24B as shown by the ${}^{3}J$ coupling values in the ${}^{1}H$ NMR spectra observed between the angular proton 4a-H and its vicinal protons 4-H and 5-H (Figure 2). The structure of 10A was apparent from a large ${}^{3}J$ -trans value with 5-H_{ax} and a small ${}^{3}J$ -gauche value with both 4-H protons, while that of 24B was characterized by a small ${}^{3}J$ -gauche value of about 5 Hz with both 5-H protons and a large ${}^{3}J$ -trans value with 4-H_{ax}. These conformational preferences were confirmed by modeling calculations by MM3* optimization in the gas phase and in CHCl₃ (Macromodel 5.0). Interestingly, opposite conformational preferences were demonstrated for the diamide

Figure 2. Conformational equilibria of *cis*-fused 1,7-naphthyridines favoring the opposite conformers **10A** and **24B** for the free amines or **11B** and **25A** for the diamides, according to ¹H NMR characterization and molecular modeling; the conformations detected by NMR are boxed

compounds 11 and 25 by the molecular modeling and the ¹H NMR spectroscopic data given below. Apparently, conformer 10B is disfavored relative to 10A by 1,3-diaxial repulsion between the ester group and C4, whereas in the favored conformer 24B this effect is counterbalanced by the equatorial position of the 8a-Me group with respect to the piperidine chair moiety (conformer 24A exhibits 1,3-diaxial repulsions between 8a-Me and 2-Hax and 4-Hax). In the analogous diamide conformer 25B, such an equatorial 8a-Me group in turn meets a strong repulsion with the coplanar N-acetyl substituent, thus favoring the desired "closed" form 25A. This repulsive effect is largely removed in the favored 8a-H diamide conformer 11B, so that a similar but less severe repulsion (in relation to that in 8a-Me conformer 25B) between the N-Ac amide bond and the coplanar equatorial 8-8a linkage in disfavored form 11A comes into play.

Molecular Modeling of Diamides 11 and 25

To find the most relevant minimum-energy conformations of 11, a random conformer search^[11] and energy minimization were carried out with the Macromodel 5.0 AMBER* or MM3* force field in combination with the GB/SA solvation model (water). Ruling out improbable twist conformations, we identified three major structures 11A-C in this way (Table 1). According to MM3* the lowest-energy conformer has the piperidinone ring in a halfchair conformation (11B), while AMBER* finds the (slightly deformed) piperidinone boat conformation 11C to be lowest in energy. Conformer 11A, with the desired β -turn structure, was found to be much higher in energy relative to the global minimum by MM3*, but only slightly higher according to AMBER*. To obtain improved energy data for the representative conformers 11A-C, they were sub-

Table 1. Conformers of 11 in water and corresponding energies found by random conformer search by AMBER* and MM3*; these energies are compared to energies obtained by ab initio DFT calculations

A

	O NH C NH C H ₃ C IIA	$ \begin{array}{c} H \\ O \\ CH_3 \\ H_3C \\ HB \end{array} $	$CH_3 H_3C-N HN HN HN$	HH O-CH ₃	
Conformer	AMBER*, GB/SA	Geometry optimization a MM3*, GB/SA	and hydration mode DFT ^{[b][c]}	el [kJ/mol] ^[a] DFT, ^[c] CPCM	DFT, ^[c] PCM
	1.05	17.06	18.70	20.12	22,59
11B	12.83	0.00	11.84	0.00	0.00
11C	0.00	1.66	0.00	11.93	17.74

^[a] The global minimum energy is set to zero. ^[b] Gas phase. ^[c] B3LYP/6-31G**.

Table 2. Conformers of **25** in water and corresponding energies found by random conformer search by the AMBER* and MM3* methods; these energies are compared to energies obtained by ab initio DFT calculations

Conformer	AMBER*, GB/SA	Geometry optimization a MM3*, GB/SA	and hydration mode DFT ^{[b][c]}	l [kJ/mol] ^[a] DFT, ^[c] CPCM	DFT, ^[c] PCM
25A 25B 25C ^[e] 25D	0.00 - [d] 45.53 31.77	0.00 2.49 31.90 1.32	0.00 22.54 25.11 ^[e] 24.18	0.00 13.25 12.14 14 73	0.00 11.45 7.03 7.49

^[a] The global minimum energy is set to zero. ^[b] Gas phase. ^[c] B3LYP/6-31G**. ^[d] Not found by the conformer search. ^[e] Gas-phase DFT geometry optimization of **25C** gave a local minimum of conformer **25B** which was used in the CPCM and PCM hydration models.

FULL PAPER

mitted to DFT geometry optimization with the B3LYP functional in conjunction with the 6-31G** basis set. The results, summarized in Table 1, indicate that the lowest-energy conformer in the gas phase is **11C**. When the CPCM or PCM hydration models are used, however, the lowest-energy conformer is **11B**, in accordance with NMR analysis (see below).

The data described above indicate that the hydrogenbonded conformer 11A is sterically disfavored relative to the "open" forms 11B and 11C. However, the introduction of groups at the 8a-position could counterbalance steric effects in favor of the A-type conformation, due to the repulsion of the 8a-substituent with the co-planar N-acetyl group in the "open" forms of type B and C. This supposition was supported by an analogous computational analysis for 8amethyl-1,7-naphthyridine 25 (Table 2). Random conformer searches by both the AMBER* and the MM3* force-field approaches yielded conformation 25A as the global minimum, displaying properties conforming to the desired β turn induction, including the generation of a hydrogen bond. The next two significantly different conformers identified by use of both force fields were 25D and 25C: the former is characterized by a twist-boat form of the piperidine moiety, while 25C exhibits a piperidinone boat structure. Interestingly, conformer 25B was not found by AM-BER* but only when MM3* was used; however, a structure representing a local minimum of 25B was generated by DFT geometry optimization of 25C in the gas phase. After similar geometry optimization of 25A, B, and D, the four optimized structures were subjected to further hydration energy calculations, which revealed 25A as the most stable conformer by 7-12 kJ/mol depending on the hydration model used.

NMR Analysis of Diamides 11 and 25

¹H NMR spectra of 11 were run in CDCl₃, [D₆]DMSO and D_2O ; the last spectrum gave the least overlap but no NH signal. In each case a series of separate signals revealed the existence of two slowly interconverting (cis,trans) rotamers about the N1-Ac amide linkage. From the NOE enhancement observed for 2-Hea upon presaturation of the N-Ac protons in the NOE difference spectra, the trans rotamer [(Z) form] was shown to be the main form in D₂O but not in $[D_6]DMSO$, in which strong dipolar interactions with the solvent may be involved. In all three solvents the cis-fused naphthyridine moiety apparently adopts a similar conformation corresponding to that of 11B, as demonstrated by the relevant coupling constants for the angular proton 4a-H. The latter showed a small ³J-gauche value of ca. 5 Hz with both 5-H protons and a large ${}^{3}J$ -trans value of ca. 14 Hz with 4-Hax, in accordance with the coupling values calculated for 11B.^[12] The 2D NOESY spectrum in CDCl₃ or D₂O also displayed a weak correlation between the phenyl ortho-protons and proton 8a-H (Figure 3), indicating a partial orthogonal orientation of the phenyl ring relative to the piperidinone ring in 11B.

Figure 3. Solution conformation and relevant NOESY correlations (gray) of $11\,$

While conformer **11B** is not desired for β -turn induction, it seemed worthwhile to verify the criteria usually cited for intramolecular hydrogen-bonding analysis by NMR: (1) the temperature shift of the hydrogen-bonded proton is ≤ -3 ppb/°C, and (2) if the solvent is changed, a large shift is seen for free NH proton(s) and a small one for the hydrogen-bonded proton. By increasing the temperature from 298 to 343 K in steps of 5 K ([D₆]DMSO) an NHCH₃ temperature dependence of -2.9 and -3.8 ppb/K was determined for the two N-Ac rotamers (Figure 4). The fact that one of the NH proton signals seems to fulfil the criterion is deceptive, since the two signals coalesce at 333 K, giving rise to second-order effects and a deviation from linearity. The N^7H proton signals show a greater temperature dependence of -5.3 and -5.4 ppb/K. When [D₆]DMSO was exchanged for $CDCl_3$, large shifts were observed for all NH protons.

Figure 4. NH temperature dependence observed for 11 and 25

In [D₆]DMSO, the appearance of the spectrum of **25** was totally unlike that of **11**. Only one *N*-acetyl rotamer was observed, and the spectrum also displayed a different multiplet structure for coupling of the angular proton 4a-H with the vicinal protons 5-H and 4-H. For example, 5-H_{ax} was observed as a triplet at $\delta = 2.41$ ppm, corresponding to geminal coupling with 5-H_{eq} and *trans*-diaxial coupling with 4a-H (${}^{2}J \approx {}^{3}J \approx 14$ Hz). This indicates an *axial* position of the angular proton 4a-H with respect to the piperidinone ring. 5-H_{eq} was observed as a broadened doublet, due to a very small (unresolved) coupling with 4a-H, at $\delta = 1.98$ ppm. A *gauche* coupling value of ca. 6 Hz was meas-

www.eurjoc.org

ured between 4a-H and 4-H_{ax}, which appeared as a triplet of triplets (4-H_{eq} signal hidden). These coupling values clearly support **25A** as the predominant conformation. Since an intramolecular hydrogen bond was indicated by the conformational calculations carried out for favored conformer **25A**, diamide **25** was submitted to the NMR criteria described above. When the solvent was changed from [D₆]DMSO to CDCl₃, the signal of the N*H* proton of the piperidinone ring was shifted from $\delta = 7.88$ ppm to $\delta =$ 6.42 ppm, while the signal of the N*H*Me proton did not move significantly (from $\delta = 7.80$ ppm to $\delta = 7.85$ ppm). As expected for hydrogen bonding of the N*H*Me proton, the N*H* temperature dependence was only -1.2 ppb/K for N*H*Me, versus -3.5 ppb/K for the piperidinone amide proton.

Additional support for conformation **25A** was obtained from the NOESY spectrum ([D₆]DMSO). As illustrated in Figure 5, strong NOEs were found between (amongst others): (1) the *ortho*-protons of the phenyl group and 4a-H/5-H_{eq}, (2) NHMe and 5-H_{ax}, (3) 2-H_{ax} and 8a-CH₃, and (4) NCOCH₃ and 2-H_{eq}. These correlations confirm the existence of conformer **25A**.

Figure 5. Solution conformation ([D_6]DMSO) and relevant NOESY correlations (gray) of ${\bf 25}$

Evaluation of β-Turn-Inducing Potential

Relevant structural features of mimics 1 and 2 may be compared to those of rigidified *cis*-amide mimics constrained in a six-membered lactam ring, such as the monocyclic lactam 26,^[7a] and the 5(1*H*)-indolizinone mimic 27 (Figure 6).^[7b] A good overlay was observed for the back-

Figure 6. Compounds 1 and 2 in comparison with previously reported type VI β -turn mimics 26 and 27

bones of **1** and **2** and the mono- and bicyclic lactam structures **26** and **27** (Macromodel 5.0, MM3*-optimized structures), suggesting that these compounds may have similar β -turn-inducing properties.^[13] Like other turn mimics that conformationally constrain or isosterically replace the central dipeptide backbone, lactam compounds **1** and **2** can be defined as *external* β -turns.^[14] These can be compared to *internal* β -turns, which try to mimic the whole β -turn tetrapeptide without explicitly considering the backbone geometry. Generally, external β -turn mimics are more rigid, but are often unable to mimic amino acid side chains.

However, in comparison with the previously described external mimics (e.g., 26 and 27), an asset of the naphthyridine-type mimic 2 is that it can be variably functionalized at the stereogenic Ca2 and Ca3 positions bearing the angular R³ and R⁶ substituents, thus allowing for modulation of receptor-ligand interactions. From a molecular recognition perspective, the classification of β -turns as types I–VII according to the dihedral angles of the central residues is not entirely satisfactory, since it does not adequately describe the disposition of the Ca2 and Ca3 substituents and the orientation of the *i* and i+3 residues representing the positions at which the peptide chain would enter and exit the β -turn, respectively. To solve this problem, the topographies of β -turns and their mimics can be described in terms of a single virtual torsion angle β , defined by C1, Ca2, Ca3, and N4 of the tetrapeptide model and the interatomic distance d between Ca1 and Ca4 (Ball et al.^[15]). The collection of naturally occurring β-turns (type I, II, ...) examined by Ball has a broad distribution of β -values (roughly $\pm 100^{\circ}$ with a slight preference for small, positive β values). It therefore seems relevant to "match" the β value of the mimic with that of the target peptide. For type VI turns, however, a much narrower β value (-19° < β < 20°) was found. We can therefore use this interval as a boundary for the β value of a type VI turn mimic. Thus, the DFT geometry-optimized global minimum 25A was evaluated as a tight reverse turn inducer based on three geometrical criteria (Figure 7): (1) the virtual torsion angle β should be within $0\pm 20^{\circ}$, (2) the Ca1-C4 interatomic distance d should be less than or equal to 7 Å, and (3) the distance between the N-acetyl carbonyl oxygen atom and the methyl carboxamide proton should be smaller than 2.5 Å and the NH-O and H-OC angles greater than 120 and 90°, respectively (hydrogen bonding). All of these criteria are fulfilled by the tetrapeptide model: the $|\beta|$ value measured for (4aR, 6S, 8aR)-25A was 16° [and concurrently, for (4aS, 6R, 8aS)-25A, -16°], the Ca1-Ca4 interatomic distance was 5.5 Å, and the

Figure 7. The virtual torsion angle β and the C α 1–C α 4 interatomic distance *d* measured for (4a*R*,6*S*,8a*R*)-**25**A

NH-O=C distance was 2.0 Å. The NH-O and H-OC angles measured were 155 and 143°, respectively. Hence, these data clearly support the β -turn-inducing properties of **25A**.

The picture described above is somewhat idealized, since several low-energy conformations equilibrate with 25A at room temperature. To assess the contributions of all conformations that fulfil the conditions for reverse-turn induction, a molecular dynamics simulation of 1600 ps at 300 K in water was carried out for 25 by use of AMBER 6.0 and the TIP3P water model. In this way, 8000 snapshots were generated, from which the β values and Ca1–Ca4 distances d could be extracted. As can be seen from the results summarized in Table 3, 66% of the conformations have a β within $\pm 20^{\circ}$ and 87% have a d value below 7 Å. According to our proposed hydrogen-bond conditions, 25% of all conformations are hydrogen-bonded and 67% of the conformations have an NH-O=C distance of less than 4 A (with the same angle conditions), the minimum distance usually cited for significant interaction. These results indicate that **25** largely preserves its β -turn-inducing properties at 300 K in water.

Table 3. Parameters extracted from a molecular dynamics simulation of ${\bf 25}$

Property	Compound 25
β within $\pm 20^{\circ}$	66%
Mean β (4a <i>R</i> ,6 <i>S</i> ,8a <i>R</i>)- 25 A	$(17 \pm 8)^{\circ}$
Mean β (4a <i>S</i> ,6 <i>R</i> ,8a <i>S</i>)- 25 A	$(-17 \pm 8)^{\circ}$
d within 7 Å	87%
Mean d	6.1 Å
H-bonded	25%
NH-O=C interaction	67%

In this context, it should be noted that in a conformational study using a molecular dynamics simulation in which several β-turn mimetics were built into cyclic Alahexapeptides,^[16] the rigid *cis*-amide 27 was shown to be compatible with the opposing β -turn in the ring, which was not the case for a biphenyl-based mimic. Also, in a Monte Carlo simulation, 27 displayed the best β -turn-inducing potential, including the generation of a H-bridge between the i and i+3 residues. In this simulation, distribution profiles of the following properties were generated: (a) the donor-acceptor distance $(HN_{i+3})-(C=O_i)$ of the turn-stabilizing bond, b) the $C\alpha i - C\alpha i + 3$ distance characteristic of β -turns (ideal value: 4.1–4.8 Å), according to Lewis et al.^[17] and c) the pseudodihedral angle encompassing four consecutive Ca atoms of the turn-forming amino acids or dipeptide analogues (ideal value: $50^{\circ} > \Theta > -50^{\circ}$). The ideal values were taken from the geometries of known β turns. A narrow distribution was considered important for β-turn-inducing properties.

When an analogous molecular dynamics simulation was performed on a cyclic Ala-hexapeptide in which (4aS,6R,8aS)-25 and (4aR,6S,8aR)-25 were incorporated (Macromodel 8.0, GB/SA hydration model), these struc-

tures were also found to adopt stable conformations, each with two β -turns. A molecular dynamics simulation was also carried out on linear Ac-Ala-Ala-(4a*R*,6*S*,8a*R*)-**25**-Ala-Ala-NHMe and Ac-Ala-Ala-(4a*S*,6*R*,8a*S*)-**25**-Ala-Ala-NHMe. This resulted in narrow distribution profiles similar to those found for **27** by use of the parameters described above (Figure 8). Moreover, 94% of the (4a*R*,6*S*,8a*R*)-**25**-hexapeptide and 81% of the (4a*S*,6*R*,8a*S*)-**25**-hexapeptide was found to be intramolecularly hydrogenbonded (NH-O=C distance < 2.5 Å; NH-O angle > 120°; H-OC angle > 90°).

Figure 8. Interatomic distances Cai-Cai+3 and pseudodihedral angles Cai-Cai+1-Cai+2-Cai+3 for both enantiomers of the β -turn-induced by **25** in an Ala-hexapeptide; values determined by an MD simulation (force field AMBER*, solvent H₂O)

Conclusion

The intramolecular Diels-Alder reaction of N-alkenyl-2(1H)-pyrazinones, followed by cleavage of the strained tricyclic adducts to form *cis*-fused 1,7-naphthyridines, can be used to construct a novel type of rigid β -turn. Substitution at the 8a-position of the cis-fused naphthyridine scaffold proved to be of crucial importance for attaining the desired conformation, as indicated by random conformer searches, ab initio geometry optimizations, and molecular dynamics conformational space probing around the global minimum. The presumed existence of 25A as the predominant conformer required for induction of β-turns and internal hydrogen bonding was confirmed by extensive NMR analysis. In comparison with the previously described cis-amide mimics 26 and 27, an additional asset of type 2 mimics is that they can be variably functionalized at the stereogenic Ca2 and Ca3 positions, which should allow for further modulation of the receptor-ligand interaction.

Experimental Section

General Remarks: All compounds were analyzed with the analytical instruments described previously.^[18] NMR spectra were calibrated

with TMS, except for 11 in D_2O (HOD) and 25 in $[D_6]DMSO$ (CHD₂SOCD₃). For 11, only the ¹H NMR spectroscopic data of major isomers are given.

Random Conformer Searches: The calculations were carried out with Macromodel 5.0.^[19] The Macromodel implementation of the AMBER force field (denoted AMBER*)^[20] was used with the water GB/SA solvation model of Still et al.^[21] The conformational space was sampled by use of Goodman and Still's internal coordinate Monte Carlo search.^[22] For both molecules (**11** and **25**), 5000 structures were generated and minimized to an energy convergence of 0.05 kJ/mol Å by use of the Polak–Ribiere conjugate gradient method implemented in Macromodel. Duplicate structures and those greater than 50 kJ/mol above the global minimum were discarded.

Ab Initio Geometry Optimization: Gas-phase geometry optimizations were performed at the Density Functional Theory level in combination with the B3LYP functional level in conjunction with the d,p polarized basis sets 6-31G**. Hydration energies were calculated by use of the polarizable continuum model (PCM) developed by Tomasi and co-workers.^[23] A second solvation model used is CPCM,^[24] which is actually an implementation of the Conductor-like Screening Model (COSMO).^[25] The hydration free energies were calculated at the HF/6-31G** level. The United Atom Model for Hartree Fock (UAHF) definition^[26] was used for the construction of the solute cavity. No geometry optimizations in solvent were performed for the hydration free energies; the calculated gas-phase structures were used. All calculations were performed with the aid of the Gaussian 98 package.^[27]

Molecular Dynamics of 25: The simulation was performed at constant temperature (300 K) and constant pressure (1 atm) by use of the SANDER classic module of AMBER 6.0 with the AMBER force-field of Cornell et al.^[28] This was slightly modified to handle the unnatural residue, and Mulliken charges from the DFT calculations were used instead of the standard values. An initial solvent box of ca. $37 \times ca. 34 \times ca. 31$ Å, containing 866 TIP3P water molecules,^[29] was constructed around the residue. The system was minimized until the rms energy gradient dropped below 0.1 kcal/ mol·Å. After a relaxation period, the simulation was subsequently run for 1600 ps with SHAKE on all bond lengths and with a time step of 0.002 ps. Periodic boundary conditions were used to treat the nonbonded interactions with a cut-off distance equal to 9 Å. Snapshots were taken every 0.2 ps, yielding 8000 conformations for analysis.

Molecular Dynamics of Ala-Hexapeptides with 25: Molecular dynamics simulations on cyclo(Ala-Ala-Ala-Ala) and the linear peptide Ac-Ala-Ala-Ala-Ala-NHMe (all non-\beta-turn mimic peptide bonds in the trans conformation) were performed with the Macromodel 8.0 package with use of the AMBER* force field. The run was set up with all standard parameters and the GB/ SA solvation model (water).^[21] The system was minimized and after an equilibration run of 200 ps, a 1000 ps dynamics run was performed (timestep 1 fs). The criteria described above were monitored. For the linear peptide, an extended and a near-ideal β-turn structure were chosen as a starting conformation. The reported data are from the near-ideal starting conformation. In the case of the extended starting conformation, results were considerably poorer for a 1000 ps run with 200 ns equilibration. When a longer equilibration time (1000 ps) was used, however, the results became similar to the reported data, 91% of Ac-Ala-Ala-(4aR, 6S, 8aR)-25-Ala-Ala-NHMe and 87% of Ac-Ala-Ala-(4aS,6R,8aS)-25-Ala-Ala-NHMe being hydrogen-bonded.

3,5-Dichloro-1-(4-methoxybenzyl)-2(1*H***)-pyrazinone (4):** The product was prepared as described in ref.^[9], starting from 4-methoxybenzylamine (26.1 mL, 0.2 mol). Yield: 29.0 g (51%), yellow crystals; m.p. 96–100 °C (EtOH). IR (KBr, cm⁻¹): $\tilde{v} = 1662.8$ (C=O), 1588.7 (C=N). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.28$ (m, 2 H, 3'-H, 5'-H), 7.15 (s, 1 H, 6-H), 6.92 (m, 2 H, 2'-H, 6'-H), 5.03 (s, 2 H, CH₂), 3.82 (s, 3 H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.9$ (C-4'), 151.5 (C-2), 147.0 (C-3), 130.3 (C-2', C-6'), 125.6, 125.1 (C-6, C-5), 123.8 (C-1'), 114.6 (C-3', C-5'), 55.2 (CH₃), 52.3 (CH₂) ppm. MS EI: *m/z* (%) = 284 (5) [M⁺⁻], 121 (100) [CH₃OC₆H₄CH₂⁺]; exact mass calculated for C₁₂H₁₀Cl₂N₂O₂ 284.0119; found 284.0138.

5-Chloro-1-(4-methoxybenzyl)-3-phenyl-2(1*H***)-pyrazinone (5):** The product was prepared as described in ref.^[10], starting from **4** (10.0 g). Yield: 9.0 g (78%); yellow crystals; m.p. 84 °C (Et₂O). IR (KBr, cm⁻)¹: $\tilde{v} = 1640.4$ (CO), 1585.4 (C=N). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.36$ (m, 2 H, *ortho*-H), 7.43 (m, 3 H, *meta*-H, *para*-H), 7.29 (d, J = 8 Hz, 2 H, 3'-H, 5'-H), 7.15 (s, 1 H, 6-H), 6.88 (d, J = 8 Hz, 2 H, 2'-H, 6'-H), 5.02 (s, 2 H, CH₂), 3.78 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 159.9$ (C-4'), 154.3 (C-2), 152.0 (C-3), 134.8 [C-*ipso* (Ph)], 130.5, 129.2, 128.0 [C-*ortho*, C-*meta*, C-*para* (Ph)], 130.3 (C-2', C-6'), 126.3, 126.2 (C-1', C-5), 125.1 [C-6 (determined by DEPT)], 114.5 (C-3', C-5'), 55.2 (CH₃), 52.3 (CH₂) ppm. MS EI: *m/z* (%) = 326 (9) [M⁺⁻], 121 (100) [CH₃OC₆H₄CH₂⁺]; exact mass calculated for C₁₈H₁₅ClN₂O₂ 326.0822; found 326.0829.

5-Chloro-3-phenyl-2(1*H***)-pyrazinone (6):** Compound **5** (9.0 g) was added to trifluoroacetic acid (30 mL). This solution was stirred at reflux for 5 h [TLC monitoring: $R_{\rm f}$ (CH₂Cl₂) = 0.31 (**5**), 0.10 (**6**)]. After evaporation of the solvent, crude **6** was purified by column chromatography (silica gel, CH₂Cl₂ to 15% EtOAc/CH₂Cl₂). Yield: 5.0 g (88%); yellow crystals; m.p. 175 °C (EtOAc/CH₂Cl₂). IR (KBr, cm⁻¹): $\tilde{\nu}$ = 2692 (broad, NH), 1648 (C=O), 1590.7 (C=N). ¹H NMR (400 MHz, [D₆]DMSO):^[30] δ = 8.10 (m, 2 H, *ortho*-H), 7.67 (s, 1 H, 6-H), 7.40 (m, 3 H, *meta*-H, *para*-H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): δ = 155.4 (C-2), 148.5 (C-3), 135.1 (C-*ipso*), 130.6 (C-*para*), 129.3 (C-6), 128.9, 128.6 (C-*ortho*, C-*meta*) ppm; C-5 signal not resolved. MS EI: *mlz* (%) = 206 (100) [M⁺⁺], 178 (74) [M⁺⁺ - CO], 143 (33) [M⁺⁺ - CO - Cl], 116 (33) [M⁺⁺ - CO - Cl] - HCN]; exact mass calculated for C₁₈H₁₅ClN₂O₂ 206.0247; found 206.0254.

5-Chloro-1-(4-pentenyl)-3-phenyl-2(1H)-pyrazinone (7): Cs₂CO₃ (1.9 g, 1.2 equiv.) was added to a solution of 6 (4.0 g) in dioxane (150 mL). This mixture was stirred at 50 °C for 30 min, followed by addition of 5-bromo-1-pentene (0.9 mL, 1.5 equiv.). After having been stirred for one week, the mixture was filtered to remove CsBr and unchanged Cs₂CO₃. After evaporation of the solvent, crude 7 was purified by column chromatography (silica gel, CH₂Cl₂). Yield: 3.8 g (72%); yellow oil. IR (NaCl, cm⁻¹): \tilde{v} = 1650.1 (C=O), 1583.5 (C=N). ¹H NMR (400 MHz, CDCl₃): $\delta =$ 8.35 (m, 2 H, ortho-H), 7.43 (m, 3 H, meta-H, para-H), 7.18 (s, 1 H, 6-H), 5.80 (ddt, J = 18, 10, 7 Hz, 1 H, 4'-H), 5.06 (m, 2 H, 5'-H), 3.93 (t, J = 7 Hz, 2 H, 1'-H), 2.15 (q, J = 7 Hz, 2 H, 3'-H), 1.90 (quint, J = 7 Hz, 2 H, 2'-H) ppm. ¹³C NMR (100 MHz, $CDCl_3$): $\delta = 154.3$ (C-2), 152.0 (C-3), 136.5 (C-4'), 134.8 (C-*ipso*), 130.6, 129.2, 128.1 (C-ortho, C-meta, C-para), 126.2 (C-5), 125.9 (C-6), 116.2 (C-5'), 50.1 (C-1'), 30.5, 27.5 (C-2', C-3') ppm. MS EI: m/z (%) = 274 (100) [M^{+·}], 220 (92) [M^{+·} - C₄H₆], 191 (50) $[M^{+-} - C_4H_6 - CHO)$; exact mass calculated for $C_{15}H_{15}ClN_2O$ 274.0873; found 274.0873.

1-Phenyl-3,10-diazatricyclo $[5.3.1.0^{3.8}]$ undecane-2,9-dione (9): A solution of 7 (1.0 g) in bromobenzene (20 mL) was stirred at reflux

FULL PAPER

overnight. The solvent was then evaporated, and the residue was redissolved in water-saturated ethyl acetate. The mixture was stirred overnight and pure **9** was collected by filtration. Yield: 0.80 g (86%). For spectroscopic data see ref.^[8]

Methyl 8-Oxo-6-phenyldecahydro[1,7]naphthyridine-6-carboxylate (10): Methanesulfonic acid (95 μ L, 2.5 equiv.) was added to a solution of 9 (150 mg, 0.52 mmol) in MeOH. This solution was stirred at reflux overnight. After evaporation of the solvent, 10% K₂CO₃ in water and CH₂Cl₂ were added to the residue. The organic phase was separated and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic layers were dried with anhydrous K₂CO₃. Pure 10 was obtained after filtration and removal of the solvent. Yield: 164 mg (97%). For spectroscopic data see ref.^[8]

1-Acetyl-N-methyl-8-oxo-6-phenyldecahydro[1,7]naphthyridine-6-

carboxamide (11): Compound 10 (110 mg, 0.38 mmol) was dissolved in acetic anhydride (20 mL). After having been stirred at 40 °C for 2 h, the solution was concentrated to dryness and the residue was redissolved in a solution of CH₃NH₂ in ethanol (20 mL, 33wt%). This solution was stirred at room temp. overnight and concentrated, and the residue was purified by chromatography on preparative plates (5% MeOH/CH₂Cl₂) to yield 11 (118 mg, 0.36 mmol). Yield: 94%; white crystals, m.p. 115-120 °C (Et₂O). IR (KBr, cm⁻¹): $\tilde{v} = 1666.2$ (C=O), 1546.4 (C=O). (Z) Isomer (74%): ¹H NMR (400 MHz, CDCl₃): $\delta = 8.18$ (s, 1 H, 7-H), 7.49-7.26 (m, 5 H, arom. H), 6.81 [m (q), 1 H, NHCH₃], 5.30 (d, J = 5 Hz, 1 H, 8a-H), 3.58 (br. d, J = 14 Hz, 1 H, 2-H_{eq}), 3.06 (dd, J = 14, 3 Hz, 1 H, 5-H_{eq}), 2.83 (td, J = 13, 2.5 Hz, 1 H, 2- H_{ax}), 2.79 (d, J = 5 Hz, 3 H, NHC H_3), 2.22 (dd, J = 14, 5 Hz, 1 H, 5-H_{ax}), 2.08 (m, 1 H, 4a-H), 2.05 (s, 3 H, COCH₃), 1.88 (m, 1 H, 4-H_{eq}), 1.69 (m, 1 H, 3-H_{eq}), 1.39 (qt, J = 13, 3.5 Hz, 1 H, 3-H_{ax}), 1.23 (m, 1 H, 4-H_{ax}) ppm. (E) Isomer (58%): ¹H NMR $([D_6]DMSO): \delta = 8.23$ (s, 1 H, 7-H), 7.84 [q (broad), J = 4 Hz, 1 H, NHCH₃], 7.44–7.27 (m, 5 H, arom. H), 4.56 (d, J = 5 Hz, 1 H, 8a-H), 4.25 (br. d, J = 14 Hz, 1 H, 2-H_{eq}), 3.01 (br. d, J =13 Hz, 1 H, 5-H_{eq}), 2.64 (d, J = 5 Hz, 3 H, NHCH₃), 2.13 (m, 3 H, 2-H_{ax}, 4a-H, 5-H_{ax}), 1.94 (s, 3 H, COCH₃), 1.70-1.10 (m, 4 H, 3-H, 4-H) ppm. (Z) Isomer (68%): ¹H NMR (400 MHz, D_2O): $\delta =$ 7.61-7.49 (m, 5 H, arom. H), 5.29 (d, J = 6 Hz, 1 H, 8a-H), 3.95(br. d, J = 14 Hz, 1 H, 2-H_{eq}), 2.97 (td, J = 13, 2 Hz, 1 H, 2-H_{ax}), 2.87 (s, 3 H, NDCH₃), 2.80 (dd, J = 15, 6 Hz, 1 H, 5-H_{ea}), 2.72 $(dd, J = 15, 5 Hz, 1 H, 5-H_{ax}), 2.35 (m, 1 H, 4a-H), 2.27 (s, 3 H, 1)$ $COCH_3$), 1.93 (m, 1 H, 4-H_{eq}), 1.83 (m, 1 H, 3-H_{eq}), 1.57 (qt, J =13, 3.5 Hz, 1 H, 3-H_{ax}), 1.35 (qd, J = 13, 3 Hz, 1 H, 4-H_{ax}) ppm. (Z) Isomer: ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.9$, 170.7, 170.5 (C=O), 142.4 (C-ipso), 129.0, 128.1, 124.8 (C-ortho, C-meta, Cpara), 65.1 (C-6), 52.7 (C-8a), 43.6 (C-2), 38.1 (C-5), 33.0 (C-4a), 27.2 (NHCH₃), 27.1, 25.4 (C-3, C-4), 21.4 (COCH₃) ppm. (E) Isomer: most signals not resolved. MS EI: m/z (%) = 329 (6) [M⁺], 286 (18) [M⁺⁺ - Ac], 271 (100) [M⁺⁺ - CONHCH₃], 229 (26) [M⁺⁺ $- CH_2O - CONHCH_3$], 152 (62) [8 $- H_{10}NO_2^+$], 96 (18) $[C_6H_{10}N^+]$, 83 (16) $[C_5H_9N^+]$; exact mass calculated for C₁₈H₂₃N₃O₃ 329.1739; found 329.1735.

3,5-Dichloro-1-(4-methoxybenzyl)-6-methyl-2(1*H***)-pyrazinone (13): The product was prepared as described in ref.^[9], starting from 4methoxybenzylamine (26.1 mL, 0.2 mol). Yield: 26.8 g (45%); white crystals, m.p. 112 °C (EtOH). IR (KBr, cm⁻¹): \tilde{v} = 1667.2 (C=O), 1567.6 (C=N). ¹H NMR (300 MHz, CDCl₃): \delta = 7.16 (d, J = 9 Hz, 2 H, 3'-H, 5'-H), 6.87 (d, J = 9 Hz, 2 H, 2'-H, 6'-H), 5.30 (s, 2 H, CH₂), 3.79 (s, 3 H, OCH₃), 2.45 (s, 3 H, 6-CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 159.6 (C-4'), 153.1 (C-2), 143.7 (C-3), 136.0 (C-1'), 128.6 (C-3', C-5'), 125.9, 123.8 (C-5, C-6), 114.5 (C-2', C-6'), 55.3 (OCH₃), 49.7 (CH₂), 16.8 (6-CH₃) ppm. MS EI:** m/z (%) = 298 (4) [M^{·+}], 121 (100) [CH₃OC₆H₄CH₂⁺]; exact mass calculated for C₁₃H₁₂Cl₂N₂O₂ 298.0276; found 298.0280.

5-Chloro-1-(4-methoxybenzyl)-3,6-dimethyl-2(1*H***)-pyrazinone (14): The product was prepared as described in ref.^[10], starting from 13 (10.0 g). Yield: 8.3 g (89%), brown crystals (CH₂Cl₂), m.p. 113–114 °C (CH₂Cl₂). IR (KBr, cm⁻¹): \tilde{v} = 1647.5 (C=O), 1572.3 (C=N). ¹H NMR (300 MHz, CDCl₃): \delta = 7.13 (d, J = 9 Hz, 2 H, 3'-H, 5'-H), 6.85 (d, J = 9 Hz, 2 H, 2'-H, 6'-H), 5.25 (s, 2 H, CH₂), 3.78 (s, 3 H, OCH₃), 2.48 (q, J = 1 Hz, 3 H, 3-CH₃]^[31], 2.40 (q, J = 1 Hz, 3 H, 6-CH₃]^[31] ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 159.3 (C-4'), 156.2 (C-2), 154.2 (C-3), 133.2 (C-1'), 128.3 (C-3', C-5'), 126.7, 125.5 (C-5, C-6), 114.3 (C-2', C-6'), 55.2 (OCH₃), 48.1 (CH₂), 20.7 (3-CH₃), 16.6 (6-CH₃) ppm. MS EI:** *m***/***z* **(%) = 278 (11) [M⁻⁺], 121 (100) [CH₃OC₆H₄CH₂⁺]; exact mass calculated for C₁₄H₁₅ClN₂O₂ 278.0822; found 278.0826.**

5-Chloro-3,6-dimethyl-2(1*H***)-pyrazinone (15):** The same procedure as employed for compound **6** was used, starting from **14** (5.0 g). Yield: 1.9 g (67%); white crystals, decompose upon heating. IR (KBR, cm⁻¹): $\tilde{v} = 1651.5$ (C=O), 1532.7 (C=N). ¹H NMR (300 MHz, CDCl₃): $\delta = 12.32$ (br. s, 1 H, 1-H), 2.25 (s, 3 H, 3-CH₃ or 6-CH₃), 2.23 (s, 3 H, 6-CH₃ or 3-CH₃) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 157.4$ (C-2); C-3, C-5, C-6 signals not resolved due to tautomerism, 20.1 (3-CH₃), 18.4 (6-CH₃) ppm. MS EI: *m/z* (%) = 158 (99) [M⁺⁺], 130 (59) [M⁺⁺ - CO], 129 (100) [M⁺⁺ - CO - H]; exact mass calculated for C₆H₇ClN₂O 158.0247; found 158.0265.

2-Chloro-3,6-dimethyl-5-(4-pentenyloxy)-2(1*H***)-pyrazinone** (16): The same procedure as employed for compound 7 was used, starting from **15** (1.0 g). Yield: 0.66 g (46%); colorless oil. IR (NaCl, cm⁻¹): $\tilde{v} = 1641.2$ (C2=N1), 1543.2 (C3=N4) ppm. ¹H NMR (300 MHz, CDCl₃): $\delta = 5.84$ (ddt, J = 18, 10, 7 Hz, 1 H, 4'-H), 5.04 (m, 2 H, 5'-H), 4.31 (t, J = 7 Hz, 2 H, 1'-H), 2.47 (s, 3 H, 3-CH₃), 2.40 (s, 3 H, 6-CH₃), 2.23 (q, J = 7 Hz, 2 H, 3'-H), 1.89 (quint, J = 7 Hz, 2 H, 2'-H) ppm. ¹³C NMR (300 MHz, CDCl₃): $\delta = 156.6$ (C-2), 145.2 (C-3), 140.9 (C-5), 137.6 (C-4'), 137.1 (C-6), 115.1 (C-5'), 65.9 (C-1'), 30.1 (C-3'), 27.9 (C-2'), 21.1 (3-CH₃), 18.2 (6-CH₃) ppm. MS EI: m/z (%) = 226 (16) [M⁺⁺], 158 (100) [M⁺⁺ - C₅H₈], 130 (18) [M⁺⁺ - C₅H₈ - CO], 68 (10) [C₅H₈⁺]; exact mass calculated for C₁₁H₁₅ClN₂O 226.0873; found 226.0874.

5-(Phenylselanyl)pentan-1-amine (17): This compound was prepared as described previously, starting from diphenyl diselenide (25 g).^[32]

2-{[5-(Phenylselanyl)pentyl]amino}propanenitrile (18): The product was prepared by a previously described procedure, $[^{33]}$ starting from the amine (7.0 g, 28.9 mmol) at 60 °C and with a reaction time of 12 h. The compound was used for the preparation of **19** without purification.

3,5-Dichloro-6-methyl-1-[6-(phenylselanyl)pentyl]-2(1*H***)-pyrazinone (19): HCl was bubbled for 15 min through an ethereal solution of 18** (ca. 28.9 mmol). The mixture was then concentrated to dryness and the residue was suspended in dry CH₂Cl₂ (100 mL). Oxalyl chloride (6.0 mL, 69.1 mmol) in dry CH₂Cl₂ (100 mL) was added to this suspension with stirring. After 30 min, dry triethylammonium chloride (19.7 g, 144.0 mmol) was added, and the mixture was stirred at room temperature under N₂ for additional 2 d. After evaporation of the solvent and unchanged oxalyl chloride, the residue was purified by column chromatography (silica gel, CH₂Cl₂) to afford **19**. Yield: 8.4 g (72%) from **17**; yellow crystals, m.p. 68-71 °C (CH₂Cl₂). IR (KBr, cm⁻¹): $\tilde{v} = 1667.5$ (C=O), 1567.8 (C=N). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.48$ (m, 2 H, ortho-H) 7.26–7.24 (m, 3 H, *meta*-H, *para*-H), 4.03 (m, 2 H, 1'-H), 2.91 (t, J = 7 Hz, 2 H, 5'-H), 2.46 (s, 3 H, CH₃), 1.78–1.66 (m, 4 H, 2'-H, 4'-H), 1.53 (quint, J = 7 Hz, 2 H, 3'-H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 152.5$ (C-2), 143.4 (C-3), 135.2 (C-*ipso*), 132.5 (C-*ortho*), 130.0 (C-5), 129.0, 126.9 (C-*meta*, C-*para*), 123.7 (C-6), 47.2 (C-1'), 29.5 (C-2'), 27.2, 27.3, 26.7 (C-3', C-4', C-5'), 16.4 (CH₃) ppm. MS EI: m/z (%) = 404 (8) [M⁺⁺], 247 [M⁺⁺ - SePh], 192 (28) [M⁺⁺ - C₁₀H₁₂Se], 178 (81) [M⁺⁺ - C₁₁H₁₄Se], 156 (22) [PhSe⁺], 77 (24) [Ph⁺], 69 (100) [C₃H₉⁺]; exact mass calculated for C₁₆H₁₈Cl₂N₂OSe 403.9961; found 403.9948.

5-Chloro-6-methyl-3-phenyl-1-[5-(phenylselanyl)pentyl]-2(1H)pyrazinone (20): This product was prepared by a general procedure described in ref.^[10], starting from **19** (5.0 g). Yield: 4.0 g (72%); yellow crystals, m.p. 80-82 °C (Et₂O). IR (KBr, cm⁻¹): $\tilde{v} = 1649.5$ (C=O), 1551.8 (C=N). ¹H NMR (300 MHz, CDCl₃): δ = 8.34-7.23 (m, 10 H, arom. H), 4.07 (m, 2 H, 1'-H), 2.92 (t, J =7 Hz, 2 H, 5'-H), 2.15 (s, 3 H, CH₃), 1.80-1.58 (m, 4 H, 2'-H, 4'-H), 1.56 (m, 2 H, 3'-H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 154.9 (C-2), 148.3 (C-3), 135.1 (SeC-ipso), 134.2 (3-C-ipso), 132.6, 130.1, 130.0, 129.1, 128.9, 128.0, 126.8, 126.5 (C-ortho, C-meta, Cpara, C-5, C-6), 46.2 (C-1'), 29.6 (C-2'), 27.44, 27.38, 27.0 (C-3', C-4', C-5'), 16.8 (CH₃) ppm. MS EI: m/z (%) = 446 (16) [M⁺⁺], 289 (100) [M^{·+} - SePh], 234 (18) [M^{·+} - C₄H₇SePh], 221 (31) $[M^{+} - C_5H_9SePh]$, 192 (31) $[M^{+} - C_{12}H_{14}OSe]$, 156 (13) $[PhSe^+]$, 77 (18) [Ph⁺], 69 (57) [$C_5H_9^+$]; exact mass calculated for C₂₂H₂₃ClN₂OSe 446.0664; found 446.0655.

5-Chloro-6-methyl-1-(4-pentenyl)-3-phenyl-2(1*H*)-pyrazinone (21): mCPBA (70% with water, 0.4 g, 3 equiv.) in CH₂Cl₂ (20 mL) was added dropwise to a cooled (-15 °C) solution of 20 (500 mg, 11 mmol) in CH₂Cl₂ (50 mL). This mixture was warmed to room temp. and was then stirred for 30 min. After addition of DMS (98 μ l, 2 equiv.) to work up the excess of reagent and DIPA (448 μ l, 6 equiv.), elimination was effected by stirring at 60 °C overnight. After evaporation of the solvent, crude 21 was purified by column chromatography (silica gel, CH2Cl2). Yield: 297 mg (92%); yellow crystals, m.p.: 78-82 °C (Et₂O). IR (KBr, cm⁻¹): $\tilde{v} = 1644.9$ (C= O), 1545.9 (C=N). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.34$ (m, 2 H, ortho-H), 7.43-7.40 (m, 3 H, meta-H, para-H), 5.84 (ddt, J =18, 10, 7 Hz, 1 H, 4'-H), 5.15 (m, 2 H, 5'-H), 4.09 (m, 2 H, 1'-H), 2.52 (s, 3 H, 6-CH3), 2.21 (quart, J = 7 Hz, 2 H, 3'-H), 1.82 (quint, J = 7 Hz, 2 H, 2'-H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 155.0$ (C-2), 148.2 (C-3), 136.6 (C-4'), 135.1 (C-5), 134.2 (C-ipso), 130.0, 128.9, 128.0 (C-ortho, C-meta, C-para), 126.5 (C-6), 116.1 (C-5'), 45.9 (C-1'), 31.0 (C-3'), 26.8 (C-2'), 16.7 (6-CH₃) ppm. MS EI: m/z (%) = 288 (75) [M⁺⁺], 273 (100) [M⁺⁺ - CH₃], 234 (54) [M⁺⁺ $- C_4H_6$], 220 (70) [M⁺ $- C_5H_8$], 205 (32) [M⁺ $- C_4H_6 - CHO$], 192 (27) $[M^{+} - C_5H_8 - CO]$; exact mass calculated for C₁₆H₁₇ClN₂O 288.1029; found 288.1034.

8-Methyl-1-phenyl-3,10-diazatricyclo[5.3.1.0^{3,8}]undecane-2,9-dione (23): The same procedure as employed for the preparation of compound **9** was used, starting from **21** (200 mg). Reaction time: 7 d. Yield: 146 mg (78%); white crystals, m.p. 243–244 °C (EtOAc). IR (KBr, cm⁻¹): $\tilde{v} = 3164.4$ (NH), 1695.4 (C=O), 1686.0 (C=O). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.45-7.39$ (m, 5 H, arom. H), 648 (s, 1 H, 10-H), 4.00 (dd, J = 14, 6 Hz, 1 H, 4-H_{eq}), 3.25 (td, J = 13, 4 Hz, 1 H, 4-H_{ax}), 2.61 (dd, J = 13, 10 Hz, 1 H, 11'-H), 2.30 (m, 1 H, 7'-H), 2.19 (m, 1 H, 6-H_{ax}), 2.08 (dd, J = 13, 2.5 Hz, 1 H, 11-H), 1.80 (m, 1 H, 5-H_{ax}), 1.70 (s, 3 H, 8-CH₃), 1.58 (m, 1 H, 6-H_{eq}), 1.35 (m, 1 H, 5-H_{eq}) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 179.0$ (C-2), 171.2 (C-9), 135.3 (C-*ipso*), 128.9, 128.8, 127.3 (C-*ortho*, C-*meta*, C-*para*), 63.6, 63.1 (C-1, C-8), 42.8 (C-4), 37.2 (C-11), 36.0 (C-7), 23.9 (C-6), 16.3 (C-5), 15.6 (CH₃) ppm. MS EI: m/z (%) = 270 (32) [M⁺⁺], 186 (100) [M⁺⁺ - (CH₂)₃NCO], 158 (15) [M⁺⁺ - (CH₂)₃NCO - CO]; exact mass calculated for C₁₆H₁₈N₂O₂ 270.1368; found 270.1371. Separation of the Enantiomers: The separation was achieved on a "Diacel OJ" column with chiral stationary phase, with a solvent gradient: 50% hexane/50% ethanol to 20% hexane/80% ethanol during 20 min. Flow: 1 mL/min.

N,8a-Dimethyl-8-oxo-6-phenyldecahydro[1,7]naphthyridine-6carboxamide (24): The same procedure as employed for the preparation of compound 10 was used, starting from 23 (100 mg). Yield: 111 mg (99%); slightly yellow crystals, m.p. 173-176 °C (CH_2Cl_2) . IR (KBR, cm⁻¹): nu(tilde) = 1737.8 (C=O ester), 1656.0 (C=O lactam). ¹H NMR (400 MHz, CDCl₃): δ = 7.43-7.29 (m, 5 H, arom. H), 6.46 (s, 1 H, 7-H), 3.76 (s, 3 H, OCH_3), 3.01 (ddd, $J = 14.5, 5.5, 1 Hz, 1 H, 5-H_{eq}$), 2.86 (m (ddt), 1 H, 2-H_{eq}), 2.68 (ddd, J = 13, 10, 3 Hz, 1 H, 2-H_{ax}), 2.26 (dd, J = 14.5, 4 Hz, 1 H, 5-H_{ax}), 2.20 (br. s, 1 H, 1-H), 1.78-1.69 (m, 2 H, 4-H_{eq}, 4a-H), 1.63 (m, 1 H, 3-H_{eq}), 1.51 [m (qt), 1 H, 3-H_{ax}], 1.31 (s, 3 H, 8a-CH₃), 1.15 [m (qd), 1 H, 4-H_{ax}] ppm. ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3): \delta = 175.7 (CO_2CH_3), 172.1 (C-8), 142.1 (C-8)$ ipso), 129.1, 128.2, 124.0 (C-ortho, C-meta, C-para), 64.4 (C-6), 56.9 (C-8a), 53.3 (OCH₃), 42.7 (C-2), 37.7 (C-4a), 35.5 (C-5), 27.6 (C-4), 26.1 (8a-CH₃), 24.3 (C-3) ppm. Ms EI: m/z (%) = 302 (2) [M⁺], 287 (10) $[M^{+} - CH_3]$, 259 (9) $[M^{+} - C_2H_5N]$, 110 (100) $[C_7H_{12}N^+]$, 97 (39) $[C_6H_{11}N^+]$; exact mass calculated for C₁₇H₂₂N₂O₃ 302.1630; found 302.1634.

1-Acetyl-N,8a-dimethyl-8-oxo-6-phenyldecahydro[1,7]naphthyridine-6-carboxamide (25): The same procedure as employed for the preparation of compound 11 was used, starting from 24 (100 mg). Yield: 114 mg (100%); white crystals, m.p. 267-269 °C (Et₂O). IR (KBr, cm⁻¹): $\tilde{v} = 1665.9$ (C=O), 1546.3 (C=O). ¹H NMR (400 MHz, $[D_6]DMSO$, 295 K): $\delta = 7.85$ (s, 1 H, 7-H), 7.82 (br. q, J = 4 Hz, 1 H, NHMe), 7.45 (d, J = 8 Hz, 2 H, ortho-H), 7.35 (t, J = 7 Hz, 2 H, meta-H), 7.25 (t, J = 7 Hz, 1 H, para-H), 3.60 (br. d, J = 14 Hz, 1 H, 2-H_{ea}), 3.24 (ddd, J = 14, 11, 4 Hz, 1 H, 2- H_{ax}), 2.61 (d, J = 5 Hz, 3 H, NHC H_3), 2.41 (t, J = 14 Hz, 1 H, 5- H_{ax}), 2.05 (s, 3 H, COC H_3), 1.98 (br. d, J = 14 Hz, 1 H, 5- H_{eq}), 1.88 (tt, J = 14, 5 Hz, 1 H, 4-H_{ax}), 1.60–1.35 (m, 3 H, 4a-H, 3-H), 1.40 (s, 3 H, 8a-CH₃), 1.31 (br. d, J = 14 Hz, 1 H, 4-H_{ea}) ppm. ¹³C NMR: $\delta = 172.8$, 171.1, 169.5 (C=O), 142.7 (C-*ipso*), 127.8, 127.0 (C-meta, C-para), 126.1 (C-ortho), 63.9 (C-6), 58.4 (C-8a), 42.3 (C-2), 34.0 (C-4a), 33.8 (C-5), 26.1 (NHCH₃), 25.1 (C-4), 23.2 $(COCH_3)$, 22.7 (8a-CH₃), 21.8 (C-3) ppm. MS EI: m/z (%) = 343 (0.4) [M⁺⁺], 285 (100) [M⁺⁺ - CONHCH₃], 243 (79) [M⁺⁺ - CH₂O - CONHCH₃], 215 (16) [C₁₄H₁₉N₂⁺], 198 (20) [C₁₄H₁₆N⁺], 186 (27) $[C_{12}H_{12}NO^+]$; exact mass calculated for $C_{19}H_{25}N_3O_3$ 343.1896; found 343.1902.

Acknowledgments

The authors thank the FWO (Fund for Scientific Research – Flanders, Belgium) and the IUAP-4-11 funding by DWTC. We are grateful to R. De Boer for HRMS measurements, and to Prof. Piet Herdewyn of the Division of Medicinal Chemistry for providing Macromodel 5.0 and AMBER 6.0 for the MC and MD calculations. F. R. thanks the K. U. Leuven and W. D. B. [Postdoctoral Fellow of the Fund for Scientific Research Flanders (Belgium) FWO – Vlaanderen] thanks the FWO for the fellowships received.

www.eurjoc.org

^[1] K.-C. Chou, *Anal. Biochem.* **2000**, *286*, 1–16 and references cited herein.

 ^[2] For leading reviews on β-turn mimics and peptidomimetics see:
 [2a] V. J. Hruby, P. M. Balse, *Curr. Med. Chem.* 2000, 7,

FULL PAPER

- ^[3] For some leading references on the incorporation of β-turn mimics see: ^[3a] R. M. Freidinger, D. F. Veber, D. S. Perlow, J. R. Brooks, R. Saperstein, *Science* 1980, 210, 656–658. ^[3b] M. G. Hinds, N. G. J. Richards, J. A. Robinson, *J. Chem. Soc., Chem. Commun.* 1988, 22, 1447–1449. ^[3c] M. Kahn, *Synlett* 1993, 3, 821–826. ^[3d] D. Gramberg, C. Weber, R. Beeli, J. Inglis, C. Burns, J. A. Robinson, *Helv. Chim. Acta* 1995, 78, 1588–1606. ^[3e] A. A. Virgilio, A. A. Bray, W. Zhang, L. Trinh, M. Snyder, M. M. Morrissey, J. A. Ellman, *Tetrahedron* 1997, 53, 6635–6644.
- ^[4] W. M. De Borggraeve, F. R. Rombouts, E. V. Van der Eycken, S. M. Toppet, G. J. Hoornaert, *Tetrahedron Lett.* 2001, 42, 5693-5695.
- ^[5] Recent examples are: ^[5a] Tuftsin: C. V. Valdeavella, H. D. Blatt, B. M. Pettitt, *Int. J. Pept. Protein Res.* **1995**, *46*, 372–380. ^[5b] Decorin/DS-PGII: Y. J. Wang, P. G. Scott, J. Sejbal, G. Kotovych, *Can. J. Chem.* **1996**, *74*, 389–401. ^[5c] Somatostatin: D. Gramberg, C. Weber, R. Beeli, J. Inglis, C. Bruns, J. A. Robinson, *Helv. Chim. Acta* **1995**, *78*, 1588–1606.
- ^[6] A. Jabs, M. S. Weiss, R. Hilgenfeld, J. Mol. Biol. 1999, 286, 291–304.
- [7] [^{7a]} D. S. Kemp, E. T. Sun, *Tetrahedron Lett.* **1982**, *37*, 3759–3760.
 [^{7b]} J.-P. Dumas, J. P. Germanas, *Tetrahedron Lett.* **1994**, *35*, 1493–1496.
 [^{7c]} J. A. Robinson, D. Gramberg, *Tetrahedron Lett.* **1994**, *6*, 861–864.
 [^{7d]} K. Kyonghee, J. P. Germanas, *J. Org. Chem.* **1997**, *62*, 2847–2852.
 [^{7e]} P. K. C. Paul, P. A. Burney, M. M. Campbell, D. J. Osguthorpe, *Bioorg. Med. Chem. Lett.* **1992**, *2*, 141–144.
 [^{7t]} L. Halab, W. D. Lubell, *J. Am. Chem. Soc.* **1999**, *64*, 3312–3321.
 [^{7g]} S. Derrer, J. E. Davies, A. B. Holmes, *J. Chem. Soc., Perkin Trans.* 1 **2000**, 2957–2967.
- ^[8] F. J. R. Rombouts, W. De Borggraeve, S. M. Toppet, F. Compernolle, G. J. Hoornaert, *Tetrahedron Lett.* 2001, 42, 7397-7399.
- [9] J. Vekemans, C. Pollers-Wieërs, G. Hoornaert, J. Heterocycl. Chem. 1983, 20, 919–923.
- ^[10] K. J. Buysens, D. M. Vandenberghe, G. J. Hoornaert, *Tetra-hedron* **1996**, *52*, 9161–9178.
- [11] This method is misleadingly called a Monte Carlo conformer search. Monte Carlo simulations also generate structures by random displacements, but do not minimize the resulting structures. Instead, energies are calculated immediately and are used to obtain thermodynamic properties.
- ^[12] Feature implemented in Macromodel, based on: C. A. G Haasnoot, F. A. A. M. de Leeuw, C. Altona, *Tetrahedron* 1980, *36*, 2783–2792.
- ^[13] Except for 26, which can be viewed as a bridged Gly–Gly dipeptide, the bridged *cis*-amide mimics 1, 2 and 27 shown in Figure 5 are the enantiomeric forms corresponding to the natural L-amino acids after omission of the bridging elements.
- ^[14] J. B. Ball, P. F. Alewood, J. Mol. Recognit. 1990, 3, 55-64.

- ^[15] J. B. Ball, R. A. Hughes, P. F. Alewood, P. R. Andrews, *Tetrahedron* **1993**, *49*, 3467–3478.
- ^[16] G. Müller, G. Hessler, H. Y. Decornez, Angew. Chem. Int. Ed. 2000, 39, 894–896.
- ^[17] P. N. Lewis, F. A. Momany, H. A. Scheraga, *Biochim. Biophys. Acta* **1973**, 303, 211–229.
- ^[18] F. J. R. Rombouts, D. A. J. Vanraes, J. Wynendaele, P. K. Loosen, I. Luyten, S. Toppet, F. Compernolle, G. J. Hoornaert, *Tetrahedron* 2001, *57*, 3209–3220.
- ^[19] F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson, W. C. Still, *J. Comput. Chem.* **1990**, *11*, 440–467.
- ^[20] ^[20a] S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Algona, S. Profeta, Jr., P. J. Weiner, J. Am. Chem. Soc. **1984**, 106, 765–784. ^[20b] S. J. Weiner, P. A. Kollman, D. T. Nguyen, D. A. Case, J. Comput. Chem. **1986**, 7, 230–252.
- ^[21] W. C. Still, A. Tempczyk, R. C. Hawley, T. Hendrickson, J. Am. Chem. Soc. **1990**, 112, 6127–6129.
- [22] [22a] G. Chang, W. C. Guida, W. C. Still, J. Am. Chem. Soc. 1989, 111, 4379-4386. [22b] M. Saunders, K. N. Houk, Y.-D. Wu, W. C. Still, M. Lipton, G. Chang, W. C. Guida, J. Am. Chem. Soc. 1990, 112, 1419-1427.
- ^[23] S. Miertus, E. Scrocco, J. Tomasi, J. Chem. Phys. **1981**, 55, 117–129.
- ^[24] A. Klamt, G. Schuurmann, J. Chem. Soc., Perkin Trans. 2 1993, 799–805.
- ^[25] A. Klamt, J. Phys. Chem. 1995, 99, 2224–2235.
- ^[26] A. Klamt, V. Jonas, T. Bürger, J. C. W. Lohrenz, J. Phys. Chem. A 1998, 102, 5074–5085.
- ^[27] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Milliam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, *Gaussian 98 (Revision A.5)*, Gaussian Inc., Pittsburgh, PA, **1998**.
- ^[28] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, P. A. Kollman, J. Am. Chem. Soc. **1995**, 117, 5179–5197.
- ^[29] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, *J. Chem. Phys.* **1983**, *79*, 926–935.
- $^{[30]}$ ¹H and ^{13}C NMR spectra were taken at 50 °C, after addition of a drop of DCl.
- ^[31] Resolution-enhancing Lorentz–Gauss function applied to FID: lb: -2.0 Hz; gb: 0.5 Hz.
- [^{32]} W. R. Bowman, P. T. Stephenson, N. K. Terret, A. R. Young, *Tetrahedron* **1995**, *51*, 7959–7980.
- ^[33] T. Inaba, M. Fujita, K. Ogura, J. Org. Chem. **1991**, 56, 1274–1279.

Received November 24, 2002