

Journal of Molecular Structure 614 (2002) 97-108

Journal of MOLECULAR STRUCTURE

www.elsevier.com/locate/molstruc

Ab initio and DFT calculations of the structure and vibrational spectra of trigonelline

M. Szafran*, J. Koput, Z. Dega-Szafran, M. Pankowski

Faculty of Chemistry, Adam Mickiewicz University, ul Grunwaldzka 6, 60780 Poznań, PolandReceived 20 November 2001; revised 25 February 2002; accepted 25 February 2002

Abstract

The geometries, frequencies and infrared intensities of the vibrational bands of trigonelline its monohydrate and dimer have been computed by the MP2 and B3LYP approaches using the cc-pVDZ and 6-31G(d,p) basis sets. The computed geometry of the pyridine ring is slightly affected by hydration and dimerization, and satisfactorily agrees with the X-ray data. In contrast, the geometry of the COO group changes significantly on hydration and dimerization. All the measured IR bands were assigned in terms of the calculated vibrational modes. Most computed bands are predicted to lie at higher wavenumbers than the experimental bands. R.M.S. deviation between the experimental and the calculated harmonic frequencies is 69 cm⁻¹ for all of the bands, and 46 cm⁻¹ for all bands except those corresponding to ν (OH), δ (OH) and ν (CH). © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Trigonelline; Geometry; Vibrational spectra; MP2 and DFT calculations

1. Introduction

Trigonelline, *N*-methyl-3-carboxy-pyridine, is a natural betaine isolated from various plants, seeds and the western rock lobster [1-5]. Trigonelline crystallizes as monohydrate and its structure was determined by X-ray diffraction [5].

In this paper, the geometry and vibrational spectra of trigonelline monohydrate (TRGWI-TRGWIII), anhydrous trigonelline (TRG), and its dimer (TRGDIM) have been computed by the MP2 and B3LYP approaches using the cc-pVDZ and 6-31G(d,p) basis sets.

2. Experimental

2.1. Synthesis

Trigonelline hydroiodide. A solution of nicotinic acid (15 g) in methanol (70 cm³) and methyl iodide (26 g) was heated at 70 °C in a sealed tube for 40 h. Yellow crystals were filtered off and washed with small amount of acetone. The filtrate was evaporated to dryness under reduced pressure and the solid residue was washed with acetone. Both fractions of the crystals were combined and recrystallized from methanol, total yield 63%, m.p. 235 °C (Ref. [1] 218 °C).

Trigonelline monohydrate. Trigonelline hydroiodide (10 g) was dissolved in water (20 cm³) in a small canonical flask, propylene oxide (2.6 g) was added slowly; the flask was closed with a cork and left for 3

^{*} Corresponding author. Tel.: +48-61-829-1320; fax: +48-61-865-8008.

E-mail address: szafran@main.amu.edu.pl (M. Szafran).

Table 1

Local-symmetry coordinates of trigonelline and its monohydrate (atom numbering as in Fig. 1)

Symmetry coordinate ^a	Description
$S_1 = rN_1 - C_2$	<i>ν</i> CN
$S_2 = rN_1 - C_6$	$\nu \mathrm{CN}$
$S_3 = rN_1 - C_{11}$	$\nu \mathrm{CN}$
$S_4 = rC_2 - C_3$	ν CC
$S_5 = rC_3 - C_4$	ν CC
$S_6 = rC_4 - C_5$	ν CC
$S_7 = rC_5 - C_6$	ν CC
$C_8 = rC_3 - C_{15}$	ν CC
$S_9 = rC_{15} - O_{16} + rC_{15} - O_{17}$	ν CO
$S_{10} = rC_{15} - O_{16} - rC_{15} - O_{17}$	ν CO
$F_{11} = rC_2 - H_7$	ν CH
$S_{12} = rC_4 - H_8$	ν CH
$F_{13} = rC_5 - H_9$	ν CH
$S_{14} = rC_6 - H_{10}$	ν CH
$S_{15} = rC_{11} - H_{12} + rC_{11} - H_{13} + rC_{11} - H_{14}$	$\nu_{\rm s}$ CH ₃
$S_{16} = 2rC_{11} - H_{12} - rC_{11} - H_{13} - rC_{11} - H_{14}$	$\nu_{\rm as} {\rm CH}_3$
$S_{17} = rC_{11} - H_{13} - rC_{11} - H_{16}$	$\nu_{\rm as} {\rm CH}_3$
$S_{18} = \beta C_6 - N_1 - C_2 - \beta N_1 - C_2 - C_3 + \beta C_2 - C_3 - C_4 - \beta C_3 - C_4 - C_5 + \beta C_4 - C_5 - C_6 - \beta C_5 - C_6 - N_1$	Ring 1
$S_{19} = 2\beta C_6 - N_1 - C_2 - \beta N_1 - C_2 - C_3 - \beta C_2 - C_3 - C_4 + 2\beta C_3 - C_4 - C_5 - \beta C_4 - C_5 - C_6 - \beta C_5 - C_6 - N_1$	Ring 2
$S_{20} = \beta N_1 - C_2 - C_3 + \beta C_2 - C_3 - C_4 + \beta C_4 - C_5 - C_6 - \beta C_5 - C_6 - N_1$	Ring 3
$ \sum_{21} = \beta N_1 - C_{11} - H_{12} + \beta N_1 - C_{11} - H_{13} + \beta N_1 - C_{11} - H_{14} - \beta H_{12} - C_{11} - H_{13} - \beta H_{13} - C_{11} - H_{14} - \beta H_{12} - C_{11} - H_{14} - \beta H_{12} - C_{11} - H_{14} - \beta H_{12} - C_{11} - H_{14} - \beta H_{13} - C_{11} - H_{14} - \beta H_{14} - \beta H_{15} - C_{11} - H_{15} - \beta H_{15} - C_{15} $	δ _s CH ₃
$F_{22} = 2\beta H_{12} - C_{11} - H_{13} - \beta H_{13} - C_{11} - H_{14} - \beta H_{12} - C_{11} - H_{14}$	$\delta_{as} CH_3$
$C_{23} = 2\beta N_1 - C_{11} - H_{12} - \beta N_1 - C_{11} - H_{13} - \beta N_1 - C_{11} - H_{14}$	CH_3 wag
$E_{24} = \beta H_{13} - C_{11} - H_{14} - \beta H_{12} - C_{11} - H_{14}$	$\delta_{as} CH_3$
$B_{25} = \beta N_1 - C_{11} - H_{13} - \beta N_1 - C_{11} - H_{14}$	CH_3 wag
	au ring 1
$S_{27} = \tau C_6 - N_1 - C_2 - C_3 - \tau C_2 - C_3 - C_4 - C_5 + \tau C_3 - C_4 - C_5 - C_6 - \tau C_5 - C_6 - N_1 - C_2$	τ ring 2
$\begin{split} S_{28} &= -\tau C_6 - N_1 - C_2 - C_3 - \tau N_1 - C_2 - C_3 - C_4 + 2\tau C_2 - C_3 - C_4 - C_5 - \tau C_3 - C_4 - C_5 - C_6 \\ &- \tau C_4 - C_5 - C_6 N_1 + 2\tau C_5 - C_6 - N_1 - C_2 \end{split}$	au ring 3
$S_{29} = \beta C_3 - C_{15} - O_{16} + \beta C_3 - C_{15} - O_{17}$	$\delta_{\rm s} \rm CO_2$
$S_{30} = \beta C_3 - C_{15} - O_{16} - \beta C_3 - C_{15} - O_{17}$	$\delta_{\rm as} {\rm CO}_2$
$V_{31} = \tau C_2 - N_1 - C_{11} - H_{12} + \tau C_2 - N_1 - C_{11} - H_{13}$	au Me-ring
$+\tau C_2 - N_1 - C_{11} - H_{14} + \tau C_6 - N_1 - C_{11} - H_{12} + \tau C_6 - N_1 - C_{11} - H_{13} + \tau C_6 - N_1 - C_{11} - H_{14}$	
$\mathbf{V}_{32} = \tau \mathbf{C}_2 - \mathbf{C}_3 - \mathbf{C}_{15} - \mathbf{O}_{16} + \tau \mathbf{C}_2 - \mathbf{C}_3 - \mathbf{C}_{15} - \mathbf{O}_{17}$	$ au \operatorname{CO}_2$
$\mathbf{v}_{33} = \tau \mathbf{C}_2 - \mathbf{C}_3 - \mathbf{C}_{15} - \mathbf{O}_{16} - \tau \mathbf{C}_2 - \mathbf{C}_3 - \mathbf{C}_{15} - \mathbf{O}_{17}$	$ au \operatorname{CO}_2$
$S_{34} = \beta H_7 - C_2 - N_1$	β CH
$G_{35} = \beta H_8 - C_4 - C_3$	β CH
$F_{36} = \beta H_9 - C_5 - C_4$	β CH
$G_{37} = \beta H_{10} - C_6 - C_5$	β CH
$C_{38} = \beta C_{11} - N_1 - C_2$	β CN
$C_{39} = \beta C_{15} - C_3 - C_2$	β CC
$S_{40} = \gamma H_7 - C_2 - N_1 - C_3$	γ CH
$C_{41} = \gamma H_8 - C_4 - C_3 - C_5$	γ CH
$C_{42} = \gamma H_9 - C_5 - C_4 - C_6$	γ CH
$C_{43} = \gamma H_{10} - C_6 - N_1 - C_5$	γ CH
$S_{44} = \gamma C_{11} - N_1 - C_2 - C_6$	γCN
$S_{45} = \tau C_{11} - N_1 - C_2 - C_3$	au CC
	(continued on next pag

M. Szafran et al. / Journal of Molecular Structure 614 (2002) 97-108

1 able 1 (communuel)	Table	1 ((continued)
----------------------	-------	-----	-------------

Symmetry coordinate ^a	Description
 Monohydrate	
$S_{46} = rO_{16} - H_{18}$	ν OH
$S_{47} = r \mathbf{O}_{16} \cdots \mathbf{O}_{19}$	<i>ν</i> (OHO)
$S_{48} = \beta C_{15} - O_{16} - H_{18}$	βΟΗ
$S_{49} = \beta O_{16} - H_{18} - O_{19}$	βΟΗ
$S_{50} = \gamma H_{18} - O_{16} - C_{15} - O_{17}$	γ(OHO)
$S_{51} = \gamma O_{19} - H_{18} - O_{16} - C_{15}$	δ(OHO)
$S_{52} = rO_{19} - H_{20}$	<i>ν</i> (OH)
$S_{53} = \beta H_{18} - O_{19} - H_{20}$	γ OH
$S_{54} = \gamma O_{16} - H_{18} - O_{19} - H_{20}$	у ОН

^a Definitions are made in terms of standard valence coordinates: r_{ij} is the bond length between atoms i and j; β_{ijk} is the valence angle between atoms i, j and k, with j the central atom; γ_{ijkl} is the out-of-plane angle between the i-j bond and the plane defined by the j, k, and l atoms; τ_{ijkl} is the torsional (dihedral) angle between the planes defined by the i,j,k and j,k,l atoms.

days. To remove iodopropanols, the reaction solution was extracted six times with equal volumes of diethyl ether, then evaporated under reduced pressure to dryness and the residue was recrystallized from methanol and white crystals were filtered off, m.p. 218 °C (Ref. [5] 215–217 °C (dec.), Ref. [6] 230–233 °C); $\delta_{\rm H}$ 8.88 (s, C₂H), 8.61 (1H, m, C₆H), 8.58 (1H, m, C₄H), 7.83 (1H, dd, C₅H, J 6.2, 7.9), 4.20 (3H, s, N–CH₃); $\delta_{\rm C}$ 168.5 (COO), 146.8 (C₆), 146.7 (C₂), 145.6 (C₄), 137.8 (C₃), 128.5 (C₅), 49.1 (CH₃).

Anhydrous trigonelline was obtained by dehydration of monohydrate in vacuum at 110 °C over P_2O_5 for 5 h. The anhydrous trigonelline is very hygroscopic and converts into the monohydrate when it is left in open vessel overnight.

2.2. Spectra

FT-IR spectra were recorded on a Bruker IFS 113v spectrometer at a 2 cm^{-1} resolution in Nujol and Fluorolube mulls. Raman spectra were recorded on a Magna 760 Nicolet operating at the 1064 nm exciting line of an Nd:YAG laser.

The ¹H and ¹³C NMR spectra were recorded on a Varian Gemini 300 VT spectrometer operating at 300.07 and 75.46 MHz for proton and carbon-13, respectively. The ¹H and ¹³C chemical shifts were measured in D_2O solution relative to internal dioxane and were recalculated relative to TMS by adding 3.55 and 67.40 ppm, respectively. Chemical shifts were confirmed by COSY, HETCOR and NEODIF experiments.

2.3. Calculations

The calculations have been performed using the GAUSSIAN 98 package [7] at the MP2 [8] and B3LYP [9,10] levels of theory with the basis sets of doublezeta quality cc-pVDZ [11] and 6-31G(d,p) [12]. The vibrational IR spectra (the harmonic wavenumbers and absolute intensities) were calculated only for the most stable structures.

The harmonic force fields, determined initially in the cartesian coordinates, were transformed to the force fields in the internal local-symmetry coordinates. The local-symmetry coordinates, defined in terms of the internal valence coordinates following the IUPAC recommendation [13,14] are given in Table 1. In this way, the redundant internal coordinates were removed. The force fields determined in this way were used to calculate the harmonic wavenumbers and vibrational potential energy distribution (PED) among the normal coordinates. PED is defined as recommended by Keresztury and Jalsovszky [15] and calculated with the program PACK [16,17].

3. Results and discussion

3.1. Molecular parameters

The labelling of atoms in $TRG \cdot H_2O$ is given in Fig. 1. Some of the possible structures of trigonelline monohydrate (TRGWXR, TRGWI-TRGWIII) are

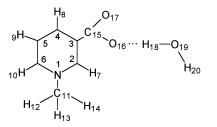


Fig. 1. Atom numbering for trigonelline monohydrate.

shown in Fig. 2. The calculated structural parameters, total energies and dipole moments are collected in Table 2, together with the X-ray results [5]. The computed geometry of pyridine ring is only slightly affected by attaching the water molecule and by dimerization, and it satisfactorily agrees with the X-ray data. In contrast, the calculated geometry of the

COO group changes significantly on hydration and dimerization.

In crystal, the hydrogen atoms of water molecule bridge to successive O(17) atoms of trigonellines (TRGWXR, Fig. 2) separated by the z translation; O(17)···H(A)OH (1 - x, 2 - y, 1 - z) being 2.06(5) and O(17)···H(B)OH (1 - x, 2 - y, 2 - z) being 1.99(4) Å [5]. In the calculated structures (TRGWI– TRGWIII) the water molecule forms one or two hydrogen bonds with one trigonelline molecule. In the gas phase, the most stable is TRGWI. The water molecule forms hydrogen bond to the O(16) atom and the oxygen atom of the water molecule interacts electrostatically with the positively charged nitrogen atom; the N⁺(1)···O(19) distance being 3.940 Å and is remarkably shorter than in TRGWII and TRGWIII.

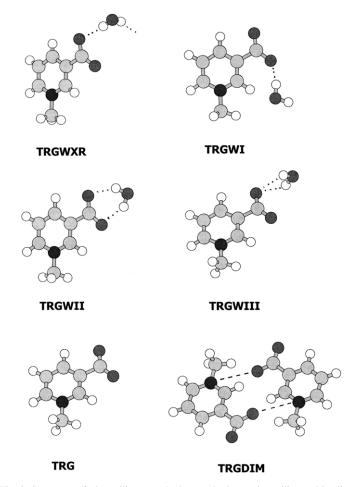


Fig. 2. Structures of trigonelline monohydrate, anhydrous trigonelline and its dimer.

Table 2
Energies, dipole moments and structural parameters for trigonelline monohydrates, anhydrous and dimer

	X-ray (TRGWXR)	X-ray MP2/cc-pVDZ (TRGWXR)			B3LYP/6-31G** (TRG)	MP2/cc-pVDZ (TRG)	B3LYP/6-31G** (TRGDIM)	MP2/ccpVDZ (TRGDIM)
	(1100/210)	TRGWI	TRGWII	TRGWIII	(110)	(110)	(IRODIN)	(IRODIN)
<i>E</i> (a.u.)		- 551.019626	- 551.015366	- 551.007625	-476.129125	- 474.764158	- 952.319755	- 949.595399
E _{rel.} (kcal/mol)		0	2.7	7.5				
ΔE (kcal/mol)		-16.8^{a}	-14.1 ^a	-9.3^{a}			- 38.6 ^b	-42.1 ^b
u (Debye)		11.9	17.5	16.9	13.8	15.0	0.3	0.002
N(1) - C(2)	1.343(5)	1.357	1.356	1.356	1.354	1.357	1.355	1.358
N(1) - C(6)	1.354(5)	1.361	1.362	1.362	1.361	1.363	1.358	1.360
N(1) - C(11)	1.480(5)	1.477	1.477	1.476	1.476	1.476	1.486	1.485
C(2) - C(3)	1.380(4)	1.401	1.398	1.398	1.386	1.398	1.393	1.402
C(3) - C(4)	1.380(5)	1.403	1.402	1.402	1.393	1.403	1.393	1.402
C(4) - C(5)	1.383(6)	1.404	1.404	1.405	1.401	1.405	1.399	1.403
C(5) - C(6)	1.366(5)	1.395	1.396	1.396	1.381	1.396	1.380	1.395
C(3) - C(15)	1.528(5)	1.571	1.562	1.569	1.565	1.578	1.549	1.556
C(15) - O(16)	1.253(4)	1.259	1.255	1.247	1.250	1.251	1.264	1.268
C(15) - O(17)	1.235(4)	1.242	1.250	1.253	1.243	1.246	1.239	1.241
C(2) - N(1) - C(6)	120.4(3)	121.8	121.3	121.2	120.6	121.2	121.1	121.7
C(2) - N(1) - C(11)	120.5(3)	118.9	120.0	120.1	120.4	120.1	119.7	119.1
C(6) - N(1) - C(11)	119.1(3)	119.2	118.7	118.7	119.0	118.7	119.1	119.2
N(1) - C(2) - C(3)	121.7(3)	120.8	121.1	121.2	121.4	121.2	120.6	120.3
N(1) - C(6) - C(5)	120.3(4)	119.6	119.9	119.9	120.3	119.9	120.6	120.1
C(2) - C(3) - C(4)	117.9(3)	118.3	118.6	118.5	118.4	118.4	118.7	118.9
C(2) - C(3) - C(15)	119.2(3)	120.7	118.5	118.3	118.6	118.5	120.9	120.4
C(4) - C(3) - C(15)	123.0(3)	120.1	122.8	123.2	123.0	123.0	120.4	120.7
C(3) - C(4) - C(5)	120.3(3)	119.9	119.5	119.5	119.8	119.6	120.0	119.6
C(4) - C(5) - C(6)	119.6(4)	119.6	119.7	119.7	119.4	119.6	119.1	119.4
C(3) - C(15) - O(16)	116.8(3)	114.1	112.8	113.1	112.6	112.3	114.1	113.3
C(3) - C(15) - O(17)	115.6(3)	113.2	113.3	112.6	113.3	112.7	115.1	115.0
O(16) - C(15) - O(17)	127.6	132.7	133.9	134.3	134.2	135.0	130.8	131.7
C(11) - N(1) - C(2) -	- 179.6	180.0	180.0	180.0	179.9	180.0	179.9	- 179.5
C(3)								
C(2)-C(3)-C(15)- C(16)	- 166.6	0	0.0	0.0	-0.0	0	1.1	-0.5
C(2)-C(3)-C(15)- C(17)	13.3	180.0	180.0	180.0	180.0	180.0	- 178.9	179.4
$N(1) \cdots O(16)$	4.722	4.159	4.074	4.077	4.063	4.078	4.136 ^c , 3.443 ^d	4.126 ^c , 3.417 ^d
$N(1) \cdots O(17)$	4.114	4.753	4.751	4.751	4.740	4.756	4.745 ^c , 5.503 ^d	4.759 ^c , 5.464 ^d
$N(1) \cdots O(19)$	7.260	3.940	6.896	7.344				
$O(16) \cdot \cdot \cdot H(18)$		1.740	2.084	-				

(continued on next page)

	X-ray (TRGWXR)				B3LYP/6-31G** (TRG)	MP2/cc-pVDZ (TRG)	B3LYP/6-31G ^{**} (TRGDIM)	MP2/ccpVDZ (TRGDIM)	
	(IKOWAR)	TRGWI	TRGWII	TRGWIII	- (110)	(110)	(IRODIW)	(IRODIW)	
O(17)···H(20)			2.137	2.363					
O(16)···O(19)		2.705	2.930	_					
$O(17) \cdots O(19)$			2.958	2.894					
O(16)·H(18)–O(19)		164.4	144.6	_					
$O(17) \cdot H(20) - O(19)$			141.6	114.0					
C(15) - O(16) -		0.0	0.0	-					
H(18)–O(19)									
C(15) - O(17) -			-0.0	96.5					
H(20)-O(19)									
O(16) - H(18) -		-180.0	0.0	_					
O(19)-H(20)									
O(17) - H(18) -			0.0	0.0					
D(19) - H(20)									

^a Interaction energy between trigonelline and water, calculated with $E(H_2O) = -76.228666$ a.u. ^b Energy of dimerization. ^c Intramolecular. ^d Intermolecular.

M. Szafran et al. / Journal of Molecular Structure 614 (2002) 97-108

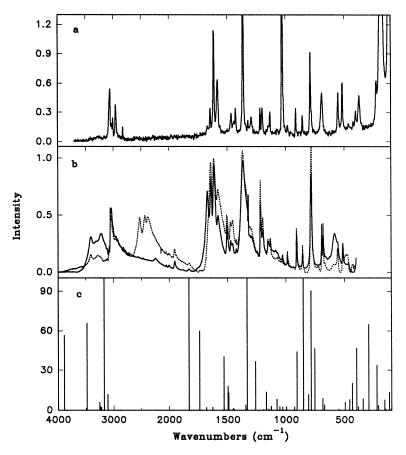


Fig. 3. Comparison of the experimental and calculated spectra of $TRG \cdot H_2O$: (a) the Raman spectrum in the solid state; (b) IR spectrum in Nujol and Fluorolube emulsion; $TRG \cdot D_2O$ dotted line; (c) the IR spectrum predicted at the MP2/cc-pVDZ level of theory.

Structure TRGWII has the water molecule bonded to both oxygen atoms (O(16) and O(17)) and its energy is larger by 2.7 kcal/mol. In TRGWIII, the water molecule is engaged in bifurcated hydrogen bond to the O(17) atom; both O(17)···H(OH) distances are 2.363 Å. The dimer (TRGDIM, Fig. 2) is stabilized by an electrostatic interaction between the oppositely charged nitrogen and oxygen atoms. The dimerization energy are -38.6 (B3LYP) and -42.1 kcal/mol (MP2) (Table 2).

3.2. The experimental spectra

 $\text{TRG-H}_2\text{O}$ is soluble in water and alcohols and insoluble in aprotic organic solvents and its vapour pressure is very low. Therefore, the IR and Raman spectra were measured in the solid state and are shown in Fig. 3. The broad absorption with maxima at 3414 and 3233 cm^{-1} in the IR spectrum (Fig. 3b) arise from the stretching vibration of the crystalline water. On deuteration the bands are shifted to 2526 and 2434 cm^{-1} , respectively. In the Raman spectra, intensity of the O-H stretching frequency is weak and in TRG·H₂O this absorption band is absent (Fig. 3a). In the crystal, two TRG molecules are bridged by a water molecule forming two (A, B) hydrogen bonds with the COO groups (see earlier). This explains the observed absorption shape in the $3400-3150 \text{ cm}^{-1}$ region (Fig. 2b). Another interesting feature is the lack of a typical strong band near 1600 cm^{-1} , which is normally attributed to the antisymmetric COO stretching mode and its frequency increases very markedly with the electron-withdrawing effect of substituent [18]. Four bands in this region are due to

Table 3

104

Observed and calculated (MP2/cc-pVDZ) vibrational frequencies, infrared intensities and potential energy distribution (PED) for trigonelline monohydrate and anhydrous

TRG·H ₂ O				TRG·D ₂ 0	С		TRG			
Raman (v _{obs})	FTIR			FTIR			FTIR			
	$\nu_{\rm obs}$	$ u_{\rm cal}$	PED ^a	$\nu_{ m obs}$	$ u_{\rm cal} $	PED ^a	$ u_{\rm obs}$	$ u_{ m cal}$	PED ^a	
	3414	3891 (56.4)	S ₅₂ 99	2526	2832	S ₅₂ 98				
	3233	3483 (65.7)	S47 99	2434	2527	S47 99				
		3268 (0.1)	S_{14} 71		3268	S_{14} 71		3268 (0.9)	S ₁₄ 73	
			S ₁₃ 26			S ₁₃ 26			S ₁₃ 21	
		3255 (6.0)	$S_{12} 50$		3255	S ₁₂ 50		3253 (6.1)	$S_{12} 44$	
			$S_{13} 30$			S ₁₃ 30			S ₁₃ 37	
			$S_{14} 20$			S14 20			S ₁₄ 17	
		3244 (2.8)	S ₁₂ 46		3244	$S_{12} 46$		3242 (2.5)	S ₁₂ 53	
			$S_{13} 41$			S ₁₃ 41			$S_{13} 40$	
3071	3057	3242 (2.8)	S ₁₆ 90		3242	S ₁₆ 90	3054	3248 (1.3)	S ₁₆ 93	
3028		3226 (2.0)	S ₁₇ 96		3226	S ₁₇ 96		2327 (1.3)	S ₁₇ 100	
3003	3040	3175 (188)	S_{11}^{11} 97		3179	S_{11}^{1} 97	3021	3262 (16.1)	$S_{11} 92$	
2959		3111 (11.8)	S ₁₅ 99		3111	S ₁₅ 99	2995	3116 (11.0)	S ₁₅ 99	
1645	1640	1831 (397)	S_{10} 96	1642	1830	S_{10} 96	1650	1851 (299)	S_{10} 97	
1668	1673	1741 (59.7)	S ₅₃ 84	1294?	1268	S_{53} 76			~ 10 7 7	
1615	1614	1683 (2.0)	S ₄ 23	1616	1683	S ₄ 23	1621	1680 (3.7)	S ₄ 25	
			S ₇ 20			S ₇ 20			$S_7 19$	
			$S_{19} 11$			$S_{19} = 11$			$S_{5} 14$	
			$S_{34} = 10$			$S_{34} = 10$			S_{19} 11	
1583	1580	1630 (2.1)	S ₆ 29	1581	1630	$S_{6} 29$	1584	1625 (1.3)	$S_6 30$	
1505	1500	1050 (2.1)	S ₅ 28	1201	1050	S ₅ 28	1501	1025 (1.5)	$S_5 26$	
			$S_{1} = \frac{11}{11}$			$S_{1} 11$			$S_1 = S_1 $	
	1506	1533 (40.2)	$S_{34} 29$	1506	1533	$S_{34} 29$		1526 (8.0)	S ₇ 23	
	1500	1555 (40.2)	$S_{34} = 2^{5}$ $S_{7} = 19$	1500	1555	S ₃₄ 25 S ₇ 19		1520 (0.0)	$S_4 22$	
			$S_{36} 12$			$S_{36} 12$			$S_4 22 S_2 14$	
			536 12			536 12			$S_2 = 14$ $S_1 = 14$	
		1517 (0.4)	S ₂₄ 23		1517	S ₂₄ 23		1507 (44.3)	$S_{24} 34$	
		1517 (0.4)	$S_{24} = 25$ $S_2 = 15$		1517	$S_{24} = 25$ $S_2 = 15$		1507 (44.5)	$S_{24} = 54$ $S_{22} = 11$	
			$S_{2} = 15$ $S_{4} = 12$			$S_{4} 12$			$S_{23} = 10$ $S_{23} = 10$	
			$S_{412} S_{23} 10$			$S_{23} = 12$ $S_{23} = 10$			523 10	
			$S_{23} = 10$ $S_7 = 10$			$S_{23} = 10$ $S_7 = 10$				
			$S_{1} = 10$ $S_{1} = 10$			$S_{1} = 10$				
	1473	1498 (17.8)	$S_{11} = 10$ $S_{24} = 29$		1498	$S_{11} = 10$ $S_{24} = 29$	1487	1495 (3.53)	S ₃₇ 22	
	1475	1498 (17.8)	$S_{24} = 29$ $S_{22} = 15$		1490	$S_{24} = 29$ $S_{22} = 15$	1407	1495 (5.55)	$S_{37} 22$ $S_{36} 17$	
			$S_{22} = 15$ $S_{37} = 14$			$S_{22} = 15$ $S_{37} = 14$			$S_{36} 17$ $S_6 11$	
			537 14			337 14				
1461	1457	1402 (12.8)	S 66	1458	1492	S 66		1488 (12.7)	$S_{21} 10$	
1401	1457	1492 (12.8)	$S_{22} 66$	1436	1492	S ₂₂ 66		1400 (12.7)	$S_{22} 67$	
									$S_{24} 23$	
1420	1425	1452(12)	C 25		1452	C 25		1440 (5 6)	$S_{25} 10$	
1429	1425	1453 (1.3)	$S_{24} 35$		1453	$S_{24} 35$		1449 (5.6)	$S_{24} 24$	
			$S_1 22$			$S_1 22$			S ₂ 17	
		1446 (0.7)	$S_2 12$		1446	S ₂ 13		1443 (0.7)	$S_1 15$	
1210	1221		$S_{21} 86$	1222		$S_{21} 87$	1200	. ,	$S_{21} 90$	
1319	1321	1347 (4.0)	$S_{34} 41$	1322	1347	$S_{34} 41$	1309	1289 (23.3)	$S_{37} 21$	
			$S_{35} 21$			$S_{35} 21$			S ₃₄ 18	
			$S_{36} 16$			S ₃₆ 16		(continued on	$S_{35} 16$	

(continued on next page)

Table 3 (continued)

TRG·H ₂ O				$TRG \cdot D_2$	0		TRG		
Demon (c.)	FTIR			FTIR			FTIR		
Raman (ν_{obs})	$\nu_{\rm obs}$	$\nu_{\rm cal}$	PED ^a	$\nu_{\rm obs}$	$\nu_{\rm cal}$	PED ^a	$ u_{\rm obs}$	$\nu_{\rm cal}$	PED ^a
									S ₃ 12
									$S_{36} = 10$
1364	1367	1334 (238)	S ₉ 85	1370	1334	S ₉ 84	1377	1308 (203)	S ₉ 84
			$S_{29} 10$			$S_{29} 10$	1361		
1219	1217	1262 (36.6)	S ₃ 36	1217	1261	S ₃ 34	1218	1239 (24.3)	S ₃ 26
			S ₃₇ 20			S ₃₇ 17			S_{18} 19
			S ₁₈ 13			S ₁₈ 13			S ₃₄ 17
			S ₂ 12			$S_2 10$			
			$S_1 10$						
1201	1196	1194 (0.4)	S ₃₇ 21	1197	1194	S ₃₇ 22		1189 (1.0)	S ₃₆ 27
			$S_7 15$			S ₇ 15			S37 26
			S ₃₅ 13			S ₃₅ 12			S ₇ 20
			55			$S_{36} 10$,
	1153	1170 (13.5)	S ₃₆ 28	1153	1168	S ₃₆ 26	1176	1145 (0.1)	S ₂₅ 86
			S ₂₃ 16			S ₂₃ 16			25
			$S_{5} = 10$			$S_{5} = 10$			
		1150 (0.9)	$S_{25} 81$		1150	$S_{25} 81$		1125 (17.2)	S ₂₃ 45
		1100 (017)	523 01		1100	523 01		1120 (1112)	$S_{35} = 18$
									$S_{35} = 10$ $S_{34} = 12$
1134	1134	1128 (2.8)	S ₂₃ 34	1134	1128	S ₂₃ 34	1114	1115 (28.4)	$S_{34} 12$ $S_{34} 28$
1154	1154	1120 (2.0)	$S_{23} = 54$ $S_{35} = 15$	1154	1120	$S_{23} = 54$ $S_{35} = 15$	1114	1115 (20.4)	$S_{34} = 20$ $S_{36} = 18$
			$S_{36} = 15$ $S_{36} = 14$			$S_{36} = 15$ $S_{36} = 15$			$S_{6} = 15$
			$S_{36} = 14$			$S_{36} = 15$ $S_6 = 14$			$S_{8} = 10$ $S_{8} = 10$
	1089	1080 (8.0)	$S_{35} = 29$	1073	1080	$S_{35} = 14$ $S_{35} = 29$	1080	1073 (12.1)	$S_{35} = 10$ $S_{35} = 27$
	1089	1000 (0.0)	$S_{35} 29$ $S_{23} 21$	1075	1000	$S_{35} 29$ $S_{23} 21$	1080	1075 (12.1)	$S_{35} = 27$ $S_{23} = 25$
			$S_{23} = 21$ $S_6 = 12$			$S_{23} = 21$ $S_6 = 12$			523 25
1030	1030	1055 (2.7)	$S_{40} 88$	1032	1053	$S_{40} 87$	1028	1008 (0.0)	S 75
1030	1050	1055 (2.7)		1032	1055		1028	1008 (0.0)	S_{41} 75
			<i>S</i> ₄₁ 13			S ₄₁ 14			S ₄₂ 35
		1032 (2.3)	$S_{18} 45$		1031	$S_{18} 45$		1033 (2.7)	S ₁₈ 48
									$S_{6} 11$
									$S_{7} 10$
981	987	999 (2.0)	S ₄₁ 59	987	998	$S_{41} 58$		941 (0.9)	$S_{42} 43$
			$S_{42} 43$			$S_{42} 43$			$S_{40} 40$
			$S_{40} \ 12$			$S_{40} 14$			S ₄₃ 24
913	909	929 (2.2)	S42 39	909	927	$S_{42} 39$	906	910 (9.5)	$S_{40} 58$
			S ₄₃ 39			S ₄₃ 39			$S_{41}17$
			$S_{41} 24$			$S_{41} 24$			S_{43} 14
857	857	909 (44.0)	S ₃ 29	857	909	S ₃ 29	843	898 (28.0)	S ₃ 29
			$S_8 \ 20$			$S_8 \ 20$			$S_8 18$
			$S_{19} 15$			$S_{19} 15$			$S_{19} 17$
									$S_{18} 10$
	585	854 (319)	$S_{49} 65$	487	620	$S_{49} 67$			
			S ₅₄ 15			S ₅₄ 15			
		810 (11.6)	S ₄₃ 54		810	S ₄₃ 54		805 (14.2)	S ₄₃ 59
			S ₃₃ 22			S ₃₃ 23			S ₃₃ 21
			$S_{42} 11$			$S_{42} 10$			S ₄₂ 10
789	784	787 (90.4)	$S_{29} 59$	782	787	$S_{29} 60$	781	777 (95.6)	$S_{29} 66$
							768		$S_{20} 10$
								(continued on	next page

Table 3 (continued)

TRG·H ₂ O				TRG·D ₂	O		TRG		
Bomon (a.)	FTIR			FTIR			FTIR		
Raman (ν_{obs})	$\nu_{\rm obs}$	$ u_{\rm cal}$	PED ^a	$\nu_{\rm obs}$	$\nu_{\rm cal}$	PED ^a	$\nu_{\rm obs}$	$ u_{\rm cal}$	PED ^a
691	694	756 (46.5)	S ₃₃ 49	693	756	S ₃₃ 49		751 (37.1)	S ₃₃ 52
			S_{43} 13			S_{43} 14			S ₄₃ 12
			S ₄₂ 13			S_{42} 13			$S_{42} 12$
			42			42			S_{41}^{42} 10
	681	689 (8.8)	S ₂₀ 66	680	691	S ₂₀ 65	688	686 (7.5)	$S_{20} 68$
		(,	S_{29} 15			S ₂₉ 14	678		$S_{29} = 16$
553	557	675 (4.0)	S_{26}^{25} 104	558	675	$S_{26} 103$	553	670 (1.9)	S_{26}^{2} 107
		552 (0.9)	$S_{19} 45$		552	S_{19} 46		548 (0.2)	$S_{19} 48$
			$S_{30} 21$			$S_{30} 21$			$S_{30} 20$
			~ 50 = -			~30 = 1			$S_{3} 10$
516	514	498 (5.8)	S ₃₀ 31	515	496	S ₃₀ 32	510	494 (5.4)	$S_{30} 40$
010	011	190 (010)	$S_{19} 21$	010	.,,,	$S_{19} = 20$	010		$S_{19} = 17$
			$S_{39} 14$			$S_{39} 14$			$S_{39} = 14$
	466	459 (7.9)	$S_{39} 14$ $S_{27} 38$		459	S_{39} 14 S_{44} 36		456 (4.24)	$S_{39} = 14$ $S_{27} = 36$
	400	455 (1.5)	$S_{44} 36$		437	$S_{27} 35$		450 (4.24)	$S_{44} 36$
			$S_{44} = 50$ $S_{26} = 12$			$S_{26} = 11$			$S_{44} = 50$ $S_{28} = 13$
			526 12			$S_{28} 11$ $S_{28} 11$			
		436 (20.1)	\$ 55	428	303				$S_{26} 11$
		450 (20.1)	S_{28} 55	428	505	S_{51} 116			
			$S_{51} 50$			$S_{49} 26$			
			S_{32} 14			S ₅₃ 10			
200		100 (16 6)	$S_{49} 10$		125	G 70		414 (0.0)	G 05
399		400 (46.6)	S ₅₁ 74		425	S ₂₈ 79		414 (0.0)	S ₂₈ 85
			S ₂₈ 28			S ₂₇ 16			S ₂₇ 19
			S ₄₉ 14			S ₃₂ 13			
			$S_{27} \ 10$						
372		385 (2.7)	S ₃₈ 47		385	S ₃₈ 47		381 (0.7)	S ₃₈ 54
			$S_{30} 25$			S ₃₀ 25			$S_{30} 17$
						$S_8 10$			
		344 (8.4)	$S_{8} 42$		344	$S_8 41$		330 (6.0)	$S_{8} 48$
			S ₃₈ 13			S ₃₈ 14			S ₃₈ 11
			$S_{19} 10$			$S_{19} 10$			$S_{19} 11$
									$S_{18} 10$
		296 (64.7)	S ₅₄ 121		211	S ₅₄ 84			
			$S_{50} 20$			S ₅₀ 19			
						S ₄₆ 18			
						S ₂₇ 12			
224		227 (33.6)	S_{46} 71		226	S ₅₄ 39			
			$S_{39} 14$			S46 31			
172		213 (3.7)	$S_{27} 44$		212	S ₂₇ 35		213 (2.1)	$S_{44} 42$
			$S_{44} 40$			S44 32			S ₂₇ 39
						$S_{46} 11$			$S_{28} \ 10$
		160 (7.6)	$S_{48} 64$		157	S ₄₈ 66			
			S ₄₅ 37			S45 35			
			$S_{51} 10$			S ₅₁ 13			
		150 (0.7)	S ₃₉ 28		148	S45 28		143 (2.3)	$S_{45} 90$
			S ₄₅ 27			S ₃₉ 24			
			S_{46} 19			$S_{46} 21$			
			S_{48} 16			S_{48} 15			
114		119 (13.4)	S ₃₉ 28		117	S ₃₉ 29		171 (4.2)	S ₃₉ 70
								(continued on	

Table 3 (continued)

TRG·H ₂ O					TRG·D ₂ O			TRG		
Domon (a	FTIR			FTIR			FTIR			
Raman (ν_{obs})	$\nu_{\rm obs}$	$ u_{\rm cal}$	PED ^a	$\nu_{\rm obs}$	$\nu_{\rm cal}$	PED ^a	$ u_{ m obs}$	$ u_{ m cal}$	PED ^a	
			S ₄₅ 17			S45 15			S ₃₀ 14	
			S ₃₀ 11			S ₅₁ 13				
			S ₅₁ 11			S ₃₀ 12				
		101 (1.4)	S ₃₁ 83		101	S ₃₁ 83		17 (0.0)	S ₃₁ 92	
			S ₃₂ 10			S ₃₂ 10				
		66 (0.3)	S ₃₂ 61		66	S ₃₂ 62		72 (0.0)	S ₃₂ 90	
			S ₅₀ 34			S ₅₀ 33			S ₂₇ 17	
			S ₂₇ 10			S ₂₇ 10				
		43 (2.5)	S ₅₀ 63		43	S ₅₀ 61				
			S ₃₂ 22			S ₃₂ 21				
			S48 11			$S_{48} 10$				
R.M.S.		46 ^b , 69 ^c					61 ^b , 85 ^c			

^a Only contributions greater than 10 are listed.

^b R.M.S. error for bands (without ν OH, δ OH, γ OH and ν CH modes).

^c R.M.S. error for all bands.

strongly coupled in-plane bending vibrations of the water molecule, COO stretching, and ring stretching frequencies. The band at 1673 cm⁻¹ is absent in the spectrum of anhydrous trigonelline and it is shifted to 1455 cm⁻¹ when H₂O is replaced by D₂O (Fig. 2b). Thus, this band corresponds to the bending mode of the water molecule. The bands at 1640 and 1367 cm⁻¹ are due to the antisymmetric and symmetric COO stretching vibrations, respectively.

3.3. The computed IR spectra and interpretation of the experimental spectrum

For the most stable structure of trigonelline monohydrate, TRGWI, the intramolecular $N(1)^+ \cdots O(19)$ distance is predicted to be 3.940 Å, which is significantly shorter than that found in the crystal (7.260 Å) [5]. In the crystal, the unit cell contents a pair of TRG molecules together with two water molecules. Thus in the crystal, the charged nitrogen atom interacts electrostatically with the oxygen atoms from the neighbouring COO⁻ groups and the water molecules.

Table 3 lists the calculated harmonic frequencies, intensities, and PEDs for normal modes. A comparison of the calculated and experimental frequencies shows substantial differences, especially for the frequencies assigned to water vibrations. Two factors may be responsible for the discrepancy between the experimental and computed spectra of TRGWI. The first is that the experimental spectrum is for the complex in the crystal, whereas the computed one refers to the isolated complex in the gas phase. For the real crystal structure, both hydrogen atoms of the water molecule are engaged in hydrogen bonds, while only one hydrogen atom in the computed structure. Therefore, the calculated frequencies of the vOH and δOH vibrations are overestimated. The second reason for this discrepancy is the fact that the experimental values are anharmonic frequencies while the calculated values are harmonic frequencies. For the skeletal modes, the difference between the experimental and calculated frequencies are much smaller than those for H₂O. R.M.S. deviation between the experimental and calculated harmonic frequencies are 69 cm^{-1} for all bands and 46 cm⁻¹ for all bands except the ν (OH), δ (OH) and ν (CH) ones. The MP2 method reproduces correctly the isotope frequency ratio, $\nu H/\nu D$.

4. Conclusions

The structural parameters, harmonic frequencies and IR intensities of the vibrational bands were calculated at the MP2 and B3LYP levels of theory using cc-pVDZ and 6-31G(d,p) basis sets. The

predicted frequencies were compared with the experimental data in the solid state. The computed geometry of the pyridine ring is slightly affected by hydration and dimerization, and satisfactorily agrees with the X-ray data. As expected, the geometry of the COO group changes significantly on hydration and dimerization. A satisfactory reproduction of the experimental frequencies, except that of the modes for the water unit, is obtained. The differences for the ν OH and ν CH stretches are consistent with the expected anharmonicity of $170-200 \text{ cm}^{-1}$ for these modes.

Acknowledgments

The authors are grateful to Professor W.B. Person for providing of the PACK program and stimulating discussion. Calculations were performed at the Poznan Supercomputing and Networking Centre.

References

- [1] Beilstein, 22(1), E III/IV, pp. 463-464.
- [2] M. Florkin, E.H. Stotz (Eds.), Comprehensive Biochemistry, Elsevier, Amsterdam, 1965, p. 224.
- [3] A.V. Robertson, L. Marion, Can. J. Chem. 37 (1959) 1043.
- [4] W.S. Knowles, R.C. Elderfield, J. Org. Chem. 7 (1942) 389.
- [5] J.R. Cannon, J.S. Edmonds, K.A. Francesconi, C.L. Raston,

J.B. Saunders, B.W. Skelton, A.H. White, Aust. J. Chem. 34 (1981) 787.

- [6] E.M. Kosover, J.W. Patton, J. Org. Chem. 26 (1961) 1318.
- [7] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, A.J. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, GAUSSIAN 98, Revision A 6 Gaussian, Inc, Pittsburg PA, 1998.
 [8] C. Møller, M.S. Plesset, Phys. Rev. 46 (1934) 618.
- [9] A.D. Becke, J. Chem. Phys. 98 (1994) 5648.
- [10] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994) 111623.
- [11] T.J. Dunning Jr, J. Chem. Phys. 90 (1989) 1007.
- [12] W.J. Hehre, L. Random, P.V.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1989.
- [13] IUPAC Commission on Molecular Structure on Spectroscopy, Pure Appl. Chem. 50 (1978) 1707.
- [14] P. Pulay, G. Fogarasi, F. Pang, J.E. Boggs, J. Am. Chem. Soc. 101 (1979) 2550.
- [15] G. Keresztury, G. Jalsovszky, J. Mol. Struct. 10 (1971) 304.
- [16] K. KuBulat, PhD Dissertation, University of Florida, Gainesville, Fl, USA, 1989.
- [17] W.B. Person, K. KuBulat, personal communication, 1989.
- [18] E. Spinner, J. Chem. Soc. (1964) 4217.