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First stereoselective total synthesis of pectinolide A
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The enantioselective synthesis of bio-active 5,6-dihydro-a-pyrone, pectinolide A, has been achieved in 10
steps in good overall yield. Of the three stereogenic centres, the C-5/C-6 vic-diol was obtained using dia-
stereo- and enantioselective Brown hydroxyl crotylation, while the C-30 stereocentre was created by Jac-
obsen hydrolytic kinetic resolution method.

� 2011 Elsevier Ltd. All rights reserved.
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Figure 1. Structures of pectinolides.
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Scheme 1. Retrosynthetic analysis of pectinolide A.
Pectinolides A–C are a class of 5,6-dihydro-a-pyrones, isolated
from Hyptis pectinata (Lamiaceae),1 and possess an antimicrobial
as well as cytotoxic activity (ED50 <4 lg/mL) against a variety of tu-
mour cell lines (Fig. 1). Staphylococcous aureus and Bacillus subtilis
were sensitive to pectinolide A (1) in the concentration range of
6.25–12.5 lg/mL. Based on spectral study and chemical evidence,
the absolute stereochemistry of pectinolide A2 (1) was established
as 6S-[(3S-acetyloxy)-1Z-heptenyl]-5S-(acetyloxy)-5,6-dihydro-
2H-pyran-2-one containing an a,b-unsaturated d-lactone. As these
natural products are available in scarce amounts, the synthesis of
pectinolides is an attractive goal for further biological activity
studies. To date there is no report on the synthesis of these natural
products. Intrigued by the biological properties of this class of pyr-
ones as well as, in continuation of our work on the synthesis of lac-
tone containing natural products,3 we have taken up the total
synthesis of pectinolide A. Herein, we report the first stereoselec-
tive total synthesis of pectinolide A.

Retrosynthetically, we envisioned that the target molecule pec-
tinolide A can be obtained from the intermediate 4 by ring-closing
metathesis. In turn the intermediate 4 could be envisioned from
diastereo and enantioselective hydroxy crotylation of aldehyde ob-
tained from TBS protected Z alkenol 5 followed by esterification
with acrylol chloride. The compound 5 could be achieved from
(S)-2-(benzyl oxymethyl) oxirane 6. Thus, of the three stereogenic
centres, the vic-diol is obtained from alkenol 5, while the other chi-
ral centre is introduced by Jacobsen hydrolytic kinetic resolution4

of 2-(benzyl oxymethyl) oxirane (Scheme 1).
Towards the synthesis of 1, initially the chiral epoxide 6 was

regioselectively opened with n-propylmagnesium bromide in
THF, in the presence of CuI to afford secondary alcohol 7 (85%),
which was protected as corresponding TBS ether 8 in 92% yield.
Debenzylation of the benzyl ether 8 using 20% Pd(OH)2/C afforded
the primary alcohol 9 in 89% yield. The primary alcohol 9 was oxi-
ll rights reserved.

Saudi Arabia.
dized under Swern oxidation conditions to afford the correspond-
ing aldehyde 10 with 92% yield. Aldehyde 10 was subjected to a
Still–Gennari reaction5 in the presence of NaH in THF to provide
the a,b-unsaturated ester compound 11 in 90% yield (Scheme 2).

The chemoselective reduction of a,b-unsaturated ester 11 with
DIBAL-H was achieved at �20 �C to afford the allyl alcohol 5 in 95%
yield. The allyl alcohol 5 was oxidized under Swern oxidation con-
ditions to the corresponding aldehyde 12 with 90% yield. The treat-
ment of aldehyde 12 with in situ generated [(Z)-c-(methoxymetho
xy)allyl]-diisopinocampheylborane, [prepared from methoxy-
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methyl allyl ether, sec-BuLi, IPC2-BOMe (derived from (+)-a-
pinene) and BF3�OEt2] in THF at �78 to 25 �C in a regioselective
and stereoselective manner to yield the corresponding threo-b-
methoxymethylhomoallyl alcohol 13 in P99% diastereoselectivity
and >95% enantioselectivity (Scheme 3).6

The esterification of the secondary alcohol in 13 with acryloyl
chloride was achieved in the presence of Hünig’s base to afford
compound 14 in 92% yield. Deprotection of TBS and MOM groups
was achieved using 6 N HCl in THF at room temperature, to afford
the diol compound 15 in 85% yield. Acetylation of the diol 15 was
achieved with acetic anhydride and Et3N to yield compound 4
(89%). Finally, ring-closing metathesis of the compound 4 was
accomplished using Grubbs 2nd generation7 catalyst for 3 h at
40 �C in CH2Cl2 to afford the required 5,6 dihydro-2H pyran-2-
one 1 in 90% yield (Scheme 4). The 1H NMR and 13C NMR spectral
data and optical rotation of our synthetic compound8 were in good
agreement with the data previously reported in literature.2a
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In conclusion, a concise and efficient first total synthesis of pec-
tinolide A has been achieved. Notable features include: (i) highly
diastereo- and enantioselective hydroxy crotylation to control
the configuration of the stereogenic centres. (ii) Still–Gennari reac-
tion for the generation of cis-olefin.
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Spectroscopic data for representative compounds 1: colourless oil, ½a�29
D +196.8

(c 0.5, MeOH), [lit. ½a�D +202.0 (c 0.15, MeOH)]. 1H NMR (300 MHz, CDCl3): d 0.91
(t, 3H, J = 6.8 Hz), 1.20–1.40 (m, 5H), 1.46–1.77 (m, 1H), 2.04 (s, 3H), 2.09 (s, 3H),
5.16 (dd, 1H, J = 3.02, 6.0 Hz), 5.33 (ddd, 1H, J = 6.0, 7.6, 9.8 Hz), 5.57 (dd, 1H,
J = 3.0, 8.3 Hz), 5.61 (d, 1H, J = 9.8 Hz), 5.71 (dd, 1H, J = 8.3, 11.3 Hz), 6.23 (d, 1H,
J = 9.8 Hz), 6.93 (dd, 1H, J = 6.0, 9.8 Hz). 13C NMR (75 MHz, CDCl3): d 13.9, 20.5,
21.1, 22.4, 27.2, 34.0, 64.2, 69.3, 75.0, 125.1, 126.2, 133.1, 139.9, 162.1, 169.8,
170.3; IR (neat): 2925, 2855, 1740, 1460, 1337, 1226, 1028, 823 cm�1. Mass (ESI-
MS): m/z 333 (M+Na)+. HRMS (ESI) calcd for C16H22O6Na (M+Na)+, 333.1314;
found 333.1324.
Compound 11: ½a�31

D +83.6 (c 1.5, CHCl3).1H NMR (300 MHz, CDCl3): d 0.02 (s,
6H), 0.87 (s, 12H), 1.29 (t, 3H, J = 7.2 Hz), 1.22–1.59 (m, 6H), 4.16 (q, 2H,
J = 7.2 Hz), 5.23–5.33(m, 1H), 5.66 (dd, 1H, J = 1.0, 11.7 Hz), 6.13 (dd, 1H, J = 8.3,
11.7 Hz); 13C NMR (75 MHz, CDCl3) d�4.9,�4.6, 14.0, 14.2, 18.1, 22.6, 25.8, 27.3,
37.0, 60.0, 68.7, 117.4, 153.8, 165.9; IR (neat): 3473, 2934, 1722, 1661, 1371,
1174, 1036, 979 cm�1. Mass (ESI-MS): m/z 323 (M+Na)+.
Compound 13: colourless syrup, ½a�29

D +56.6 (c 1.5, CHCl3), 1H NMR (300 MHz,
CDCl3): d 0.04 (s, 6H), 0.88 (s, 12H), 1.20–1.60 (m, 6H), 2.59 (bs, -OH), 3.39 (s,
3H), 3.84–3.94 (m, 1H), 4.16–4.30 (m, 1H), 4.35–4.51 (m, 1H), 4.57 (d, 1H,
J = 6.6 Hz), 4.70 (d, 1H, J = 6.6 Hz), 5.22–5.37 (m, 3H), 5.45–5.75(m, 2H); 13C
NMR (75 MHz, CDCl3): d �4.9, �4.3, 14.0, 17.6, 22.5, 25.8, 27.5, 37.7, 55.7, 68.7,
69.8, 80.9, 94.1, 119.6, 126.2, 134.2, 138.0; IR (neat): 3447, 2926, 2857, 1757,
1462, 1252, 1110, 1034, 931, 838, 775 cm�1. Mass (ESI-MS): m/z 359 (M+H)+;
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HRMS (ESI) calcd for C19H38NaO4Si (M+Na)+, 381.2437; found 381.2442.
Compound 4: ½a�30

D +68.7 (c 1.0, CHCl3). 1H NMR (300 MHz, CDCl3): d 0.90 (t, 3H,
J = 6.6 Hz), 1.19–1.41 (m, 5H), 1.46–1.77 (m, 1H), 2.03 (s, 3H), 2.06 (s, 3H), 5.22–
5.39 (m, 2H), 5.40–5.49 (m, 2H), 5.52–5.62 (m, 2H), 5.68–5.87 (m, 3H), 6.11 (dd,
1H, J = 10.4, 17.4 Hz), 6.41 (dd, 1H, J = 7.0, 17.4 Hz); 13C NMR (75 MHz, CDCl3): d
13.9, 20.9, 22.5, 27.1, 29.7, 34.3, 70.2, 74.5, 77.2, 119.3, 126.2, 128.1, 131.3,
131.8, 134.4, 164.6, 169.7, 170.1; IR (neat): 3445, 2926, 2856, 1720, 1496, 1499,
1374, 1243, 1167, 1060, 864, 794, 519 cm�1. Mass (ESI-MS): m/z 361 (M+Na)+;
HRMS (ESI) calcd for C18H26O6Na (M+Na)+, 361.1618; found 361.1614.
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