Conjugate Reduction of 2-Butene-1,4-diones with LiAlH₄-SbCl₃ Shinsei Sayama* and Yutaka Inamura Department of Chemistry, Fukushima Medical College, Hikarigaoka, Fukushima 960-12 (Received June 15, 1990) **Synopsis.** The reagent LiAlH₄-SbCl₃ was found to be more effective for a conjugate reduction of 2-butene-1,4-diones in comparison with the reagent LiAlH₄-other metal halides. The effect of the addition of AlCl₃ to LiAlH₄ was to produce more mild and specific reagents for reducing epoxides and halo ketones.¹⁾ Therefore, a chemoselective reduction of polyfunctional compounds with LiAlH₄ in the presence of various other metal halides has been the subject of much study.²⁾ It was reported that the reduction of α,β -unsaturated ketones with LiAlH₄-Cu₂I₂ or LiAlH₄-metal halides (e.g., Cu₂Br₂, Cu₂Cl₂, TiCl₃, FeCl₃) gave the corresponding ketones arising from a conjugate reduction.^{3,4)} Since γ -keto- α,β -unsaturated ketones, such as 2-butene-1,4-diones, afforded 1,2-reduction products predominantly with LiAlH4 or NaBH4, there has been much interest in mild, convenient methods for a conjugate reduction of γ -keto- α , β -unsaturated ketones. The reduction of γ keto-α,β-unsaturated ketones with LiAlH₄-metal halides, however, has not been carried out.1-7) Moreover, SbCl₃ has not been used as a metal halide in a conjugate reduction of α,β -unsaturated ketones and γ keto- α , β -unsaturated ketones. Since antimony is one of the representative elements which possess both metallic and nonmetallic properties and Sb3+ is a borderline acid in the classification of hard and soft acids, 2a,6,7) it can be expected that the reduction of carbonyl compounds with LiAlH₄-SbCl₃ has a new reactivity in comparison with LiAlH₄-transition metal halides. We would like to report on the results of studies concerning the selective conjugate reduction of γ -keto- α , β -unsaturated ketones, such as 2-butene-1,4diones, with LiAlH₄-SbCl₃. The reduction of *trans*-1-phenyl-2-pentene-1,4-dione (1), chosen as a representative 2-butene-1,4-dione for this study, with LiAlH₄ (LAH)-SbCl₃ in various stoichiometric ratios was carried out. The results are summarized in Table 1. At the ratio of enedione 1, LAH, and SbCl₃ (1:1:1, 1:1:3, or 1:3:1), a mixture of 4-hydroxy-1-phenyl-1-pentanone, 1-phenyl-2-pentene-1,4-diol and 1-phenylpentane-1,4-diol and 1 was mainly obtained, accompanied by a small amount of 1-phenylpentane-1,4-dione (la). At a stoichiometric ratio of 1:3:3 or 1:3:4, enedione 1 was reduced to give a conjugate reduction product la in nearly quantitative The optimum conditions for the conjugate reduction of 1 with LAH-SbCl₃ found in the present experiments are as follows: i) SbCl3 is essential for effecting a regioselective conjugate reduction. There is need to use either an equal or excess molar equivalent of SbCl₃ over LAH in order to suppress the reaction of 1,2-reduction with LAH. iii) There is need to use more than two molar equivalents of LAH and SbCl₃ over 1 for obtaining conjugate reduction products in high yield. The results of a LAH–SbCl₃ reduction of other 2-butene-1,4-diones are shown in Table 2. The reductions of *trans*-3-decene-2,5-dione (**2**), ethyl 3-benzoylacrylate (**3**), *trans*- and *cis*-1,4-diphenyl-2-butene-1,4-diones (**5** and **6**), even diethyl azodicarboxylate (**4**) and 3-benzoyl-1-phenyl-2-pentene-1,4-dione (**7**) with LAH–SbCl₃ took place to give the corresponding conjugate reduction products in good yields. The results of a LAH-SbCl₃ reduction of α,β -unsaturated carbonyl compounds are shown in Table 3. The reduction of α,β -unsaturated ketones (9 and 10) was not selective, as shown. Only the formyl group of 8 was reduced to a hydroxyl group in 92% yield. The chemoselective reduction of aldehydes in the presence of ketones with this reagent was also examined in the following competition experiments. Equimolar amounts of 3,7-dimethyl-6-octenal and ethyl levulinate were Table 1. Reduction of trans-1-Phenyl-2-pentene-1,4-dione 1 with LiAlH₄-SbCl₃ in THF at 0°C for 4 ha) | Entry | | | | Products, yield/%b) | | | | | | |-------|-------------|--------|----------|---------------------|----------------------|------------------|---------------|--|--| | | Molar ratio | | | l-Phenylpentane- | Hydroxy comp | Recovered | | | | | | Enedione 1 | LiAlH4 | $SbCl_3$ | l,4-dione la | Hydroxy ketone
lb | Diol
Ic | enedione
1 | | | | 1 | 1 | 2 | 0 | | 56°) | 38 ^{d)} | | | | | 2 | 1 | 1 | 1 | 32 | 30 ^{e)} | | 33 | | | | 3 | 1 | 1 | 3 | 23 | _ | _ | 76 | | | | 4 | l | 2 | 2 | 60 | 10 ^{c)} | | 21 | | | | 5 | 1 | 3 | 3 | 84 | 6 ^{c)} | | | | | | 6 | 1 | 3 | 1 | 14 | 42c) | 43f) | _ | | | | 7 | 1 | 3 | 9 | 87 | | _ | _ | | | | 8 | 1 | 3 | 4 | 93 | | _ | _ | | | | 9 | 1 | 0 | 3 | _ | _ | _ | 99 | | | a) LAH; 1.0—3.0 mmol; Solvent; 10—15 ml. b) Yield is based on enedione 1 used. c) 4-Hydroxy-1-phenyl-1-pentanone. d) 1-Phenyl-2-pentene-1,4-diol. e) Mixture of 1b and 1c. f) Mixture of enediol and saturated diol. Table 2. Reduction of 2-Butene-1,4-dione with LiAlH₄-SbCl₃ in THF at 0 °C for 4 h^{a)} | Substrate | (S) | | Molar 1 | ratio | D J | Yield/% ^{b)} | | |--------------------------------|-----|---|---------|---------------------|--|-----------------------|----| | Substrate | | S | : LAH | : SbCl ₃ | Products | | | | Phy | 1 | 1 | 3 | 3 | Ph | 1a ⁸⁾ | 84 | | | 2 | 1 | 3 | 3 | | 2a ^{8,9)} | 94 | | PhCOCH=CHCO ₂ Et | 3 | l | 3 | 3 | PhCOCH ₂ CH ₂ CO ₂ Et | 3a ⁸⁾ | 86 | | O
EtOCN=NCO ₂ Et | 4 | 1 | 3 | 3 | O
EtOC NHNHCO ₂ Et | 4 a | 81 | | Ph Ph | 5 | 1 | 3 | 3 | Ph Ph | 5a ^{12,13)} | 78 | | Ph—Ph | 6 | 1 | 3 | 3 | Ph Ph | 5a ^{12,13)} | 81 | | Ph CH ₃ | 7 | 1 | 2.5 | 2.5 | Ph CH ₃ | 7a | 64 | a) LAH; 1.0-3.0 mmol; Solvent; 10-15 ml. b) Yield is based on 2-butene-1,4-dione used. Table 3. Reduction of Carbonyl Compounds with LiAlH₄-SbCl₃ in THF at 0°C for 4 ha) | 0.1 | (S) | Molar ratio | | | D. 1. | *** 1 3L\ /0d | | |--|-----|-------------|---|-------------------|---|-----------------------|----------------| | Substrate | | S : LAH : | | SbCl ₃ | Products | Yield ^b /% | | | C ₆ H ₅ CH=CHCHO | 8 | 1 | 2 | 2 | C ₆ H ₅ CH=CHCH ₂ OH
C ₆ H ₅ CH ₂ CH ₂ CH ₂ OH | 8a
8b | 92
7 | | C ₆ H ₅ CH=CHCOCH ₃ | 9 | 1 | 3 | 3 | $C_6H_5CH_2CH_2COCH_3$
$C_6H_5CH=CHCH(OH)CH_3$
Recovered | 9a
9b
9 | 12
44
42 | | C ₆ H ₅ CH=CHCOC ₆ H ₅ | 10 | 1 | 3 | 3 | C ₆ H ₅ CH ₂ CH ₂ COC ₆ H ₅
Recovered | 10a
10 | 16
50 | a) LAH; 1.0—3.0 mmol; Solvent; 10—15 ml. b) Yield is based on the carbonyl compounds used. allowed to compete for the reduction with three molar equivalents of LAH–SbCl₃. 3,7-Dimethyl-6-octenal was selectively reduced to 3,7-dimethyl-6-octene-1-ol in 70% yield and ethyl levulinate was recovered unchanged. In addition, carbonyl groups of 1-phenylbutane-1,3-dione and 1-phenylpentane-1,4-dione and ester, nitrile, and acetal groups in ethyl levulinate and 4-phenyl-4,4-ethylenedioxybutanenitrile were not affected under the above-mentioned reduction conditions. On the other hand, the reduction of enedione 1 with LAH-other metal halides such as Cu₂I₂, CuCl₂, AlCl₃, FeCl₃, and TiCl₄ gave no 1,4-reduction products, and complex mixture of hydroxy derivatives were obtained under various ratios of LAH and metal halides. Thus, the reagent LAH-SbCl₃ provides a new convenient method for a mild, selective conjugate reduction of 2-butene-1,4-diones. Further application of reduction with LAH-SbCl₃ to aldehyde and other functional groups is now in progress. ## Experimental IR spectra were recorded on a JASCO A-100 spectrometer. ¹H NMR spectra were taken on a Hitachi R-24B spectrometer with TMS as an internal standard. The products were identified by spectroscopic data. General Procedure. To a suspension of LAH (113 mg, 3 mmol) in THF (8 ml) at 0°C was added SbCl₃ (684 mg, 3 mmol) dissolved in THF (2 ml). The resulting mixture was stirred for 5 min at 0°C, and then 2-butene-1,4-dione (1 mmol) in THF (2 ml) was added. After stirring for 4 h at 0—18°C, the reaction mixture was treated with 1 M aq Na₂CO₃ and extracted with ethyl acetate. The organic layer was washed by 0.5 M aq HCl and successively saturated aq NaCl and dried by MgSO₄. After removal of the solvent in vacuo, the residue was purified by column chromatography on silica gel (Wakogel C-300) with CCl₄ and CHCl₃ (3:1). Conjugate reduction products **1a—7a** were obtained in 64—94% yield. 2-Butene-1,4-diones were prepared according to a procedure from the literature. trans-1-Phenyl-2-pentene-1,4-dione (1)¹¹⁾ and trans-3-decene-2,5-dione (2) were prepared by pyridinium chlorochromate (PCC) oxidation of the corresponding 2,5-dialkylfuran derivatives.¹⁰ trans-1,4-Diphenyl-2-butene-1,4-dione (**5**)^{11,12)} was prepared by Friedel–Crafts acylation of benzene with fumaryl chloride. (**6**)¹⁴⁾ cis-1,4-Diphenyl-2-butene-1,4-dione (**6**)^{11,12)} and 3-benzoyl-1-phenyl-2-pentene-1,4-dione (**7**) were prepared by oxidation of corresponding furan derivatives with HNO₃ in acetic acid. (15) **3-Benzoyl-1-phenylpentane-1,4-dione (7a):** Mp 83—84°C (from CCl₄); IR (KBr) 1720, 1690, and 1675 cm⁻¹; ¹H NMR (CDCl₃) δ =2.22 (3H, s), 3.70 (2H, m), 5.30 (1H, t, J=6.0), 7.26—8.26 (10H, m). *trans*-3-Decene-2,5-dione (2): Mp 46—47 °C (from hexane); IR (KBr) 1670 cm⁻¹; ¹H NMR (CDCl₃) δ =0.85 (3H, t, J=7.0), 1.13—2.00 (6H, m), 2.33 (3H, s), 2.47—2.83 (2H, m), 6.70 (2H, s). 3-Benzoyl-1-phenyl-2-pentene-1,4-dione (7): Mp 112—113 °C (from ethanol); IR (KBr) 1685 and 1660 cm⁻¹; 1 H NMR (CDCl₃) δ=2.35 (3H, s), 7.20—8.10 (11H, m). ## References 1) a) H. O. House, "Modern Synthetic Reactions," W. A. Benjamin, Inc., Menlo Park, California (1972), p. 45; b) E. C. Ashby and B. Cooke, *J. Am. Chem. Soc.*, **90**, 1625 (1968). - 2) a) T. Imamoto, T. Takeyama, and T. Kusumoto, Chem. Lett., 1985, 1491; b) E. C. Ashby and J. J. Lin, Tetrahedron Lett., 1977, 4481. - 3) E. C. Ashby, J. J. Lin, and R. Kover, J. Org. Chem., 41, 1939 (1976), and references cited therein. - 4) T. Tsuda, T. Fujii, K. Kawasaki, and T. Saegusa, J. Chem. Soc., Chem. Commun., 1980, 1013. - 5) a) M. Fieser and L. F. Fieser, "Reagents for Organic Synthesis," John Wiley & Sons,Inc., New York, Vol. 1—13; b) S. S. Pizey, "Synthetic Reagents," John Wiley & Sons,Inc., New York (1974), Vol. 1, p. 101. 6) T.-L. Ho, "Hard and Soft Acids and Bases Principle - 6) T.-L. Ho, "Hard and Soft Acids and Bases Principle in Organic Chemisty," Academic Press, New York (1977), p. 93. - 7) J. Bottin, O. Eisenstein, C. Minot, and N. T. Anh, Tetrahedron Lett., 1972, 3015. - 8) H. Stetter, Angew. Chem., Int. Ed. Engl., 15, 639 (1976). - 9) H. Stetter and H. Kuhlmann, *Tetrahedron Lett.*, **1974**, 4505. - 10) G. Piancatelli, A. Scettri, and M. D'Auria, *Tetrahedron*, **36**, 661 (1980). - 11) C.-S. Chien, T. Kawasaki, M. Sakamoto, Y. Tamura, and Y. Kita, *Chem. Pharm. Bull.*, **33**, 2743 (1985). - 12) Y. Inamura and Y. Inamura, Nippon Kagaku Kaishi, 1985, 134. - 13) Y. Kobayashi, T. Taguchi, T. Morikawa, E. Tokuno, and S. Sekiguchi, *Chem. Pharm. Bull.*, **28**, 262 (1980). - 14) R. E. Lutz, "Organic Syntheses," John Wily & Sons, Inc., New York (1955), Coll. Vol. III, p. 248. - 15) a) R. E. Lutz and R. J. Rowlett, Jr., *J. Am. Chem. Soc.*, **70**, 1359 (1948); b) R. E. Lutz and F. N. Wilder, *ibid.*, **56**, 978 (1934).