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 2 

ABSTRACT  

Numerous studies have been published in recent years with acceptable quantitative QSAR 

modelling based on heterogeneous data. In many cases, the training sets for QSAR modelling 

were constructed from compounds tested by different biological assays, contradicting the opinion 

that QSAR modelling should be based on the data measured by a single protocol. We attempted 

to develop approaches that help to determine how heterogeneous data should be used for the 

creation of QSAR models on the basis of different sets of compounds tested by different 

experimental methods for the same target and the same end-point. To this end, more than one 

hundred QSAR models for the IC50 values of ligands interacting with cyclooxygenase 1,2 (COX) 

and seed lipoxygenase (LOX), obtained from ChEMBL database, were created using the 

GUSAR software. The QSAR models were tested on the external set, including 26 new 

thiazolidinone derivatives, which were experimentally tested for COX-1,2/LOX inhibition. The 

derivatives’ IC50 values varied from 89 to 26 µM for LOX, from 200 to 0.018 µM for COX-1 

and from 210 to 1 µM for COX-2. This study showed that the accuracy of the models depends on 

the distribution of IC50 values of low activity compounds in the training sets. In the most cases, 

QSAR models created based on the combined training sets had advantages in comparison with 

QSAR models based on a single publication. We introduced a new method of combination of 

quantitative data from different experimental studies based on the data of reference compounds, 

which was called “scaling”. 
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 3 

INTRODUCTION 

A significant amount of experimental quantitative data regarding the biological activity of 

chemical compounds has become available in recent years. These data have been collected using 

both freely (e.g. PubChem1, ChEMBL2, Binding DB3) and commercially (e.g. Wombat4) 

available databases. The availability of these data is very attractive and valuable for use in QSAR 

modelling for different tasks in medicinal chemistry (e.g., virtual screening, lead optimization, 

ADMET estimation). At the same time, it is known that the quality of the data and its correct use 

are the most important components of successful QSAR modelling. Several studies have 

elucidated the problems of data usage in QSAR modelling. Cronin and Schultz wrote that the 

“data should ideally be measured by a single protocol, ideally even by the same laboratory and 

by the same workers”5 and “biological data should ideally be from well-standardized assays, 

with a clear and unambiguous endpoint”5. They consider receptor-binding assays in 

pharmaceutical research to be good examples of high quality biological data5. It is also known 

that IC50 and Ki are the most accurate values derived from experimental pharmacological data6. 

Therefore, the IC50 value is a reasonable endpoint for QSAR modelling. However, when we 

consider the available experimental data presented in scientific publications we can see that in 

many cases there are different assays for the same target. The represented data differ in the 

number of studied compounds, the distribution of IC50 values, and the maximal and minimal IC50 

values. In addition, data for the same targets from different organisms are usually used in 

preclinical studies of drugs. This diversity of data raises questions related to the approaches for 

data selection for QSAR modelling. How can one use the experimental data from different 

studies with the same target and the same end-point? Should we select the data provided only by 

one study or from studies that use the same assay? May the data from several assays be 
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 4 

combined? Which is better: the creation of QSAR models based on a single study and then the 

use of them to create a consensus prediction or the combination of all the data into one general 

training set? The problems of data selection and representation for QSAR modelling have been 

previously analysed (e.g. OECD principles7, Cronin and Schultz5, Dearden et al.8, Fourches et 

al.9, Cherkasov et al.10, Tarasova et al.11). However, these studies did not provide answers to 

many of these questions. We consider the rational selection of heterogeneous experimental data 

to be essential to QSAR development because many quantitative QSAR modelling studies based 

on heterogeneous data have been published in the recent years (Table 1).  

The aim of this article is to study different approaches for preparation of training sets to answer 

the abovementioned questions based on the example of the creation of QSAR models for 

inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX) using the experimental data 

available in ChEMBL. ChEMBL is one of the most well-known freely available web sources 

containing data on structures and experimentally determined biological activities (including 

interactions with targets) for more than 1.7 million compounds. We also introduced a new 

method for creation of combined training sets from different experimental studies based on the 

data of reference compounds, which was called “scaling”. 
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 5 

Table 1. Examples of recently published studies with quantitative QSAR modelling based on heterogeneous data of compounds 

interacting with drug targets.  

Target Unit Method Ntr Ntest Descriptors Characteristics Ref. 

HIV-1 reverse 
transcriptase 

IC50 SCR, RBF  22-319 30% 6 Phys-chem. and 
substructural descriptors 

Different assays, median 
data. 

[11] 

11 COX from different 
species 

IC50 Gradient-boosting 
machines, RF, SVM 

3228 1/6 797 PaDEL descriptors, 
Morgan fingerprints 
calculated by RDkit 

Different assays, average 
data 

[12] 

Thyroid hormone 
receptor 

IC50 Linear regression 55-139 12.50% Optimal descriptors on the 
basis of SMILES attributes 

Same assay [13] 

DHFR rat, DHFR 
homo, F7, IL4, MMP2, 
CHRM3, NPY1R, 
NPY2R 

IC50 RF, GBM, SVM radial 344-779 1/6 Morgan fingerprints, phys-
chem. properties 
calculated by RDkit 

Different assays [14] 

Thyroid hormone 
receptor 

IC50 Random Forest QSAR: 
129-181; 
Docking: 
15-210 
positive 
examples 

QSAR: 13-
21; 
Docking: 
12-13 
positive 
examples 

508 descriptors from 
Dragon  

Different publications 
with the same assays, 
averaging data or manual 
curation [9].  

[15] 

ACE IC50 Generalized linear models 
with a Gamma distribution 

245 18 38 phys-chem. descriptors different assays and 
species 

[16] 

HDAC 1, 6 IC50 kNN 95-108 15-18 Dragon Different assays; 
normalization of IC50 
values 

[17] 

P-gp Eflux 
Ratio 
BA/AB, 
Ki 

SCR, Bayesian approach 94-256 20% 6 phys-chem. and 
substructural descriptors 

Different assays, 
averaging of IC50 values. 

[18] 
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ACE, AChE, BDR; 
COX-2; DHFR, CB2R 

IC50, Ki ANN 67-1361 10% FP2 and ECFP6 (1024 
bits), MACCS (256 bits) 
fingerprints 

Different assays; 
averaging of IC50 values 

[19] 

AChE IC50 MIA-QSAR (Multivariate 
analysis of images) 

26 
scaffolds 
with 
derivatives 

8 scaffolds 
with 
derivatives 

pixels of 2D images 
corresponding to chemical 
structures 

Different assays [20] 

PDE 4 IC50 RF, ANN, kNN 812 203 More 1000 descriptors 
from Dragon 

Different assays, 
exclusion of duplicate 
structures 

[21] 

HIV-1 protease Ki MLR 64 35 100 phys-chem. 
descriptors 

Different assays  [22] 

MHC I molecules IC50 STR, MLR 126 43 89 phys-chem. properties 
descriptors 

Different assays  [23] 

Kinases IC50 kernel-QSAR based on 
similarity of sequences and 
binding sites of kinase, 
GA, Tanimoto similarity 

0-600 25% FCFP_6 fingerprints Different assays [24] 

18 antitargets IC50, Ki SCR, Bayesian models 60-1366 15-344 6 phys-chem. and 
substructural descriptors 

Different assays, 
averaging data 

[25] 

30 antitargets IC50, Ki RBF, SCR, Bayesian 
models 

100-4061 20% 6 phys-chem. and 
substructural descriptors 

Different assays, median 
data 

[26] 

Ntr – number of compounds in the training set(s); Ntest – number of compounds in the test set(s) ACE – angiotensin-converting enzyme; HDAC – histone 
deacetylase; AChE – acetylcholinesterase; BDR– benzodiazepine receptor; COX – cyclooxygenase; DHFR – dihydrofolate reductase; CB2R– cannabinoid 
receptor subtype 2; CHRM3 - human muscarinic acetylcholine receptor M3; NPY1R, NPY2R - human neuropeptide Y receptor type 1,2 PDE 4 – 
phosphodiesterase 4; MHC I – major histocompatibility class I; P-gp – P glycoprotein; F7 - human factor-7; IL4 - human interleukin-4; MMP2 - human matrix 
metallopeptidase-2; SVM – Support Vector Machines; RF – Random Forest; kNN – k Nearest Neighbours; ANN – Artificial Neural Network; MLR – Multiple 
linear regression; STR - stepwise regression; SCR – self-consistence regression; GA – genetic algorithm; RBF - Radial Basis Function; GBM - Gradient 
Boosting Machines. Dragon - software for the calculation of more 4000 molecular descriptors; FP2, MACCS and FCFP6 – different types of fingerprints. 
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 7 

Cyclooxygenase and lipoxygenase are well known drug targets for non-steroidal anti-

inflammatory agents. Considerable experimental data are available about the interactions of 

drug-like compounds with these targets. The creation of drugs with simultaneous inhibition of 

cyclooxygenase and lipoxygenase is considered to be a prospective direction in the creation of 

new, effective and safe non-steroidal anti-inflammatory agents27. Compounds with combined 

COX-1/2 and LOX inhibition have multiple advantages as non-steroidal anti-inflammatory drugs 

because they act on the two major arachidonic acid metabolic pathways and possess a wide range 

of anti-inflammatory activities28. Since leukotrienes, produced by the action of lipoxygenase, 

play a role in blood coagulation and gastric tract irritation, LOX inhibition has a positive effect 

in anti-inflammatory action and prevents the GI tract irritation that results from COX-1 

inhibition and the prothrombotic effect resulting from COX-2 inhibition. As a result, recent 

studies have focused on the development of dual-acting COX/LOX inhibitors29.  

We have experience in QSAR modelling using heterogeneous data18,25,30,31 and in the 

creation of new dual cyclooxygenase/lipoxygenase inhibitors based on the analysis of structure-

activity relationships29,32. This study is based on experimental data obtained during the creation 

of new inhibitors of cyclooxygenase and lipoxygenase and on IC50 values in the literature 

obtained from ChEMBL for ovine and human COX-1, human COX-2 and soya been 

lipoxygenase. 

MATERIALS AND METHODS 

ChEMBL 

Data on the structures and IC50 values (concentration at half-maximum inhibition) of 

ligands which were experimentally tested for the inhibition of human and ovine COX-1, human 
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 8 

COX-2 and soya been lipoxygenase (Seed lipoxygenase-1) were retrieved from ChEMBL 

(version 17). To evaluate experimental errors in the data, we calculated the Standard Deviation 

(SD) of the IC50 values of all the compounds in initial ChEMBL data for which two or more IC50 

values were given for the same ligand and the same drug target (COX-1, COX-2 and soya LOX) 

in different experiments. This calculation was made before any transformation of data described 

below. 

Table 2. Standard Deviation (SD) of IC50 values of compounds tested on the studied 

targets that have at least two IC50 values. 

Target Number of compounds Number of IC50 values Mean SD of log10(IC50, nM) 

COX-1 human 206 632 0.377 

COX-2 human 710 1856 0.403 

LOX soya 20 48 0.344 

COX-1 ovine 42 201 0.428 

 

The mean SD values from Table 2 show the level of errors which may be achieved by the 

best QSAR models created based on the data for the studied targets.  

The data on compounds tested on human COX-1 were used for creation of training and test 

sets for the investigation of different approaches for the use of heterogeneous data in QSAR 

modelling. During the selection of the data, the following limitations related to GUSAR were 

used: 

1. The selected chemical compounds should be single organic electroneutral molecules, 

with molecular weights varying from 50 Da to 1250 Da;  

2. The number of compounds with estimated IC50 values discussed in one article should 

be at least twenty.  
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Estimation of accuracy of prediction of QSAR models 

R2, Q2 and RMSE (Root Mean Square Error) values were used for the estimation of the 

quality and accuracy of the prediction results given by the created QSAR models. R2 (the 

coefficient of determination) was calculated for the data used as the training sets (R2
tr) and the 

external validation test sets (R2
test) using the following equation: 

∑∑ −−−= 222 )(/)(1 meanobspredobs yyyyR , 

where yobs is an observed dependent variable, ypred is a calculated dependent variable, and 

ymean is the mean value of the dependent variable (calculated for the values of a training set for 

R2
tr or for the values of a test set for R2

test). The R2 values represent the relationship between the 

predicted and the observed values of the measured biological activity33 and R2 values closer to 1 

indicate successful predictions. Q2 is a cross-validated R2 calculated during the leave-one-out 

cross-validation procedure using the data from a training set. 

RMSE was calculated using the following equation: 

n
yy

RMSE predobs∑ −
=

2)(

, 

where n is the number of objects. 

An RMSE closer to 0 is indicative of a successful prediction. 

 

GUSAR software 

All QSAR models were developed using the GUSAR software25,31,34. GUSAR uses a 

combination of three types of descriptors: whole-molecule descriptors, QNA (Quantitative 

Neighbourhoods of Atoms) descriptors35, and descriptors based on the PASS (Prediction of 
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 10 

Activity Spectra for Substances) algorithm for predicting the biological activity spectra of 

compounds based on substructural atom centric MNA (Multilevel Neighbourhoods of Atoms) 

descriptors30. The whole-molecule descriptors used in GUSAR are the topological length, 

topological volume, lipophilicity, number of positive charges, number of negative charges, 

number of hydrogen bond acceptors, number of hydrogen bond donors, number of aromatic 

atoms, molecular weight, and number of halogen atoms. The QNA descriptors are defined by 

two functions, P and Q. The values for P and Q for each atom i are calculated as follows: 

,))
2
1(( kik

k
ii BCExpBP ∑ −=       (1) 

,))
2
1((∑ −=

k
kkikii ABCExpBQ       (2) 

where k are all the other atoms in the molecule and 

 ),(2
1

kkk EAIPA +=  2
1

)( −−= kkk EAIPB .    (3) 

In this equation, IP is the first ionization potential, EA is the electron affinity for each atom 

in electronvolts, and C is the connectivity matrix for the molecule35. The standard values of IP 

and EA of atoms in a molecule were collected from the literature. They have been published 

previously in the Appendix of one of our earlier publications35. Two-dimensional Chebyshev 

polynomials are used for approximating the functions P and Q over all the atoms in the molecule. 

The PASS biological descriptors are calculated using the PASS algorithm30, which predicts 

a wide range of biological outcomes including various mechanisms of action describing 

interaction of ligands with targets, transporter protein binding, gene expression activities, adding 

up to approximately 6400 "biological activities" at a mean prediction accuracy threshold of at 

least 95%. The output from PASS is the probability, for each predicted outcome, that the 

compound will be active (Pa) and the probability that it will be inactive (Pi). The difference 
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 11 

between these two values (Pa-Pi) was used as a molecular descriptor for the regression analysis in 

GUSAR. The results of PASS prediction for all 6400 "biological activities" are used as 

descriptors and the ones that show the highest correlation with the dependent variable (IC50) are 

selected by self-consistent regression. 

In GUSAR the scale of QNA and PASS based descriptors ranges from -1 to 1. So, no 

additional normalization is required for these types of descriptors. Only whole-molecule 

descriptors are normalized using a standard Z-score normalization procedure. 

It has previously been shown that self-consistent regression (SCR) can be successfully 

applied to different QSAR tasks25,31,34,36,37. The basic purpose of the SCR method is to remove 

the variables that poorly describe the target value. The final number of variables in the QSAR 

equation selected after the SCR procedure is significantly smaller compared to the initial number 

of variables. In addition, it has been shown that SCR is robust against noise in the data37. The 

regression coefficients, obtained from SCR, reflect the contribution of each particular descriptor 

(variable) to the final equation. The higher the absolute value of the coefficient, the greater its 

contribution. Thus, regression coefficients obtained after SCR can be used for the weighting of 

descriptors (variables) according to their importance. In this approach, the descriptors are 

weighted during the calculation of the radial basis functions (RBF) by the coefficients obtained 

from SCR. RBF-SCR has previously been compared to different modern machine learning 

approaches using 14 data sets containing nine physicochemical properties and five toxicity 

endpoints39. It was shown that the RBF-SCR method provides more accurate prediction results 

than other methods, even including consensus predictions of these methods. 

Applicability domain estimation 
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GUSAR simultaneously uses three different approaches for the estimation of the model 

applicability domains: similarity, leverage, and accuracy assessment:  

− Similarity. For each compound, the pair-wise distance to each of its three nearest 

neighbours (3NN) in the training set is calculated using Pearson’s correlation 

coefficient in the space of the independent variables obtained after SCR. The 

compound is considered to be in the applicability domain of the model if the average of 

these three distances is less than or equal to 0.7. 

− Leverage. Leverage calculations are a method for identifying outliers based on the 

contribution of each molecule to its own predicted value: , 

where x is the vector of the descriptors for a test compound, and X is the matrix formed 

from the rows corresponding to the descriptors of all the molecules in the training set. 

A compound is considered to be outside the applicability domain of a model if its 

leverage is higher than the 99th percentile in the distribution of the leverage values 

calculated for the training set.  

− Accuracy assessment. In this approach, the applicability domain prediction for each 

compound is calculated based on the Root Mean Square Error of the prediction for 

three nearest neighbours in the training set, RMSE3NN, (see the Similarity metric 

above) in relation to the Root Mean Square Error of prediction for the training set as a 

whole (RMSEtrain): trainNNvalue RMSERMSEAD /3= . In this study, a threshold of 1 was 

used for the ADvalue. 

Y-scrambling procedure 

xXXxLeverage TT 1)( −=
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GUSAR includes a Y-scrambling (Y-randomization) procedure. This procedure allows one 

to ensure that the developed models do not suffer from overfitting. In this procedure the 

dependent-variable vector, the Y vector (IC50 values), is randomly shuffled and a new QSAR 

model is developed using the original independent-variable matrix. It is expected that the 

resulting models should generally have low Q2 values. This procedure was repeated five times 

for each model, and then the average Q2 value calculated. 

Consensus modelling 

The final predicted values for endpoints were calculated using a weighted average of the 

predictions from several selected QSAR models. Each model is based on a different set of QNA 

and PASS “biological” descriptors, and its predictions for each compound are weighted 

according to the similarity value as calculated during the applicability domain assessment. For 

each training set, the QSAR models were selected from 1600 QSAR models by internal 

validation using the 5-fold cross-validation procedure in which 20% of the training set was 

randomly excluded, and these data were used as an internal test set. Only models which satisfied 

the criterion of R2 >0.5, Q2 >0.5 and R2 of internal cross-validation > 0.5 were selected for 

consensus modelling. 

Chemistry 

General Procedure for the Synthesis of 2-Thiazolylimino-5-arylidene-4-

thiazolidinones 

The data for compounds 1-12 were reported in our previous paper40. The appropriate 

arylaldehyde (6 mM) was added to a well-stirred solution of 2-(thiazol-2-ylimino)thiazolidin-4-
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one (0.8 g, 4 mM) in acetic acid (35 mL) buffered with sodium acetate (8 mM). The solution was 

refluxed for 4 h and then poured into ice-cold water. The precipitate was filtered and washed 

with water and the resulting crude product was purified by recrystallization from dioxane.  

Biological Assays 

In the in vitro assays, each experiment was performed at least in triplicate and the standard 

deviation of the absorbance was less than 10% of the average values. 

Soybean Lipoxygenase Inhibition Study in Vitro. Lipoxygenase inhibition was evaluated using 

soybean LOX type 1b as reported previously32,41,42. sLOX-1 is the soybean isoenzyme mostly 

used in drug screening, although sLOX-3 has also been used42. Because of the structural and 

functional similarities between mammalian LOXs, sLOX is commonly used for both mechanistic 

and inhibition studies and is widely accepted as a model for LOXs from other sources44. It has 

been shown that the inhibition of plant LOX activity by NSAIDs is qualitatively similar to the 

inhibition of rat mast cell LOX and can be used as a simple screen for this activity45. Similarity 

in the inhibition behaviour between soybean LOX-1 and human recombinant 5-LOX or soybean 

LOX-3 and human blood serum LOX has been observed in many cases43,44. The tested 

compounds, dissolved in DMSO, were added to the reaction mixture at a final concentration of 

100 µM and were preincubated for 4 min at 28 °C with soybean lipoxygenase at a concentration 

of 7x10-7 w/v. The enzymatic reaction was initiated by the addition of sodium linoleate to a final 

concentration of 0.1 mM. The conversion of sodium linoleate to 13-hydroperoxylinoleic acid 

was measured at 234 nm. Nordihydroguaretic acid, an appropriate standard inhibitor, was used as 

the positive control (94.4% inhibition at 0.1 mM, IC50 = 31.3 µM). 

COX Inhibitor Screening Assay. The COX-1 and COX-2 activities of the compounds were 

measured using ovine COX-1 and human recombinant COX-2 enzymes included in the “COX 
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 15 

Inhibitor Screening Assay” kit provided by Cayman (Cayman Chemical Co., Ann Arbor, MI). 

The assay directly measures PGF2a produced by the SnCl2 reduction of COX-derived PGH229,32. 

The prostanoid production was quantified via enzyme immunoassay using a broadly specific 

antibody that binds to all the major prostaglandin compounds. The final estimation of % 

inhibition was performed at a substrate concentration much lower than the saturating 

concentration. For better visualization of the differences between compounds on a 0–100% 

inhibition scale, the COX-1 inhibitory activity was tested at an arachidonic acid concentration of 

1 µM and the COX-2 inhibitory activity was tested at an arachidonic acid concentration of 0.1 

µM. The compounds were added to the reaction mixture at a final concentration of 200 µM. IC50 

values were calculated for the most active compounds. Naproxen and indomethacin, used as 

positive controls, were added to the reaction mixture at the same concentration, 200 µM, as the 

tested compounds. 

RESULTS 

QSAR modelling for compounds tested as inhibitors of human COX-1 

Fourteen sets of compounds tested for the inhibition of human COX-1 were selected from 

ChEMBL according to the abovementioned rules. The sets were characterized according to the 

source of COX-1 isoenzyme, the products of the reaction determined to measure the enzyme 

activity/inhibition and the subsequent calculation of the IC50 values of the tested compounds, the 

number of compounds in the set, and the minimal and maximal determined IC50 values (Table 3). 

Table 3. Datasets of compounds tested as inhibitors of human COX-1. 

No Determined 
Product 

Enzyme Source Nall Nsel IC50min 
(nM) 

IC50max 

(nM) 
log(IC50max) – 
log(IC50min) 

Ref. 

1 - U-937 cells 88 21 2 100000 4.7 [46] 
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 16 

2 PGE2 hCOX-1 32 27 2 136000 4.8 [47] 
3 PGE2 hCOX-1 50 20 100 265000 3.4 [48] 
4* PGE2 hCOX-1 109 66 5 674000 5.1 [49] 

5 PGE2 U937 microsomes 24 20 50 34000 2.8 [50] 

6 PGE2 hCOX-1 35 22 5 18300 3.6 [51] 
7 PGE2 hCOX-1 96 43 100 723000 3.9 [52] 
8 PGH2 human platelet-derived COX-1 25 23 20 30000 3.2 [53] 

9 TxB2 blood 34 34 4120 383360 2 [54] 

10 TxB2 blood 28 25 1300 800000 2.8 [55] 
11 TxB2 blood 31 21 500 15900 1.5 [56] 
12 TXB2 blood 39 39 80 60390 2.9 [57] 
13 TXB2 blood  36 31 250 49300 2.3 [58] 
14 TxB2 blood 29 25 140 25610 2.3 [59] 
Total   690 451     

* - Validation test set; Nall – number of all compounds studied in the publication; Nsel - number of compounds 
with determined IC50 values that were selected for QSAR modelling. 

 

As shown in Table 3, according to the data provided by the 14 selected publications, IC50 

values were calculated and recorded only for 451 out of the 690 studied compounds that were 

referred to in the publications. Thus, approximately 35% of the published experimental data 

could not be used for the creation of quantitative (continuous) QSAR models because of the 

absence of accurate IC50 values. The difference between the log10 values of the minimum and 

maximum IC50 values exceeds 1.5 for all the datasets, which is one of the formal necessary 

conditions for the creation of reasonable QSAR models8. Moreover, the minimum IC50 values 

are less than 10-5 M and the maximum IC50 values are higher than 10-5 M for all the datasets. 

This is a traditional border between active and inactive compounds used in medicinal chemistry. 

Therefore, we may initially expect that these data will allow the creation of helpful QSAR 

models for further studies. Most of the datasets were tested using two types of assays: (1) 

estimation of the PGE2 production of human recombinant COX-1 and (2) estimation of the 

TxB2 level using a human whole blood assay. Thus, along with different combination 
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approaches using the experimental data, we will evaluate the combination of data from sets using 

different types of assays.  

The dataset with the largest number of compounds (dataset #4 in Table 3) was selected as 

an external validation set for the further estimation of the prediction accuracy of the created 

QSAR models for the prediction of the IC50 values of compounds inhibiting human COX-149. 

The largest test set provided the possibility to obtain the most statistically significant results of 

estimation of accuracy for the created QSAR models. 

Evaluation of single QSAR models on the basis of individual datasets 

We started with the creation of single QSAR models on the basis of the individual datasets 

mentioned in Table 3. Acceptable QSAR models (Q2 > 0.5 and R2 of internal cross-validation > 

0.5) were obtained for only 5 of the 14 datasets (Table 4). In the second step, a prediction of IC50 

values was made for the data from the test set and the accuracy of these predictions (R2
test and 

RMSEtest) was calculated (Table 4). Table 4 shows that in spite of the acceptable values of R2
tr, 

Q2, and RMSEtr (obtained from the internal validation of the models and comparable with the SD 

of the IC50 value (0.377) from Table 2) the values of the prediction accuracy calculated for the 

test set were unsatisfactory, since low R2
test and high RMSEtest values were observed. 

Table 4. Characteristics of single QSAR models. 

№ Ref N R2
tr Q2

 RMSEtr R2
test RMSEtest AD,% 

QSAR models with Q2 and R2 of internal cross-validation > 0.5 

10 [55] 25 0.903 0.647 0.459 -0.553 1.318 100 

3 [48] 20 0.989 0.721 0.407 -1.958 2.188 3 

8 [53] 23 0.967 0.713 0.504 0.097 1.078 89 

12 [57] 39 0.796 0.511 0.402 -0.617 1.06 100 

14 [59] 25 0.969 0.722 0.339 0.041 1.05 67 

QSAR models with Q2 and R2 of internal cross-validation < 0.5 
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1 [46] 21 1.000 0.465 3.167 0.080 1.014 100 

2 [47] 27 0.989 0.498 0.828 -0.595 1.335 100 

4 [49] test 66 0.956 0.391 0.826 NA NA NA 

5 [50] 20 1.000 0.006 1.045 -1.649 1.721 100 

6 [51] 22 0.995 0.066 0.754 -0.535 1.310 100 

7 [52] 43 0.980 0.001 1.105 -0.161 1.139 100 

9 [54] 34 0.874 0.353 1.184 -0.926 1.467 100 

11 [56] 21 0.998 0.181 0.476 -0.115 1.116 100 

13 [58] 31 0.989 0.007 0.579 -0.142 1.130 100 

NA – Not Available; № – indicates the number of a set in Table 3. 

Creation of general training sets 

In the next step of the study, the creation of the general training sets was performed using 

different criteria. They were created by combining single datasets and included the following: 

1. A general training set, which was created by the combination of data from all thirteen 

datasets in Table 3 (GeneralTr); 

2. A training set that was created by combining the datasets mentioned in Table 4, for 

which acceptable QSAR models were created (AcceptTr); 

3. A training set that was created by combining the data from the datasets in Table 3 with 

the IC50 values calculated from the TxB2 blood level determination (TxB2Tr); 

4. A training set that was created by combining the data from the datasets with IC50 values 

calculated from the TxB2 blood level determination, derived from the accepted QSAR 

models mentioned in Table 4 (AcceptTxB2Tr); 

5. A training set that was created by combining the data from the datasets in Table 3 with 

the IC50 values calculated from the determination of the PGE2 levels produced by the 

action of hCOX-1 in vitro (PGE2Tr). 
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A prediction of IC50 values was made for the external test set (Test set #4 from Table 3) by 

QSAR modelling after the training of GUSAR based on the combined training sets (Table 5). 

The combined training sets did not overlap with the test set. 

 

Table 5. Characteristics of QSAR models created by combining datasets.  

№ Training set N R2
tr Q2

 RMSEtr R2
test RMSEtest 

1 GeneralTr 348 0.883 0.594 0.698 0.186 1.137 

2 AcceptTr 132 0.942 0.683 0.577 0.270 0.952 

3 TxB2Tr 175 0.932 0.774 0.446 0.116 1.005 

4 AcceptTxB2Tr 89 0.944 0.796 0.473 0.121 0.997 

5 PGE2Tr 160 There was no acceptable QSAR model 

6 Consensus of prediction results given by the 

single models from Table 4 

    0.067 1.021 

N – number of structures in a training set. 

Table 5 shows that GUSAR could not create any acceptable QSAR model based on the 

PGE2Tr training set. The best prediction results was derived from a QSAR model created using 

the AcceptTr training set, which contained the datasets of the QSAR single models mentioned in 

Table 4. The values of R2
test and RMSEtest calculated from the QSAR models created using 

AcceptTr, TxB2Tr and AcceptTxB2Tr were higher than the values for any single QSAR model 

in Table 4 or their simple average consensus (the last row in Table 5). All the compounds from 

the test set were in the applicability domain of the QSAR models based on the AcceptTr, 

TxB2Tr and AcceptTxB2Tr training sets and 85% of the compounds were for GeneralTr.  

The results shown in Table 5 were derived from the combined datasets. This simple 

combination of datasets leads to the incorporation of duplicates of structures with different IC50 

values. According to the general rules for QSAR modelling, duplicates in training sets should be 

avoided9,10, and manual checking for duplicates and the deletion of error data is recommended9. 
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If both experimental properties are highly similar, maintaining the records associated with the 

structure in the arithmetic average of properties is proposed. If the values are significantly 

different, the elimination of both records is recommended9. This is easily applied when analysing 

the data from a single laboratory, measured using the same experimental protocol. However, 

when one attempts to use as much data as possible to create a general training set from all the 

available studies, it is difficult to recognize which experimental value among dozens is correct, 

taking into account the special features of the experimental assays and the inevitable errors in 

publications and databases. When we analysed duplicates in the combined datasets, six 

compounds with duplicates were found, all of which corresponded to reference compounds. The 

IC50 values of two reference compounds for the studied datasets are presented in Table 6. 

Considering Table 6, it seems that all these data cannot be combined in the same training 

set. The differences are the result of the use of different methods or different conditions when the 

same method was used. This is one reason why the results obtained for GeneralTr were worst in 

comparison with the other combined training sets. If one does not aim at analyzing the 

dependency of the models on a specific parameter and includes limitations based on the value of 

this parameter (such as the substrate concentration) in the selection of compounds for the training 

set, this table may be used to choose which data can be combined. No one would feel safe 

combining data when the values for the reference compound differ by an order of magnitude and 

taking the average is not appropriate in this case. According to the table, it seems that the data 

from sets 4, 6 and 2 may be combined and used for the prediction of IC50 values because they 

were experimentally determined by the same method under the same conditions. This is the 

AcceptTxB2Tr training set, which yields one of the better results in Table 5. Combining the data 
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from sets 7, 8, 9 and 10 seems to be also acceptable. This is the PGE2Tr training set in Table 5. 

However, in this case, an acceptable QSAR model could not be created.  

Table 6. IC50 values of reference compounds in the studied datasets.  

 Ref Celecoxib, nM Indometacin, nM  Scaling ratio Product Source 

1 [54] 23470  0.639 TxB2 blood 

2 [55] 7000  2.143 TxB2 blood 

3 [56] 14000 500 1.071 TxB2 blood 

4 [57] 2600  5.769 TxB2 blood 

5 [58] 14200 250 1.056 TxB2 blood 

6 [59] 2600  5.769 TxB2 blood 

7 [51]  100**  PGE2 hCOX-1 

8 [48]  100  PGE2 hCOX-1 

9 [62]  100  PGE2 hCOX-1 

10 [49]* 15000 100** 1 PGE2 hCOX-1 

11 [50] 50  300 PGE2 U937 microsomes 

12 [46] 5100 2 2.941  U-937 cells 

 Average 9336 164    

 Median 7000 100    

* - Validation set; ** IC50 value using literature data for the same assay; Scaling ratio – a value used for the 
multiplication of IC50 values to scale appropriate data to the IC50 value of Celecoxib (15000 nM – IC50 value of 
Celecoxib in the test set); see below in the text for detailed explanation. 

 
Table 6 shows that the experimental IC50 values of Celecoxib show a spread from 50 to 

23470 nM. The minimum IC50 value for Celecoxib was determined by the measurement of the 

PGE2 level produced by the enzyme derived from U937 microsomes. As mentioned above, the 

use of the average value of duplicates is one of the approaches used to avoid duplicates. We 

retrained GUSAR using the average value of duplicates in the combined datasets from Table 5. 

Moreover, general training sets were also created from all the data (excluding the data from the 

publication used for the test set) for compounds tested as inhibitors of human COX-1 from 

ChEMBL (version 17) with average (CHEMBLav) or median (CHEMBLmed) IC50 values for 

Page 21 of 61

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 22 

duplicates. The results of the training and the prediction of IC50 values for the validation set are 

shown in Table 7.  

Table 7. Characteristics of QSAR models created by combining human COX-1 datasets 

using average values for reference compounds. 

№ Training set N R2
tr Q2

 RMSEtr R2
test RMSEtest 

1 GeneralTr 333 0.932 0.618 0.600 0.187 1.038 

2 AcceptTr 130 0.946 0.714 0.551 0.300 0.884 

3 TxB2Tr 169 0.942 0.769 0.456 0.023 1.006 

4 AcceptTxB2Tr 87 0.945 0.797 0.477 0.017 1.098 

5 PGE2Tr 157 There was no acceptable QSAR model 

6 CHEMBLav 1137 0.939 0.538 0.653 0.112 0.901 (AD 97%) 

7 CHEMBLmed 1137 0.939 0.542 0.656 0.122 0.895 (AD 97%) 

8 Consensus of prediction results given 

by the single models from Table 3 

    0.067 1.021 

N – number of structures in a training set. CHEMBLav – dataset from all the compounds in ChEMBL tested for 
human COX-1 inhibition, with addition of average IC50 values for the compounds having double/multiple records in 
ChEMBL; CHEMBLmed – dataset from all the compounds in ChEMBL tested for human COX-1 inhibition, with 
median IC50 values for the compounds having double/multiple records in ChEMBL.   

 

Table 7 shows that QSAR models based on the GeneralTr and AcceptTr training sets were 

improved by the averaging of the data. There were no changes in the accuracy of the prediction 

for QSAR models based on TxB2Tr and PGE2Tr. The accuracy of prediction for QSAR models 

based on the AcceptTxB2Tr training set was decreased. Interestingly, the accuracy of prediction 

based on the CHEMBLav and CHEMBLmed training sets was better than that of the other models. 

The CHEMBLav training set includes average IC50 values for compounds having double/multiple 

records in ChEMBL. The CHEMBLmed training set includes median IC50 values for the 

compounds having double/multiple records in ChEMBL. The general model based on the results 

for all the recorded compounds using the median data for multiply recorded molecules achieved 

the highest accuracy. The use of median values in training sets 1-5 (Table 7) did not lead to a 
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change in the prediction results. This may be explained by the small number of duplicates in 

these sets and the small difference between the given average and median values. 

We introduce another approach for the combination of data from different sets – scaling, 

which is based on analysis of experimental data of reference compounds. If we consider the IC50 

values for reference compounds (Table 6), we can see that they show considerable differences. 

Figure 1A shows the distribution of IC50 values in the used sets of compounds tested for the 

inhibition of human COX-1. The tenth set in Figure 1 is the test set. The black squares are the 

IC50 values of Celecoxib, which is a reference compound in most studies, including the test set. 

The idea of scaling is that the IC50 values of compounds in the sets are recalculated so as the IC50 

of the reference compound becomes equal in all the sets (Figure 1B). The datasets 7, 8, and 9 

were not scaled because they didn’t contain the reference compound Celecoxib. 

 

 

Figure 1. Distribution of IC50 values for compounds tested for the inhibition of human COX-1. 

Black squares – IC50 value of Celecoxib. (A) Distribution of IC50 values based on the original 

data. (B) Distribution of IC50 values after the scaling procedure. 
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The scaling was accomplished by the multiplication of the IC50 values by an appropriate 

scaling ratio (see the column “Scaling ratio” in Table 6). The scaling procedure leads to a change 

in the general distribution of IC50 values in a combined training set. An example of this change is 

shown in Figure 2.  

 

 

Figure 2. General distribution of IC50 values in the sets. 

One can see that after the scaling procedure the number of IC50 values that are close to the 

average value increased (Figure 2). At the same time, the distribution of IC50 values in the test 

set (tenth set in Figure 1) was shifted towards the less active compounds. The scaling procedure 

was applied to the combined training sets mentioned in Table 6. Subsequently, new QSAR 

models were created and tested on the external validation set (Table 8). 

Comparison of the R2
test and RMSE values in Table 7 and Table 8 shows that for some training 

sets the accuracy of the QSAR models increased after the scaling procedure (GeneralTr, 
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AcceptTr, PGE2Tr), but it decreased for other training sets (TxB2Tr, AcceptTxB2Tr). In most 

cases, the accuracy of the models trained on scaled data is higher than accuracy of the prediction 

results given by the consensus of single models from Table 3.  

 

Table 8. Characteristics of the QSAR models created using the combined training sets after 

data scaling to the reference compound (Celecoxib, IC50 = 15000 nM).  

№ Training set N R2
tr Q2

 Q2
Y-scr RMSEtr R2

test RMSEtest Sim 

1 GeneralTr 333 0.680 0.609 -0.257 0.633 0.273 0.890 0.337 

2 AcceptTr 130 0.943 0.714 -0.316 0.546 0.308 0.878 0.299 

3 TxB2Tr 169 0.913 0.671 0.033 0.448 -0.046 1.081 0.332 

4 AcceptTxB2Tr 87 0.928 0.723 0.048 0.482 0.082 1.300 0.511 

5 PGE2Tr 157 0.776 0.509 0.028 0.685 0.074 1.017 0.361 

6 Consensus of prediction 

results given by the single 

models from Table 3 

     0.067 1.021  

N – number of structures in a training set; Q2
Y-scr – average Q2 value calculated based on 

internal validation. Sim – average value of pair wise similarity (Tanimoto coefficient) between 
structures from the appropriate training set calculated based on MNA descriptors. 

 

Table 8 shows that Q2
Y-scr values for all QSAR models on scaling data were less than 0.05. 

This is significant less in comparison with Q2 values calculated based on the original data of the 

training sets and indicates robustness of the models. The Q2
Y-scr values were better than, or 

comparable to, R2
test values calculated for the test set by the QSAR models based on individual-

dataset in Table 4. 

To precisely evaluate the developed models that were based on the different designs 

(individual, average, scaling) we performed a bootstrap analysis to determine if there were 

statistically significant differences between the models: 
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- Each model was used to make a prediction for the same test set (dataset #4 in Table 3). 

For this comparison to be fair, only results for chemical structures falling in the 

applicability domain of the predictive model were used. 

- The results of each model’s prediction were bootstrapped 10 000 times using the R-

package called “resample” (https://CRAN.R-project.org/package=resample). The RMSE 

value was calculated in each bootstrap run. Thus, many instances of RMSE 

(https://CRAN.R-project.org/package=MLmetrics) were generated for each model. 

- RMSE values were used to conduct ANOVA in conjunction with Tukey’s HSD (honest 

significance difference) test. 

The results of this procedure indicated that models built using training sets of different 

design, differed significantly (Pvalue < 0.05) from each other in terms of their quality as assessed 

by RMSE (Figure 3). The illustration was prepared using ggplot2 package (https://cran.r-

project.org/web/packages/ggplot2/index.html). QSAR models based on the scaling procedure 

showed the most accurate results. 

 

Figure 3. Comparison of RMSE values given by the bootstrap analysis based on the 

prediction results for the external test set (dataset #4 in Table 3). Individual means RMSE of the 
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single models from Table 3. Average means RMSE of QSAR models (1-4 models from Table 7). 

Scaling means RMSE of QSAR models (1-5 models from Table 8). 

 

These approaches to using heterogeneous data for QSAR modelling based on published 

experimental results were reproduced on ligand interactions with ovine COX-1, human COX-2 

and soybean LOX (from ChEMBL using the same limitations as above for the available data on 

the inhibitors of human COX-1). Novel experimental data concerning new 

cyclooxygenase/lipoxygenase inhibitors synthesized at the School of Pharmacy of Aristotle 

University of Thessaloniki and biologically evaluated in vitro were used as an external validation 

set (Table 9) for the created QSAR models. 

In Vitro COXs and LOX Inhibition Studies 

The influence of the nature and the position of substitution of new thiazolidinone derivatives on 

the cyclooxygenase and lipoxygenase inhibitory activities were evaluated experimentally (Table 

9). 

 

Table 9. Experimental IC50 values for COX-1, COX-2 and LOX for the studied 

thiazolidinone derivatives. 

 

compd R R1 
IC50, µM 

LOX COX-1,                         COX-2,                      

S

N

N S

HN
O

R1

R
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(% of inhibition at 10 µM) (% of inhibition at 10 µM) 

1 H H 89.1 - - (9.4%) 
2 H 2-NO2 35.5 >200 - (9.4%) 
3 H 3-NO2 42.0 0.3 - (31.7%) 
4 H 4-NO2 50.1 0.5 - (7.9%) 
5 H 2-Cl 71.0 0.018 - (58.8%) 
6 H 3-Cl 35.5 22.4 - (32.2%) 
7 H 4-Cl 50.0 0.3 - (20.3%) 
8 H 3-OH 34.7 5.6 - (1.0%) 
9 H 4-OH 36.3 7.9 - (20.6%) 

10 H 4-OCH3 28.2 200 - (26.4%) 
11 H 3-OMe, 4-OH 35.5 39.8 - (6.6%) 
12 H 3,5-OMe, 4-OH 47.9 200 - 
13 6- NO2 H 29.5 100 (61%) 63 (86%) 
14 6- NO2 3- NO2 81.3 >200 106 
15 6- NO2 4- NO2 63.2 79 >200 
16 6- NO2 2-Cl 72.4 86 100 (12.7%) 
17 6- NO2 4-Cl 34.7 200 (32%) 106 (61%) 
18 6- NO2 4-OMe 63.1 60 (125%) 200 (53%) 
19 6- NO2 3-OMe, 4-OH 26.3 >200 85 (71%) 
20 6- NO2 3,5-OMe, 4-OH 33.9 74 (95%) >200 (25%) 
21 6-OMe 4- NO2 33.9 74 >200 
22 6-OMe 3-Cl 35.9 200.5 - (26.4%) 
23 6-OMe 3-OMe, 4-OH 42.7 >200 - (57%) 
24 4-CH3 H 63.1 4 - (6.7%) 
25 4-CH3 4-NO2 38.0 190 210 
26 4-CH3 4-Cl 47.9 - (58%) 67 (86%) 

Nordihydroguaiaretic acid 31.3 - - 
Celecoxib - 34.5 0.1 

 

Creation of QSAR models for ligands interacting with ovine COX-1, human COX-2 and 

soybean LOX and their validation by external test sets with novel 

cyclooxygenase/lipoxygenase inhibitors 

QSAR modelling was performed based on 5 training sets for ovine COX-1 (Table 10), 44 

training sets for human COX-2 (Table 11) and 3 training sets for soybean LOX (Table 12). The 

created QSAR models had not been used to determine which compounds from Table 9 should be 
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synthesized and experimentally studied as new cyclooxygenase/lipoxygenase inhibitors. The data 

from Table 9 were used for external validation of the created QSAR models. The borders of the 

IC50 values in Tables 10-12 are given without a scaling correction. 

Table 10. Datasets of compounds tested as inhibitors of ovine COX-1. 

No Product Source Nall Nsel IC50min 
(nM) 

IC50max 

(nM) 
log10(IC50max - IC50min) Ref. 

1 PGF2alpha Cayman kit 20 20 3200 231200 1.9 [60] 

2 PGF2alpha Cayman kit 28 28 411 366000 2.9 [61] 

3 NA seminal vesicles 49 27 5000 390000 1.9 [62] 

4 NA seminal vesicles 22 22 4620 1150000 2.4 [63] 

5 NA hematin-
reconstituted COX-1 

25 22 50 17000 2.5 [64] 

Nall – number of all compounds studied in a publication; Nsel - number of compounds with IC50 
values that were selected for QSAR modelling. NA – Not Available. 

 

Table 11. Datasets of compounds tested as inhibitors of human COX-2. 

No Product Source Nall Nsel IC50min (nM) IC50max (nM) log10(IC50m

ax - IC50min) 
Ref. 

1 PGE2 hCOX-2 32 24 5.92 10000 3.2 [65] 

2 PGE2 blood 90 70 0.3 5720 4.3 [66] 

3 PGE2 blood 34 34 300 34610 2.1 [54] 

4 PGE2 blood 27 23 190 540000 3.5 [55] 

5 PGE2 hCOX-2 25 25 120 19400 2.2 [66] 

6 PGE2 hCOX-2 21 21 100 19400 2.3 [67] 

7 PGE2 hCOX-2 25 21 3000 200000 1.8 [68] 

8 PGE2 hCOX-2 29 26 6 1600 2.4 [69] 

9 PGE2 CHO cell 21 21 2 2900 3.2 [70] 

10 PGE-2 ECV-304 cells 30 22 10 10000 3 [71] 

11 NA COX-2 25 22 40 66000 3.2 [64] 

12 Arachidonic acid CHO cells 23 20 2 1900 3 [72] 

13 NA COX-2 32 25 20 2240 2 [73] 

14 NA blood 32 24 380 11300 1.5 [73] 

15 PGE2 COS cells 24 21 0.44 388 2.9 [74] 

16 NA blood 53 53 60 7048553 5.1 [75] 
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17 PGE2 COS cells 31 21 0.25 1683 3.8 [76] 

18 NA blood 40 34 5 100000 4.3 [47] 

19 PGE2 hCOX-2 39 39 100 23160 2.4 [77] 

20 NA hCOX-2 20 20 3 77900 4.4 [78] 

21 PGE2 hCOX-2 25 23 8000 18000000 3.4 [79] 

22 PGE2 hCOX-2 35 33 0.5 2900 3.8 [80] 

23 PGE2 osteosarcoma cell 
line 143.98.2 

36 20 10 1000 2 [81] 

24 PGE2 hCOX-2 35 34 1 15000 4.2 [51] 

25 PGE2 hCOX-2 50 45 2 52300 4.4 [48] 

26 PGE2 hCOX-2 109 93 1.7 100000 4.7 [49] 

27 PGE2 hCOX-2 42 27 14 100000 3.9 [82] 

28 PGE2 hCOX-2 96 86 3 100000 4.5 [52] 

29 PGF2alpha hCOX-2 25 22 3.5 30000 3.9 [52] 

30 RPP hCOX-2 49 30 800 510000 2.8 [62] 

31 NA hCOX-2 22 22 190 81000 2.6 [83] 

32 NA hCOX-2 48 29 47 100000 3.3 [84] 

33 NA CHO cells 25 25 2 1530 2.9 [50] 

34 NA blood 25 25 80 9800 2.1 [50] 

35 PGE2 blood 36 35 210 59000 2.4 [58] 

36 RPP hCOX-2 74 66 40 25000 2.8 [85] 

37 PGE2 hCOX-2 52 49 26 934000 4.6 [86] 

38 PGE2 hCOX-2 305 305 1 9500 4 [87] 

39 NA 143982 cells 88 59 2 10000 3.7 [46] 

40 PGE2 blood 47 43 60 10000 2.2 [88] 

41 PGE2 CHO cells 21 20 36 960 1.4 [89] 

42 PGE2 blood 29 21 90 47620 2.7 [59] 

43 TXB2 blood 23 20 700 26300 1.6 [56] 

44 PGE2 blood 39 34 90 21900 2.4 [57] 

Nall – number of all compounds studied in a publication; Nsel - number of compounds with IC50 
values that were selected for QSAR modelling. NA – Not Available. RPP - Radiolabeled 
prostanoid products. 

Table 12. Datasets of compounds tested as inhibitors of soybean LOX. 

No Description of 
assay 

Reference 
compounds (IC50, 
nM) 

Scaling 
ratio  

Nall Nsel IC50min 
(nM) 

IC50max 
(nM) 

log10(I
C50max - 
IC50min) 

Ref. 
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1 In vitro inhibitory 
activity against 15-
lipoxygenase 
obtained from 
soybean 

Nordihydroguaiaret
ic acid (3500) 

Luteolol (3200) 

9 15 10 100 3500 1.7 [90] 

2 Inhibitory 
concentration 
against soybean 
lipoxygenase upon 
incubation with 
sodium linoleate 
(0.1 mM) at RT 

NA  13 10 13000 100000 1 [91] 

3 Inhibitory activity 
against soybean 15 
LOX 

Nordihydroguaiaret
ic acid (3500) 

Luteolol (3200) 

9 28 16 100 5000 1.7 [92] 

Nall – number of all compounds studied in a publication; Nsel - number of compounds with IC50 
values that were selected for QSAR modelling. NA – Not Available. Scaling ratio – coefficient 
of multiplication of IC50 values for compounds from the appropriate set. The average value of 
nordihydroguaiaretic acid (31300 nM) was used for scaling. 

A considerable amount of the data from publications concerning COX-1, COX-2 or LOX 

inhibition could not be used for the creation of QSAR models because of the absence of accurate 

IC50 values (17% for ovine COX-1, 13% for human COX-2 and 36% for soybean LOX data).  

The following acceptable QSAR models were created based on the above-mentioned data:  

1. Ovine COX-1: 4 QSAR models (Table 13); 

2. Human COX-2: 37 QSAR models (Table S1, Supplements and Table 14 (selected 8)); 

3. Soybean LOX: 1 QSAR model (Table 15). 

All these models were tested using the external test sets from compounds tested as novel 

ovine COX-1, human COX-2 and soybean LOX inhibitors (Table 9). The RMSE values were 

used for the validation and comparison of the created QSAR models because of the small 

number of compounds with exact IC50 values in this external test set. The results of this 

evaluation are represented in Tables 13-15 and Table S1.  
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In spite of the fact that all the selected QSAR models were acceptable based on the internal 

validation, most of them showed a poor quality of prediction for the external validation sets. No 

single QSAR model for ovine COX-1 data had an RMSEtest value less than 1. Only 6 QSAR 

models for the human COX-2 data and 1 QSAR model for the soybean LOX data had RMSEtest 

values less than 1 (Tables 13-15). The best QSAR models based on a single publication for each 

target had the characteristics shown below: 

− Ovine COX-1: RMSEtest = 1.186; 

− Human COX-2: RMSEtest = 0.239; 

− Soybean LOX: RMSEtest = 0.689. 

The combined training sets for each target were created using similar procedures to those 

used for the human COX-1 data (see above). Training sets based on all the data from ChEMBL 

related to the appropriate targets with average (CHEMBLav) and median (CHEMBLmed) values 

for duplicates were also created.  

Analysis of the published results revealed that most of the datasets of ovine COX-1 data 

can be combined, leading to the creation of two training sets based on the two types of 

experimental assays: the Cayman assay kit (human recombinant protein COX-1) and the seminal 

vesicles-based assay (Table 10). Therefore, two combined training sets were created: CaymanTr, 

the training set based on the data given by the Cayman kit, and Seminal_vesiclesTr, the training 

set based on the data given by experiments using seminal vesicles.  

The data on human COX-2 were divided into three types (Table 11):  

− the data obtained using recombinant human COX-2 (hCOX-2Tr); 

− the data obtained using cell cultures (CellsTr); 

− the data obtained using blood as a source of COX-2 (BloodTr). 
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From the diversity of all the possible combined training sets, a GeneralTr was only created 

for soybean LOX because the data for soybean LOX could not be divided by the type of 

experiment and only one acceptable single QSAR model was created. 

As a result, three types of combined training sets were created: with average data, median 

data and data scaled to the IC50 values of reference compounds (Celecoxib with IC50 = 34500 nM 

for ovine COX-1; Celecoxib, IC50 = 100 nM for human COX-2; and nordihydroguaiaretic acid 

with IC50 = 31300 nM for soybean LOX). New QSAR models based on these training sets were 

created and validated.  

Tables 13-15 show a summary of the results of the validation of the QSAR models that 

were created on the basis of combined training sets for each target, as well as a summary of the 

results of the validation of the best single QSAR model(s) and the consensus of the prediction 

results given by single models.  

Ovine COX-1 

Table 13 shows that there is no single QSAR model based on the combined data with an 

RMSEtest value lower than 1 among the best single QSAR models. However, many of the QSAR 

models based on the combined data (excluding the models based on Seminal_vesiclesTr) had 

better RMSEtest values in comparison with the consensus (average value) of the prediction results 

given by all the single QSAR models.  

The use of the scaling approach led to an improvement in the RMSEtest value for the 

GeneralTr and Seminal_vesiclesTr data. The use of the CHEMBLmed training set led to the 

creation of the best QSAR model among those based on combined data (RMSEtest = 0.704). The 

model based on the CHEMBLav training set also has a better RMSEtest value (1.091) in 
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comparison with the best single QSAR model (RMSEtest = 1.186) or the best QSAR model based 

on other combined training sets (RMSEtest = 1.141 for Seminal_vesiclesTr with scaled data).  

Table 13. Characteristics of the QSAR models created on the basis of the combined ovine 

COX-1 training sets.  

№ Training set N R2
tr Q2 RMSEtr RMSEtest 

QSAR models based on a single publication 
1 [60] 20 0.727 0.648 0.310 1.186 
2 [61] 28 0.831 0.700 0.362 1.291 
3 [62] 27 0.746 0.637 0.307 1.201 
4 [63] 22 0.780 0.643 0.371 1.381 
5 Consensus of prediction results given by the single 

QSAR models 
    1.199 

Training sets with average or median data 
6 GeneralTr 113 0.816 0.758 0.519 1.181 
7 AcceptTr 91 0.661 0.559 0.387 1.294 
8 CaymanTr 44 NA NA NA NA 
9 Seminal_vesiclesTr 49 0.944 0.642 0.404 1.334 

Training sets based on all ChEMBL data for ovine COX-1 
10 CHEMBLav (AD 85%) 700 0.604  0.504 0.766 1.091 
11 CHEMBLmed (AD 45%) 700 0.944 0.535 0.728 0.704 

Training sets with scaling data to IC50 value of Celecoxib from test set (34500 nM) 
12 GeneralTr 113 0.900 0.864 0.501 1.147 
13 AcceptTr 91 0.873 0.840 0.417 1.790 
14 CaymanTr 44 NA NA NA NA 
15 Seminal_vesiclesTr 49 0.916 0.884 0.408 1.141 

N – number of structures in a training set; NA means that the created QSAR model does not 
meet the minimum requirements (Q2<0.5); RMSE values are represented on a logarithmic scale 
(log10(IC50(nM))).  

 

Human COX-2 

Table 14 shows a different result for the human COX-2 data. The evaluation set for the 

human COX-2 inhibition model (Table 9) consisted of only 8 compounds with IC50 values 

varying from IC50min (63000 nM) to IC50max (200000 nM). Since this is a rather narrow interval of 
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IC50 values, analysis of the RMSEtest values is more preferable for evaluating the prediction 

results. Six out of the 37 QSAR models obtained had RMSEtest values lower than 1. Most of the 

training sets of these models were characterized by high IC50min (10-7 M) and IC50max (10-4-10-5 

M) values (Table 11), the last of which is closer to the IC50 values for the external evaluation set 

(Table 9) with IC50min of 10-5 M and IC50max of 10-4 M. One model (#7) had an R2
test value higher 

than 0.65, but its RMSEtest value was high, indicating poor accuracy (1.923). This may be 

explained by the fact that the training set for this model has IC50max of 66000 nM and the external 

evaluation set has IC50min of 63000 nM. Traditionally, the results of QSAR predictions have a 

tendency to shift to the average value of a training set. Here, we see the same picture when the 

QSAR model figured out relationships between the structures and the values of activities, but in 

its own scale. In spite of the poor RMSEtest value, this model may be used for the optimization of 

structures from the test set. 

The RMSEtest value, which was calculated as an average of the IC50 values of the 

prediction results given by the all single QSAR models (Consensus prediction), was worse than 

that of the best QSAR models based on single publications, but it was higher than the RMSEtest 

values of the 14 other acceptable QSAR models created on the basis of single publications. All 

the compounds from the evaluation set were out of applicability domain for 8 of the 37 QSAR 

models based on single publications (Table S1).  

Table 14. Characteristics of the QSAR models created using single and combined human 

COX-2 datasets. 

№ Training set N R2
tr Q2

 RMSEtr RMSEtest 

Best QSAR models based on single publications 
4 [55] 23 0.859 0.786 0.411 0.239 
30 [62] 30 0.957 0.737 0.372 0.645 
35 [58] 35 0.969 0.764 0.278 0.710 
18 [47] 34 0.754 0.615 0.815 0.742 
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3 [54] 34 0.943 0.635 0.215 0.776 
21 [79] 23 0.987 0.786 0.319 0.801 
11 [64] 22 0.970 0.734 0.526 1.923 
8 Consensus of prediction results given by the 

all single QSAR models 
    1.601 

Training sets with average data 
 GeneralTr 1200 0.793 0.735 0.684 1.452 
 AcceptTr 1121 0.828 0.774 0.651 1.327 
 hCOX-2Tr 759 0.762 0.703 0.714 1.388 
 CellsTr 171 0.711 0.614 0.605 2.703 
 BloodTr 241 0.836 0.765 0.568 1.158 

Training sets based on all ChEMBL data for human COX-2 
 CHEMBLav 2253 0.732 0.673 0.723 1.278 
 CHEMBLmed 2253 0.734 0.675 0.721 1.334 

Training sets with scaling data to IC50 value of Celecoxib from test set (100 nM) 
 GeneralTr 1200 0.776 0.717 0.657 1.700 
 AcceptTr 1121 0.795 0.738 0.623 1.467 
 hCOX-2Tr 759 0.735 0.673 0.693 1.957 
 CellsTr 171 0.794 0.725 0.607 2.369 
 BloodTr 241 0.857 0.793 0.577 1.650 

№ – indicates the number of a set in Table 11; N – number of structures in a training set; - 
means that the value of R2

test ≤ 0; RMSE values are represented on a logarithmic scale 
(log10(IC50(nM))). 

 
The RMSEtest values of the QSAR models created on the basis of the combined training 

sets were worse than those of the best QSAR models created on the basis of single publications 

but most of them were better than the consensus of the prediction results based on all the single 

QSAR models (row 8 in Table 14). The QSAR models based on AcceptTr, hCOX-2Tr and 

BloodTr achieved higher accuracy in comparison with the QSAR models based on GeneralTr 

and CellsTr. The use of the scaling procedure only led to an improvement in the QSAR models 

for the CellsTr training set. The QSAR models based on all the ChEMBL data had better 

RMSEtest values in most cases in comparison with the combined training set, but they were worse 

than the best QSAR models based on single training sets and had slightly worse RMSEtest values 

compared to the best QSAR models based on the BloodTr training sets. This may be explained 

by several things, including: 

Page 36 of 61

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 37 

1. The evaluation set contains compounds with weak inhibition activity against human COX-2, 

whereas the ChEMBL data contains many highly active inhibitors. 

2. There are considerable differences in the experimental results derived from different assays. 

For instance, the IC50 values calculated using cells-based assays usually vary from 10-6 to 10-

9 M whereas the IC50 values given by the human recombinant COX-2 protein assay vary 

from 10-4 to 10-7 M. This also explains the poor RMSEtest values for the QSAR models based 

on the CellsTr training sets and the improvement of the QSAR model based on the CellsTr 

training set after the scaling procedure. If the same reference compounds were used in most 

publications, the use of the scaling procedure for all the ChEMBL data would possibly lead 

to a considerable improvement in the accuracy of the QSAR models. 

3. There is a contradictory order of IC50 values for the same inhibitors in different assays. For 

instance, the IC50 values of Rofecoxib were half the values of Celecoxib when blood-derived 

COX-2 (500 nM and 1000 nM, respectively) and COS cells based assays (32 nM and 64 nM, 

respectively) were used, while the IC50 value of Rofecoxib (20 nM) is ten times higher than 

that of Celecoxib (2 nM) when the CHO cell assay was used. (Table S3). 

Soybean LOX 

Our study included three training sets with compounds tested for the inhibition of soybean LOX 

(Table 12). Only one out of the three QSAR models based on single publications was created 

with reasonable accuracy, estimated by internal validation (Table 15).  

Only GeneralTr training sets were created because of the small number of training sets and 

because it was not possible to group them by different types of assays. Table 15 shows that all 

the QSAR models created on the basis of the combined training sets showed better accuracy than 

the QSAR model based on a single publication. Moreover, only 50% of the compounds from the 
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evaluation set (Table 9) were in the applicability domain of the QSAR model based on a single 

publication, while the QSAR models based on the combined training sets covered all the 

compounds from the evaluation set. The QSAR model created using the GeneralTr training set 

with averaging of the data from duplicates had the highest accuracy. For this target the use of the 

median value for duplicates from all the ChEMBL data led to a more accurate prediction 

(RMSEtest) than the average value for duplicates from all the ChEMBL data. 

Table 15. Characteristics of the successful QSAR models for soybean LOX.  

№ Ref N R2
tr Q2

 RMSEtr RMSEtest AD,% 
1 [90] 16 0.959 0.778 0.290 0.689 50 
2 GeneralTr average 43 0.913 0.875 0.329 0.197 100 
3 GeneralTr scaling 43 0.731 0.651 0.327 0.215 100 
4 CHEMBLav 76 0.832 0.755 0.488 0.245 100 
5 CHEMBLmed 76 0.844 0.770 0.473 0.240 100 

N – number of structures in a training set; AD – part of compounds in Applicability Domain; 
RMSE values are represented on a logarithmic scale (log10(IC50(nM))). 

 

Discussion and Conclusions 

The RMSEtest values given by the evaluation of all the created QSAR models are shown 

in Figure 4. One can see that in most cases the QSAR models created based on combined 

training sets (3-10 in Figure 4) have better RMSEtest values than the QSAR models based on 

single publications or the consensus of QSAR models based on single publications.  
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Figure 4. Comparison of RMSE values given for external test sets by different approaches to 
using training sets in QSAR modelling. 1 – QSAR models based on a single publication; 2 – The 
consensus of QSAR models based on single publications; 3 - QSAR models based on General 
training sets with averaged data; 4 - QSAR models based on Accepted training sets with 
averaged data; 5 - QSAR models based on training sets combined based on the same type of 
bioassay with averaged data; 6 - QSAR models based on General training sets with averaged 
data; 7 - QSAR models based on Accepted training sets with averaged data; 8 - QSAR models 
based on training sets combined based on the same type of bioassay with averaged data; 9 - 
QSAR models based on training sets with averaged ChEMBL data; 10 - QSAR models based on 
training sets with median ChEMBL data. 

 

The QSAR models based on a combination of all the available IC50 data from ChEMBL 

for the appropriate target led to the most accurate predictions, in spite of the error in data. This 

proves the validity of the use of combined data for QSAR modelling, even if the combination is 

based on data obtained from different assays. Therefore, one of the main results of this study is 

the validity of the use of ChEMBL for the creation of general training sets and appropriate 

acceptable QSAR models for the estimation of the IC50 values of interaction between drug-like 

compounds and drug targets.  

Based on the results of this study, we can draw the following conclusions: 
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1. How can one use the experimental data from different studies with the same target and 

the same end-point? – The experimental data from different publications may be 

combined in several ways: 

a. The creation of a general training set from a specific type of assay (or target 

source) or from the same assay. 

b. The creation of QSAR models based on single publications or based on the 

combination of the training sets including the training sets of the best QSAR 

models into one general training set. 

c. The creation of a general training set from all publications using averaged or 

median values for duplicates or using a scaling procedure, if reference 

compounds are available. In some cases, the use of median or scaled values led 

to a considerable improvement in the quality of the QSAR models in comparison 

to the use of averaged values. 

2. Should we select the data provided only by one study or from studies that use the same 

assay? – The creation of QSAR models based on a single publication should be done 

with the aim of finding the most accurate model for the optimization of structures. If a 

publication contains a small number of compounds, its data may be used for QSAR 

modelling for structure optimization but this kind of model often has a narrow 

applicability domain and cannot be used for virtual screening. The creation of a general 

training set from different publications increases the number and diversity of compounds 

and may lead to a more general QSAR model, which has a wider applicability domain 

and may be used for virtual screening or the estimation of activity for a broader class of 

chemicals. 
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3. May the data from several assays be combined? Several assays may be combined into a 

general training set using averaged or median values for duplicates or using a scaling 

procedure, if reference compounds are available. However, some data in ChEMBL do not 

include the detailed description of assays necessary to recognize their type. QSAR 

models created based on the aggregation of these data and data with known assays show 

the highest accuracy. 

4. Which is better: the creation of QSAR models based on a single study and then the use of 

them to create a consensus prediction or the combination of all the data into one general 

training set? – Our study showed that the creation of a general training set leads to more 

accurate QSAR models than the creation of QSAR models based on a single publication 

and then the use of them to create a consensus prediction. 

Our study reveals some imperfections in the data provided in publications by medicinal 

chemists and we would like to suggest some recommendations to the authors and editors of 

journals for publishing experimental studies: 

1. Try to obtain and publish exact IC50 values for low activity or inactive compounds. The 

analysis of the experimental data from publications that evaluate inhibitors of human 

COX-1, ovine COX-1, human COX-2 and soybean LOX showed that up to 35% of 

structures cannot be used for QSAR modelling because of the absence of accurate IC50 

values. Publishing mainly the IC50 values for moderate and highly active compounds 

does not allow the creation of accurate QSAR models that may be used for virtual 

screening and to distinguish active and inactive compounds. 

2. Provide a clear description of assays. It allows the aggregation of data based on the type 

of assay, leading to more accurate QSAR models. 
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3. Experimentally validate reference compounds even when using standard kits. This 

provides the potential to use a scaling procedure, which demonstrated advantages in 

comparison with others methods of creation of combined training sets. Moreover, the 

authors of some publications often referred to the standard values of reference 

compounds provided by suppliers, while other publications have shown that even with 

the same kit different authors obtain different activity values for reference compounds. 

These differences may be related to the use of different substrate concentrations in the 

activity measurement assays. Depending on the type of inhibition (competitive, non-

competitive, or allosteric) changes in the substrate concentration may lead to an increase 

or a decrease in the IC50 values of the compounds. This is why Ki values, when available, 

may prove to be more helpful in QSAR studies in some cases. 

We would like to highlight the importance of the substrate (arachidonic acid) concentration 

in the IC50 values. The Cayman kit suggests an arachidonic acid concentration of 100 

micromolar, but it also suggests that researchers may make the appropriate dilutions to achieve 

the substrate concentration that they consider to be best. The initial concentration of 100 

micromole is much higher than the Km value of COX-1 (by more than one order of magnitude) 

and is not appropriate for the fair estimation of the inhibition of competitive inhibitors. Very 

little inhibition would be detected if the concentration is too high. As a result, many researchers 

choose lower substrate concentrations such as 20, 10, 1 or even 0.1 micromolar. These 

differences in substrate concentrations may lead to IC50 values that differ by orders of 

magnitude. The enzyme concentration may also affect the IC50 value. This is why Ki values are 

preferred when the inhibition activity of compounds has been estimated by different laboratories. 

Both the substrate and the enzyme concentration are taken in to account in the calculation of Ki.  
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Unfortunately, the substrate concentration does not affect all types of inhibitors in the same 

way. The inhibition increases when the substrate concentration decreases for competitive 

inhibitors, but the opposite occurs for uncompetitive inhibitors. As a result, correction using a 

scale ratio could improve the results if applied to the same type of inhibitors. However, the mode 

of inhibition is not mentioned by most studies. 

From this point of view, if enough data were available, then better results could be 

obtained if the results produced by the Cayman method were divided into at least two categories: 

the results produced using high substrate concentrations (10x Km or higher) and the results 

produced using substrate concentrations of ~Km or lower. The IC50 values predicted using the 

first training set may agree with the biological results produced using high substrate 

concentrations and the IC50 values predicted using the second training set may agree with the 

biological results produced using low substrate concentrations. The results that we used as 

external test sets were obtained using low substrate concentrations. 
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COX, cyclooxygenase; GUSAR – General Unrestricted Structure-Activity Relationships; IC50, 

half maximal inhibitory concentration; LOX, lipoxygenase; QNA, Quantitative Neighbourhoods 

of Atoms descriptors; MNA, Multilevel Neighbourhoods of Atoms descriptors; QSAR, 

Quantitative structure–activity relationships; PASS, Prediction of the Biological Activity 

Spectra; RBF, Radial Basis Function; RMSE, Root Mean Square Error; SCR, Self-Consistent 

Regression. 
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