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Catalyzed hydrofunctionalizations of unsaturated substrates
are of tremendous interest, primarily because of their atom
efficiency.[1] Intramolecular catalytic cyclohydroamination of
aminoalkenes can be efficiently promoted by d0 complexes of
the heavy alkaline-earth (Ae) metals,[2,3] typically Ca and in
rare cases Sr, as recently exemplified by the groups of Hill,[4]

Ward,[5] and Roesky.[6] The catalytic activity of these com-
plexes, which are based on large, electropositive elements
(ionic radii: Ca2+(6), 1.00 �; Sr2+(6), 1.18 �),[7] compares well
with that of isoelectronic trivalent rare-earth catalysts.[8]

Through their seminal studies, Hill and co-workers have
shown that the stable b-diketiminate compound [{L3}CaN-
(SiMe3)2(THF)][9–11] ({L3}H = H2C{C(Me)N-2,6-(iPr)2C6H3}2;
THF = tetrahydrofuran) is highly versatile and effective not
only for intramolecular hydroamination,[4] but also for other
reactions[2, 12] such as the intermolecular hydrophosphination
of alkynes and activated alkenes,[12a] a transformation which
has not been catalyzed by trivalent rare-earth complexes thus
far.[8a, 13]

Few examples of intermolecular hydroamination reac-
tions catalyzed by Ae complexes are known, and they involve
activated alkenes, that is, vinyl arenes and conjugated dienes.
Very recently, Emge and Hultzsch reported a heteroleptic
chiral magnesium phenolate complex which displayed an
outstanding performance in the enantioselective intra- and
intermolecular hydroamination of terminal aminoalkenes and
styrene derivatives, respectively.[3d] Prior to this, Hill and co-
workers had employed the homoleptic precursors [{M[N-
(SiMe3)2]2}2] (M = Ca, Sr) to illustrate theoretical calculations
on related, yet heteroleptic, systems.[14] In the original study,
the authors showed that the activity of Ae catalysts (M = Mg,
Ca, Sr, Ba) does not increase linearly with the size of the
metal (Mg2+(6), 0.72 �; Ba2+(6), 1.35 �). Calculations
showed that a model Sr heteroleptic complex should be

more active in the amination of ethylene with ammonia than
its Ca derivative (which in turn should be far more active than
the Mg analogue), but they also suggested that the trend
should not be respected with Ba. Experimental data obtained
in the thorough study of the hydroamination of activated
alkenes catalyzed by the homoleptic complexes [{Ae[N-
(SiMe3)2]2}2] (Ae = Mg, Ca, Sr, Ba) and [Ae{CH(SiMe3)2}2-
(THF)2] (Ae = Ca, Sr) demonstrated that the Sr complex was
indeed superior to that of Ca, and the Mg and Ba derivatives
displayed very poor activities.[14–15] Unfortunately, no exper-
imental data were available for the series of heteroleptic
complexes [{L3}AeN(SiMe3)2(THF)n], as the Sr and Ba
species are not stable in solution.[10b]

As part of our ongoing program aimed at implementing
Ae-based catalysts for a diversity of transformations,[16] we
report herein the use of three families of heteroleptic
complexes of the large Ae metals supported by various
ancillary ligands for the anti-Markovnikov intermolecular
hydroamination of vinyl arenes and isoprene. In all cases, the
activity trend varies in the order (Mg<)Ca< Sr<Ba, that is,
the activity increases linearly with the size of the metal. Also,
the catalytic activity in the intermolecular hydrophosphina-
tion of styrene follows the same order. The Ba complexes are
not only the most active in these series, but also represent the
first examples of complexes of this metal that are capable of
promoting the intermolecular hydrofunctionalizations of
alkenes.

The new heteroleptic complexes [{L1}AeN(SiMe3)2-
(THF)n] [Ae = Ca (n = 1, 1); Sr (n = 2, 2); Ba (n = 2, 3)],
supported by the congested imino anilide ligand {L1}� ,[17] were
isolated in 45–70 % yields after the one-pot reaction of {L1}H,
AeI2, and 2 equivalents of KN(SiMe3)2.

[9] The final products
showed no sign of contamination by homoleptic compounds
and proved stable in C6D6 solutions up to 60 8C, as no
evidence for ligand redistribution reactions could be detected.
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The molecular structure of the five-coordinated complex 3
was obtained and is depicted in Figure 1. The Ba atom is
located 1.14 � above the mean plane formed by the NCCCN
core, and accordingly the bite angle N(1)-Ba(1)-N(9) is very
narrow (65.998). The new, stable complexes [{L2}AeN-
(SiMe3)2(THF)n] [Ae = Mg (n = 0, 4); Sr (n = 1, 6)], which
incorporate the tetradentate amino-ether phenolate ligand
{L2}� ,[18] were synthesized following procedures already
developed to obtain their Ca (n = 0, 5)[16d] and Ba (n = 0,
7)[16e] analogues. Inspired by the pioneering work by Anwan-
der and co-workers with rare-earth metals,[19] we have
recently shown that internal Ae···H–Si agostic interactions
help stabilize heteroleptic Ae complexes against Schlenk-type
equilibria.[16c–f] Exploiting this strategy that relies on the use of
the N(SiMe2H)2

� amido group, we have now prepared cleanly
and in good yields (74–78%) the complexes [{L3}AeN-
(SiMe2H)2(THF)n] [Ae = Ca (n = 1, 8); Sr (n = 2, 9); Ba
(n = 2, 10)] bearing the ubiquitous b-diketiminate ligand
{L3}� . Until now, available synthetic heteroleptic Ae precur-
sors containing this ancillary ligand were confined to
[{L3}MgN(SiMe3)2] (and its alkyl/alkoxide derivatives)[20]

and [{L3}CaN(SiMe3)2(THF)].[9, 10b,11] The Sr and Ba conge-
ners could be prepared but were prone to ligand scrambling,
which hampered the synthesis of pure compounds.[10b]

The ability of the new heteroleptic complexes 1–3 to
catalyze the intermolecular hydrofunctionalization of acti-
vated alkenes was interrogated (Table 1). A moderate
catalyst loading of 2 mol% in neat substrate was typically
used at 60 8C. Much to our delight, 1–3 promoted the
hydroamination of styrene with benzylamine, but contrary
to expectations,[14, 15] we found that the performance improved
substantially and regularly from Ca to Ba. Wherein the Ba
complex 3 achieved near-complete conversion within
18.5 hours (entry 4), the Ca (1) and Sr (2) complexes
converted 34 and 71 %, respectively, of the substrates

(entries 1 and 2). Intrigued by this phenomenon, the families
of complexes 4–7 (entries 5–8) and 8–10 (entries 9–11) were
also tested under rigorously identical reaction conditions. In
all cases, the trend (Mg !)Ca< Sr<Ba was obtained, that is,
irrelevant of the identity of the ligand, the catalytic activity
increased with the size of the metal. In agreement with the
proposed theoretical models[14] and experimental observa-
tions,[3d, 14,15] the reaction was fully regioselective, as the anti-
Markovnikov product of addition to the alkene was always
exclusively formed. Note that for any given metal, maximal
activity was achieved with the ligand {L3}� , whereas the
lowest conversions were recorded with the phenolate {L2}�

ligand (compare entries 1, 6, and 9; 2, 7, and 10; 4, 8, and 11).
This data confirmed the superiority of the b-diketiminate over
other ligand frameworks as is often observed for a number of
reactions catalyzed by divalent metals. However, complexes
1–3 are more readily synthesized than 8–10 and displayed only
slightly lower efficiency. Thus, the most active catalyst in this
family, the Ba derivative 3, was selected for subsequent
investigations. The role of the identity of the amide moiety in
the catalyzed reaction was negligible, as control experiments
demonstrated that the activities of [{L3}CaN(SiMe3)2(THF)]
and [{L2}BaN(SiMe2H)2]

[16e] matched those of 8 and 7,
respectively.[21]

The presence of an electron-donating substituent on the
aromatic ring in vinyl arenes led to a marked decrease in
catalyst activity (entries 4, 19, and 20), which is consistent
with earlier results with Ae[3d, 14] and rare-earth metals.[8] In
our case, the presence of a chlorine atom did not lead to
improved activity either (entry 21). The hydroamination of
styrene with n-hexylamine also occurred fairly rapidly
(entry 13), but the reaction was obviously sensitive to steric
factors (entry 12).

The fastest reaction rates were achieved with pyrrolidine,
as conversion of 50 equivalents was complete within 1 hour
(entry 14). With [styrene]/[pyrrolidine]/[3] = 500:500:1
(entry 15) and 1000:1000:1 (entry 18), 85 and 58 % conver-
sions,respectively, were achieved within 2 hours with corre-
sponding turnover frequencies (TOFs) of 212 and 290 h�1.
These values, which were achieved under mild reaction
conditions, exceed those reported to date for intermolecular
hydroamination reactions catalyzed by Ae,[3d, 14, 15] rare-
earth,[8] or even late-transition-metal[22] complexes by one to
two orders of magnitude. Notably, under identical reaction
conditions, the best[15] bis(amide)s [{Ae[N(SiMe3)2]2(THF)2}2]
(Ae = Ca, entry 16; Sr, entry 17), and homoleptic complexes
recently reported[23] displayed vastly lower reaction rates. The
selection of alkene was not restricted to vinyl arenes, as 3
catalyzed the reaction of isoprene and pyrrolidine with equal
competence (entries 22 and 23). Full conversion was observed
within 1 hour using 2 mol% of 3, and gratifyingly the
conversion reached 59 % after 2 hours (TOF = 295 h�1)
when as little as 0.1 mol% of 3 was employed. The reaction
was 1,4-regioselective, with anti-Markovnikov addition of
pyrrolidine occurring exclusively on the least encumbered
unsaturation to give 1-(3-methylbut-2-en-1-yl)pyrrolidine.

Kinetic studies of the hydroamination of styrene with
pyrrolidine catalyzed by 3 were performed under a broad
range of amine, styrene, and catalyst concentrations by using

Figure 1. Representation of the molecular solid-state structure of
[{L1}BaN(SiMe3)2(THF)2] (3). Only the main sites are drawn for the
disordered THF molecule (O(101)). Hydrogen atoms omitted for
clarity. Selected bond lengths [�] and angles [8]: Ba(1)–N(51) 2.623(3),
Ba(1)–N(9) 2.677(2), Ba(1)–O(201) 2.766(2), Ba(1)–O(101) 2.810(3),
Ba(1)–N(1) 2.825(3), Ba(1)–Si(1) 3.676(1), Ba(1)–Si(2) 3.758(1);
Ba(1)-N(51)-Si(2) 119.78(14), Ba(1)-N(51)-Si(3) 114.85(15),
N(1)-Ba(1)-N(9) 65.99(8).

.Angewandte
Communications

2 www.angewandte.org � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2012, 51, 1 – 5
� �

These are not the final page numbers!

http://www.angewandte.org


1H NMR spectroscopy.[21] The determined empirical rate law
[Eq. (1)],

v ¼ k½styrene�1:0½pyrrolidine�1:0½3�1:0 ð1Þ

with partial first order in each of the components of the
system, differs from that established for rare-earth catalysts:
Marks and co-workers showed that the kinetics of the
hydroamination of alkynes with primary amines were zero
order in amine and first order in catalyst and alkyne
concentrations.[8, 24] The activation parameters for 3, Ea =

19.0(0.6) kcalmol�1, DH� = 18.3(0.8) kcalmol�1, and DS� =

�13.1(2.7) cal mol�1 K�1, were extracted by Arrhenius and
Eyring analyses of the kinetic data obtained in the temper-
ature range 25–60 8C. These values are diagnostic of ordered
transition states. The calculated DG� for this process at 298 K
is 22.4 kcal mol�1, which compares favorably with the values
reported for [{Ca[N(SiMe3)2]2}2] (24.1 kcalmol�1) and [{Sr[N-
(SiMe3)2]2}2] (23.4 kcal mol�1) for the catalyzed hydroamina-
tion of styrene with piperidine.[14–15]

The rate law featured in the case of 3 points to
a different mechanism from that proposed for rare-
earth systems, or at least one wherein the rate-
limiting step is not the intermolecular insertion of
the alkene into the Ba�N(pyrrolidine) bond. A
plausible mechanism compatible with Equation (1)
involves a one-step, non-insertive route with a six-
centered transition state (Scheme 1). It proceeds
through a concerted proton transfer onto the
unsaturation activated towards the attack of the
nucleophile. This hypothesis, where the N�H bond
plays a key role in the transition state, is corrobo-
rated by the strong kinetic isotope effect (KIE)
observed during the monitoring of the reaction of
styrene with deuterated pyrrolidine catalyzed by 3 :
kH/kD ratios of 6.8 and 7.3 were found at 40 and
60 8C, respectively.[21] These values are intermediary
between the theoretical maximum of 8.5[25] or the
ratio reported for [{Sr[N(SiMe3)2]2}2] (kH/kD = 7.9 at
55 8C), and the values found for [{Ca[N(SiMe3)2]2}2]
(kH/kD = 4.3 and 4.1 at 70 8C and 55 8C respec-
tively)[15] or [(C5Me5)2LaCH(SiMe3)2] (kH/kD = 4.1
at 25 8C).[26] Note that a related mechanism has been
debated for the intramolecular cyclohydroamination
of aminoalkenes with a Mg complex,[3b,c] and a mech-
anism reported during submission of this manuscript
by Hill and co-workers for intermolecular reactions
catalyzed by homoleptic complexes also bears strong
analogy.[15]

Complexes 1–3, 5–7, and 8–10 also all catalyzed
the intermolecular hydrophosphination of styrene
with HPCy2 or HPPh2 (catalyst loading 2 mol%,
60 8C, neat). Here also, the activity trend was Ca<
Sr<Ba, although the performances now increased
according to {L3}�< {L1}�� {L2}� .[21] The reactions
proceeded with perfect anti-Markovnikov regiose-
lectivity. With HPCy2, only partial conversion was
achieved after 18.5 hours, even with 1–3, the most
active complexes for this transformation (ca. 42%

with 3). In contrast, the reactions with the less basic HPPh2

were considerably faster, and 96% conversion was achieved
using 3 in as little as 15 minutes. The corresponding TOF

Table 1: Ae-catalyzed intermolecular hydroamination of activated alkenes with
amines.[a]

Entry Catalyst Substrate Amine t [h] Conv.
[%][b]

1 1 styrene (X =H) BnNH2 18.5 34
2 2 styrene BnNH2 18.5 71
3 3 styrene BnNH2 2 42
4 3 styrene BnNH2 18.5 86
5 4 styrene BnNH2 18.5 1
6 5 styrene BnNH2 18.5 6
7 6 styrene BnNH2 18.5 24
8 7 styrene BnNH2 18.5 37
9 8 styrene BnNH2 2 29
10 9 styrene BnNH2 2 42
11 10 styrene BnNH2 2 64
12 3 styrene iPr2NH 18.5 0
13 3 styrene nHexNH2 18.5 55
14 3 styrene (CH2)4NH 1 99
15[c] 3 styrene (CH2)4NH 2 85
16[c] [Ca[N(SiMe3)2]2(THF)2] styrene (CH2)4NH 2 <1
17[c] [Sr[N(SiMe3)2]2(THF)2] styrene (CH2)4NH 2 10
18[d] 3 styrene (CH2)4NH 2 58
19 3 styrene (X =Me) BnNH2 18.5 41
20 3 styrene (X =OMe) BnNH2 18.5 11
21 3 styrene (X =Cl) BnNH2 18.5 65
22[e] 3 isoprene (CH2)4NH 1 99[f ]

23[g] 3 isoprene (CH2)4NH 2 59[f ]

[a] Reaction conditions: [alkene]/[amine]/[catalyst]= 50:50:1 unless otherwise
specified, 10.5 mmol of catalyst, no additional solvent, T = 60 8C. [b] Determined by
1H NMR spectroscopy. [c] [styrene]/[pyrrolidine]/[3] = 500:500:1. [d] [styrene]/[pyr-
rolidine]/[3] = 1000:1000:1. [e] [isoprene]/[pyrrolidine]/[3] = 220:50:1. [f ] Based on
amine conversion. [g] [isoprene]/[pyrrolidine]/[3] = 2000:1000:1.

Scheme 1. Possible six-centered concerted mechanistic pathway for
styrene/amine intermolecular hydroamination catalyzed by 3.
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(192 h�1) outclasses that reported with [{L3}CaN(SiMe3)2-
(THF)] (ca. 0.5 h�1 at 75 8C),[12a] whereas rare-earth com-
plexes are not known to catalyze this reaction.

In conclusion, several complete families of stable com-
plexes of the large Ae metals which catalyze intermolecular
hydrofunctionalization reactions of activated alkenes have
been prepared. Contrary to expectations based on previous
computations, it was found that the catalyst activity increased
systematically with the size of the metal, and the barium
complexes have, for the first time, displayed impressive
efficacy in these catalytic reactions. In particular, the stable
and readily accessed imino anilide barium complex [{L1}BaN-
(SiMe3)2(THF)2] (3) offers real potential as catalyst for
a variety of organic transformations. We are now exploring
this avenue and further studies are also underway to assess the
validity of the proposed mechanism.

Experimental Section
Details for the syntheses and characterization of compounds 1–10 and
experimental protocols for catalytic tests are given in the Supporting
Information.
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When Bigger Is Better: Intermolecular
Hydrofunctionalizations of Activated
Alkenes Catalyzed by Heteroleptic
Alkaline Earth Complexes

New alkaline-earth amido complexes
catalyze the regioselective intermolecular
hydroamination (see scheme; Ae = alka-
line earth) and hydrophosphination of

styrene and isoprene with unprecedented
activities. The catalytic performances
increased linearly with the size of the
metal.
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