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Abstract: A synthesis of functionalized 1-(alkylamino)-4-aryl-2,3-
dihydro-2-phenylpyrido[2,1-d][1,2,5]triazepines from the sequen-
tial reaction between pyridinium ylides, alkyl isocyanides, and 1-
[chloro(aryl)methylene]-2-phenylhydrazines in CH2Cl2, in good
yields, is described.
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Heterocyclic compounds have a special place among nat-
ural products and synthetic compounds. More specifical-
ly, nitrogen heterocycles are abundant in nature existing
in many natural products such as vitamins, hormones, an-
tibiotics, and alkaloids.1 As useful reaction intermediates,
the heterocyclic compounds have found widespread ap-
plication in organic synhhesis,2–4 and some of them are ac-
tive drugs with important application in pharmacology.5–7

In particular, seven-membered rings exhibit important
bioactivities.8 For this reason, different derivatives of tri-
azepines have attracted a great deal of attention as starting
materials in the synthesis of fused heterocyclic systems
with potential pharmacological activities.9–11 Fused het-
erocyclic ring systems are important scaffolds in medici-
nal chemistry. Fused triazepines with a bridgehead
nitrogen atom in the molecule exhibit interesting biologi-
cal properties.12–14

Herein, we report a one-pot synthesis of functionalized 1-
(alkylamino)-4-aryl-2,3-dihydro-2-phenylpyrido[2,1-d]-
[1,2,5]triazepines 4 from the reaction between ethoxycar-
bonylpyridinium bromides 1, alkyl isocyanides 2, and 1-
[chloro(aryl)methylene]-2-phenylhydrazines 3 in CH2Cl2,
in good yields (Table 1).15

The structures of compounds 4a–h were deduced from
their IR, 1H NMR, and 13C NMR spectra. For example, the
1H NMR spectrum of 4a exhibited three singlets for the
tert-butyl (d = 1.21 ppm) and NH (d = 9.59 and 10.32
ppm) protons, along with multiplets for the aryl groups.
The 1H-decoupled 13C NMR spectrum of 4a showed 21
distinct resonances that confirms the proposed structure.
The NMR spectra of 4b–h are similar to those for 4a ex-
cept for the aryl moieties, which exhibited characteristic
resonances in appropriate regions of the spectra.

The CH2O protons of the ester moieties in 4a–h, as well
as the Me2C and CH2 protons in 4f–h, are diastereotopic.

Since no asymmetric center is present in 4, this heterotop-
icity may be attributed to atropisomerism resulted from
slow rotation around the C–CO2Et single bond in these
compounds. Such a rotation is hindered due to the pres-
ence of peri interaction between CO2Et group and the C–
H bond of the pyridine moiety (Figure 1), which is expect-
ed to be more congested compared to similar interaction
in naphthalene derivatives such as 5.16 Hindered com-
pounds such as 5 adopt a twisted conformation (i.e., the
RCO plane is not coplanar with the naphthalene ring) and
may thus exist as a pair of conformational enantiomers.
When R is not a prochiral group, the process will be de-
tectable only in the presence of a chiral solvating agent.
Thus, an enantiomerization barrier of about 8 kcal/mol
has been reported for 5.16 The 1H NMR spectra of com-
pounds 4a and 4f in 1,2-dichlorobenzene did not show no-

Table 1 Synthesis of Functionalized 1-(Alkylamino)-4-aryl-2,3-di-
hydro-2-phenylpyrido[2,1-d][1,2,5]triazepines 4

Entry 1–4 R1 R2 Ar Yield of 4 
(%)

1 a H t-Bu Ph 77

2 b H t-Bu p-tolyl 72

3 c H t-Bu 4-ClC6H4 76

4 d Me t-Bu p-tolyl 81

5 e Me t-Bu 4-ClC6H4 75

6 f H 1,1,3,3-tetramethylbutyl Ph 75

7 g H 1,1,3,3-tetramethylbutyl p-tolyl 73

8 h H 1,1,3,3-tetramethylbutyl 4-ClC6H4 80
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ticeable broadening, even at 110 °C, the highest
temperature investigated. Thus, the conformational race-
mization barriers for compounds 4 are expected to be
higher than 16 kcal/mol.

A mechanistic rationalization for the reaction is given in
Scheme 1. The initial event is the formation of nitrogen
ylide 6, which is attacked by alkyl isocyanide to afford the
diionic intermediate 7. This intermediate undergoes a nu-
cleophilic substitution reaction with hydrazonoyl chloride
3 to generate 8, which affords 9 by intramoleculare cy-
clization reaction. Intermediate 9 is converted into 4 by
imine–enamine tautomerism and [1,3]-H shift.

In summary, we report a tandem transformation involving
ethoxycarbonylpyridinium bromides, hydrazonoyl chlo-
rides, and alkyl isocyanides, which affords a new route to
the synthesis of functionalized ethyl 1-(alkylamino)-4-
aryl-2,3-dihydro-2-phenylpyrido[2,1-d][1,2,5]triazepine-
5-carboxylates. Due to the presence of transformable
functionalities in these products they are potentially valu-
able for further synthetic manipulations.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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