Organic & Biomolecular Chemistry

View Article Online

PAPER

Check for updates

Cite this: *Org. Biomol. Chem.*, 2021, **19**, 1807

Unprecedented access to functionalized pyrrolo [2,1-a]isoquinolines from the domino reaction of isoquinolinium ylides and electrophilic benzannulated heterocycles[†]

Sheba Ann Babu,^{a,b} Rajalekshmi A. R.,^a Nitha P. R.,^{a,b} Vishnu K. Omanakuttan,^{a,b} Rahul P.,^{a,b} Sunil Varughese ⁽⁾ *^{a,b} and Jubi John ⁽⁾ *^{a,b}

lines from the reaction of 3-nitro benzothiophene and isoquinolinium methylides.

We have come across an unexpected reaction between electrophilic indoles and isoquinolinium methyl-

ides for accessing functionalized pyrrolo[2,1-a]isoquinolines. The reaction was found in general to yield

the products in good yields. We also observed the formation of S-S-bridged bis-pyrrolo[2,1-a]isoquino-

Received 2nd January 2021, Accepted 25th January 2021 DOI: 10.1039/d1ob00005e

rsc.li/obc

Introduction

Electrophilic benzannulated heterocycles, which exhibit unusual reactivity can be generated by installing electron-withdrawing substituents at precise positions.¹ In this way, an indole moiety can be made electrophilic by placing electronwithdrawing groups on the N-atom and C-2 or C-3 carbon atoms. The chemistry of electrophilic indoles was extensively investigated by several groups for the synthesis of functionalized (or fused) indoline/indole moieties.² Dipolar cycloaddition utilizing an electrophilic indole as the dipolarophile towards annulated heterocycles has been reported by different groups. The first of these reports came from Gribble's group in 1998 in which they synthesized pyrrolo[3,4-b]indoles via the dipolar cycloaddition of münchnones with an electrophilic indole (Scheme 1a).³ Later, the same group also reported the reaction of azomethine ylides with electrophilic indoles, furnishing hexahydropyrrolo[3,4-b]indoles.⁴ The asymmetric version of azomethine ylide addition to an electrophilic indole was independently reported by Arai and Stanley (Scheme 1b).⁵ In 2017, Wang and co-workers reported the synthesis of fivering-fused tetrahydroisoquinolines from azomethine imines and electrophilic indoles (Scheme 1c).⁶ Our interest in the chemistry of electrophilic benzannulated heterocycles⁷ made

 ^aChemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram
 695019, India. E-mail: jubijohn@niist.res.in, s.varughese@niist.res.in
 ^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
 † Electronic supplementary information (ESI) available. CCDC 2042168 and
 2042169. For ESI and crystallographic data in CIF or other electronic format see
 DOI: 10.1039/d1ob00005e us devise dipolar cycloaddition reactions towards novel heteroacenes (Scheme 1d).

Heteroaromatic N-ylides are a class of dipoles which have been comprehensively studied for the generation of highly functionalized carbocycles and heterocycles.⁸ In particular, isoquinolinium methylides have been utilized in dipolar cycloaddition reactions with several dipolarophiles, such as electron-deficient alkenes and alkynes to access fused

Scheme 1 Dipolar cycloadditions involving electrophilic benzannulated heterocycles.

Paper

N-heterocyclic scaffolds.9 The 1,3-dipolar cycloaddition of isoquinolinium methylides to nitrostyrenes has been reported previously. The first work in this line was published in 1990 when 1-nitro-2-phenyl-3-R-2,3-dihydrobenzo[g]indolizine was synthesized *via* the reaction between β -nitrostyrene and isoquinolinium methylide.¹⁰ Later, Kucukdisli and Opatz reported the reaction of different heteroaromatic N-ylides (including isoquinolinium methylides) with β -nitrostyrene and found that aromatized products were obtained after the elimination of HNO₂.¹¹ In 2014, the dipolar cycloaddition of isoquinolinium methylides to 3-nitrochromenes was reported to furnish azadibenzo[a,g] fluorene derivatives.¹² Inspired by these reports on the dipolar cycloaddition of isoquinolinium methylides to nitrostyrenes, we hypothesized that the reactions of these heteroaromatic N-ylides with electrophilic benzannulated heterocycles would result in the development of novel heteroacenes (Scheme 1d).

Results and discussion

We commenced our studies by selecting *N*-tosyl-3-nitro indole **1a** and 2-(cyanomethyl)isoquinolin-2-ium-bromide **2a** as model substrates. Initially, **1a** (1.0 equiv.) and **2a** (1.1 equiv.) were treated in the presence of potassium *t*-butoxide (^{*t*}BuOK, 4.0 equiv.) in dimethylformamide (DMF) at room temperature for 1 h. Contrary to our expectation of the formation of a pentacene, as depicted in Scheme 1d, the 1,3-dipolar cycloaddition reaction between **1a** and **2a** resulted in the formation of functionalized pyrrolo[2,1-*a*]isoquinoline **3a** in 48% yield (Scheme 2). The structure of **3a** established by various spectroscopic analyses was further confirmed from X-ray crystallographic data.

Pyrrolo[2,1-*a*]isoquinoline moieties¹³ are important fused N-heterocycles that are found in plenty of core structures of natural products, such as crispine A and B, trolline, lamellarins, and erythrina alkaloids, which are found to show interesting anticancer, antiviral and antibacterial activities.¹⁴ Synthetic pyrrolo[2,1-*a*]isoquinolines have also been found to exhibit a plethora of biological properties, such as anticancer effects, multidrug resistance (MDR) reversal, estrogen receptor modulation, deoxyribonucleic acid (DNA) chelation, and antimicrobial, antiplatelet and anti-inflammatory effects.¹⁵ In addition, these fused N-heterocycles have been utilized in

Scheme 2 1,3-Dipolar cycloaddition of an isoquinolinium methylide with an electrophilic indole.

developing different metal cation and organic sensors.¹⁶ Two well-known strategies to access pyrrolo[2,1-*a*]isoquinolines are the annulation of appropriate rings to a substituted pyrrole or an N-functionalized isoquinoline.^{13,15*a*,17} In 2019, Dong and Huang reported the synthesis of substituted indolizines from the reaction of chromones and pyridinium salts.¹⁸ This reaction proceeded *via* a 1,3-dipolar cycloaddition-ring opening and aromatization cascade.

Intrigued by the unexpected synthesis of the substituted pyrrolo[2,1-a] isoquinoline moiety, we went on with the optimization of the reaction conditions with 1a and 2a as substrates. Screening of different bases, such as ^tBuOK, ^tBuONa, NaOMe, Cs₂CO₃, K₂CO₃, Na₂CO₃, KOH, NaOH, LiOH, NaH and DIPEA (Table 1, entries 1-11) revealed that KOH was the most suitable base, furnishing the product in 54% yield. Then, we focused on the effect of different solvents on the reaction outcome (Table 1, entries 12–16). Among the screened solvents, DMF was found to be the most effective, giving the product in 54% vield. The vield of the reaction was found to decrease when the amount of base was decreased to 2.0 equivalents. In this case, the starting material was found to remain unreacted and no by-product was observed (Table 1, entry 19). Finally, we turned our attention towards the effect of substrate concentration on the reaction. To our delight, the use of 1.5 equivalents of 2a increased the yield of 3a to 88% (Table 1, entry 18).

With the optimized conditions in hand (1.0 equiv. of **1a**, 1.5 equiv. of **2a**, 4.0 equiv. of KOH, DMF, rt), we then explored the scope of the 1,3-dipolar cycloaddition of isoquinolinium

Table 1 Optimization studies^a

Entry	Base	Solvent	Time (h)	Yield of 3a (%)	
1	^t BuOK	DMF	1	48	
2	^t BuONa	DMF	1	21	
3	NaOMe	DMF	1	_	
4	Cs_2CO_3	DMF	1	37	
5	K_2CO_3	DMF	1	16	
6	Na_2CO_3	DMF	1	Trace	
7	КОН	DMF	1	54	
8	NaOH	DMF	1	49	
9	LiOH	DMF	1	43	
10	NaH	DMF	1	38	
11	DIPEA	DMF	1	_	
12	KOH	1,4-Dioxane	1	16	
13	KOH	EtOH	1	_	
14	KOH	CH_3CN	1	26	
15	KOH	EtOAc	1	_	
16	KOH	THF	1	22	
17	KOH	DMF	12	61	
18^b	KOH	DMF	1	88	
19 ^{<i>c</i>}	KOH	DMF	1	10	

^{*a*} Reaction conditions: **1a** (1.0 equiv., 0.16 mmol), **2a** (1.1 equiv.), base (4.0 equiv.), solvent (1.0 mL), rt. ^{*b*} **2a** (1.5 equiv.). ^{*c*} Base (2.0 equiv.).

 Table 2
 Generalization of 1,3-dipolar cycloaddition of isoquinolinium methylides with substituted electrophilic indoles^a

 a Reaction conditions: 1 (1.0 equiv., 100 mg), 2a (1.5 equiv.), KOH (4.0 equiv.), DMF (0.16 M), rt, 1 h.

 Table 3
 Generalization of 1,3-dipolar cycloaddition reaction with various isoquinolinium bromides^a

Reaction conditions: a 1 (1.0 equiv., 100 mg), 2a (1.5 equiv.), KOH (4.0 equiv.), DMF (0.16 M), rt, 1 h. b 4 h.

methylides using different substituted electrophilic indoles, the results of which are summarized in Table 2. In this way, the generalization of different 3-nitro-indoles 1 with the model substrate 2-(cyanomethyl)isoquinolin-2-ium-bromide 2a was studied. Reactions with halogens (Br, F, Cl)-substituted nitroindoles proceeded well, affording products 3b, 3c and 3d in good yields. The dipolar cycloaddition of 2a with 3-nitro-1tosyl-1H-indole-5-carbonitrile afforded the corresponding substituted pyrrolo[2,1-a]isoquinoline 3e in 52% yield. With an electron-releasing OMe-substituent (5-methoxy-3-nitro-1-tosyl-1H-indole), even after heating to reflux in DMF for a prolonged period of time, the reaction failed, which might be due to the reduced electrophilicity (3f). Next, the electron-withdrawing substituent on the N-atom of the indole was changed to Boc, in which case the expected product 3g was isolated in 75% yield. The reactions with electrophilic indole substrates with SO_2Me and SO_2Ph on the N-atom afforded 3h and 3i in 52% and 61% yields. Finally, other sulfonyl substituents on the N-atom of the indole were found to influence the outcome of the reaction from which products 3j to 3m were obtained in moderate to excellent yields.

Further investigations were focused on evaluating the reactivity of different isoquinolinium bromides in the present dipolar cycloaddition with electrophilic indoles (Table 3). The reactions with isoquinolinium methylides **2b–2d** (with different substituents on the *para*-position of the phenyl ring) afforded the products **3n–3p** in good yields. The isoquinolinium methylides **2e** with an ethoxycarbonyl-group as the electron-withdrawing moiety also afforded the corresponding pyrrolo[2,1-*a*]isoquinoline **3r** in 62% yield. Finally, isoquinolinium bromides **2f–2i** prepared from 4-bromo isoquinoline and 5-bromo isoquinoline were tested for reactivity in the present transformation and products **3s–3v** were isolated from the reactions in satisfactory yields. *N*-Methyl-3-nitroindole led to the formation of pyrrolo[2,1-*a*] isoquinoline **3w**, wherein we observed the elimination of the *N*-methyl group.

We also attempted a gram-scale synthesis (starting from 1.0 g of 1a) of pyrrolo[2,1-*a*]isoquinoline 3a, and the compound was obtained in 72% yield (Scheme 3). Compound 3a was then subjected to Ts-deprotection by treating it with concentrated H_2SO_4 for 2 hours, which furnished pyrrolo[2,1-*a*]isoquinoline 4. In compound 4 not only was the Ts-group removed but the CN-moiety was also converted to the corresponding amide.

Based on our observations and on the reported literature,^{10–12} we propose a plausible mechanism for the present domino dipolar cycloaddition-ring opening process that takes place during the reaction of electrophilic indole and

Scheme 3 Gram-scale reaction of 1a with 2a and *N*-Ts deprotection of pyrrolo[2,1-a]isoquinoline 3a.

Scheme 4 Plausible mechanism for the synthesis of pyrrolo[2,1-a]isoquinoline 3.

isoquinolinium methylide (Scheme 4). The first step is the deprotonation of the activated methylene group of the isoquinolinium salt by KOH to generate the corresponding N-ylide. This dipole then participates in a 1,3-dipolar cycloaddition with the dipolarophile, *N*-tosyl-3-nitroindole **1a** to generate the corresponding cycloadduct **A** (Scheme 4). Subsequent elimination of HNO₂ from **A** generates intermediate **B**, which upon aromatization results in a strain-induced cleavage of the C–N bond, furnishing the final product pyrrolo[2,1-*a*]isoquinoline **3a**.

The unexpected domino transformation observed from the reaction of electrophilic indoles and isoquinolinium methylides prompted us to check the reactivity of electrophilic benzothiophenes. The initial experiment was performed by reacting 3-nitro benzothiophene **5a** with 2-(2-oxo-2-phenylethyl)isoquinolin-2-ium-bromide **2b** in the presence of KOH (2.0 equiv.) in DMF at room temperature. After 24 h, a bis-pyrrolo[2,1-*a*]isoquinoline **6a** linked with an S–S bond was isolated in 12% yield (Scheme 5). The structure of **6a** was established by various spectroscopic analyses and confirmed from X-ray crystallographic data.

The poor yield obtained for the synthesis of bis-pyrrolo[2,1alisoquinoline 6a prompted us to optimize the reaction conditions with 5a and 2b as substrates. Increasing the equivalents of base and 2b was found not to have a positive outcome on the reaction yield (Table 4, entries 2 and 3). A slight increase in the yield of 6a was noted by carrying out the reaction at 60 °C (Table 4, entry 4). Screening of different bases, such as K₂CO₃, K₃PO₄, Na₂CO₃, Cs₂CO₃, NaOH, KOH and KOtBu (Table 4, entries 4-10), revealed that K₃PO₄ was more efficient. Further screening of solvents showed that CH₃CN gave better results in comparison to other solvents, such as DMF, THF, EtOH, DMA, 1,4-dioxane or DMSO (Table 4, entries 7, 11-16). Also, performing the reaction in the presence of an oxidant, $Cu(OAc)_2 \cdot H_2O$, was found to be less efficient (Table 4, entries 17 and 18). Finally, we carried out the reaction under an inert atmosphere to see whether the oxidation of intermedi-

Scheme 5 Synthesis of bis-pyrrolo[2,1-a]isoquinoline 6a from 3-nitro benzothiophene and 2b.

Organic & Biomolecular Chemistry

Table 4 Optimization studies^a

Entry	Base	Solvent	Temp. (°C)	Yield of 6a (%)
1	КОН	DMF	rt	12
2^{b}	КОН	DMF	rt	10
3 ^c	KOH	DMF	rt	10
4	KOH	DMF	60	14
5	^t BuOK	DMF	60	14
6	NaOH	DMF	60	10
7	K ₃ PO ₄	DMF	60	29
8	K ₂ CO ₃	DMF	60	14
9	Na ₂ CO ₃	DMF	60	
10	Cs_2CO_3	DMF	60	12
11	K ₃ PO ₄	EtOH	60	
12	K ₃ PO ₄	THF	60	
13	K ₃ PO ₄	1,4-Dioxane	60	
14	K ₃ PO ₄	CH_3CN	60	80
15	K ₃ PO ₄	DMA	60	14
16	K ₃ PO ₄	DMSO	60	20
17	K_3PO_4 , $Cu(OAc)_2 \cdot H_2O$	DMF	60	Trace
18^d	2,6-Lutidine, $Cu(OAc)_2 \cdot H_2O$	DMF	60	Trace
19^e	K ₃ PO ₄	CH_3CN	60	20

^{*a*} Reaction conditions: **5a** (1.0 equiv., 0.28 mmol), **2b** (1.5 equiv.), base (2.0 equiv.), solvent (1.0 mL), rt, 24 h. ^{*b*} Base (4.0 equiv.). ^{*c*} **2b** (3.0 equiv.). ^{*d*} Base (5.0 equiv.); Cu(OAc)₂·H₂O (1.5 equiv.). ^{*e*} Under an argon atmosphere.

ate thiol to an S–S bond bridged bis-pyrrolo[2,1-a]isoquinoline could be prevented (Table 4, entry 19). From this reaction, **6a** was isolated in low yield and we were not able to isolate the thiol or any other intermediates. Complete consumption of 3-nitrobenzothiophene **5a** was not observed in any of the reactions mentioned above.

Table 5Generalization of 1,3-dipolar cycloaddition reaction of variousisoquinolinium methylides with 3-nitro benzothiophene^a

^{*a*} Reaction conditions: 5 (1.0 equiv., 100 mg), 2 (1.5 equiv.), K_3PO_4 (2.0 equiv.), CH_3CN (0.28 M), 60 °C, 24 h.

With the optimized conditions in hand [1.0 equiv. of **5a**, 1.5 equiv. of **2b**, 2.0 equiv. of K_3PO_4 , CH_3CN (1 ml), 60 °C], the scope of the reaction for the synthesis of bis-pyrrolo[2,1-*a*]iso-quinoline was investigated (Table 5). The presence of a phenyl-ethanone substitution on the isoquinolinium N-atom resulted in a better reaction, furnishing the corresponding S–S-bridged bis-pyrrolo[2,1-*a*]isoquinolines **6a–6c** in good to excellent yields. Reactions of isoquinolinium methylides **2e** with an ethoxycarbonyl group as the electron-withdrawing substituent afforded the corresponding products **6d** and **6e** in satisfactory yields. In all the reactions mentioned above, unreacted 3-nitrobenzothiophene **5a** was recovered.

Conclusions

In short, we have developed a domino reaction involving a 1,3dipolar cycloaddition and a ring-opening between isoquinolinium ylides and electrophilic benzannulated heterocycles. This hitherto unknown methodology gives easy access to a series of highly functionalized pyrrolo[2,1-*a*] isoquinolines starting from different isoquinolinium methylides and 3-nitroindoles. In addition, we observed the formation of S–Sbridged bis-pyrrolo[2,1-*a*]isoquinolines from the reaction of 3-nitro benzothiophene and isoquinolinium methylides. We have also demonstrated the applicability of this cycloaddition reaction for the generation of pyrrolo[2,1-*a*] isoquinolines on the gram scale. Presently, we are currently looking at ways to synthesize pentacenes and dibenzazepines *via* site-selective C– H activation from the above obtained pyrrolo[2,1-*a*]isoquinolines, the details of which will be reported in due course.

Experimental

General experimental methods

All chemicals were of the best grade commercially available and were used without further purification. All solvents were purified according to the standard procedures; dry solvents were obtained according to the methods in the literature and stored over molecular sieves. Analytical thin-layer chromatography was performed on polyester sheets pre-coated with silica gel containing a fluorescent indicator (POLYGRAMSIL G/ UV254). Gravity column chromatography was performed using neutral alumina, and mixtures of ethyl acetate hexanes were used for elution melting points which were determined using calibrated digital melting point apparatus (Büchi а 530 melting point apparatus). Infrared spectra were recorded on a Bruker FT-IR spectrometer. Nuclear magnetic resonance (NMR) spectra were recorded using a Bruker Avance-300 (300 MHz for ¹H NMR, 75 MHz for ¹³C{¹H} NMR) and Bruker AMX-500 (500 MHz for ¹H NMR, 125 MHz for ¹³C $\{^{1}H\}$ NMR) instruments. All spectra were measured at 300 K, unless otherwise specified. The chemical shifts δ are given in ppm and referenced to the external standard TMS or internal solvent standard. ¹H NMR coupling constants (*J*) are reported in Hertz

(Hz) and multiplicities are indicated as follows s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets). Mass spectra were recorded with a ThermoFinnigan MAT95XL, a ThermoFisher Scientific LTQ Orbitrap Velos, and an Agilent 6890 gas chromatograph with a JMS-T100GC spectrometer or with an ESI/HRMS at 60 000 resolution using a Thermo Scientific Exactive mass spectrometer with orbitrap analyzer. Gas chromatographic analysis was performed using GCMS-TQ8030 SHIMADZU.

Experimental procedure for the reaction between 3-nitro-*N*-tosyl indole and isoquinolinium salt

A mixture of 3-nitro-*N*-tosyl indole (1.0 equiv., 100 mg), isoquinolinium salt (1.5 equiv.) and KOH (4.0 equiv.) was weighed into a dry reaction tube. Dry DMF was added and the reaction mixture was stirred at room temperature. After completion of the reaction as indicated from the TLC, water was added and the aqueous layer was extracted three times with ethyl acetate. The organic layer was dried over anhydrous Na_2SO_4 and the solvent was removed under vacuum. The residue was then purified by column chromatography (neutral alumina, eluent: mixtures of ethyl acetate/hexanes) to afford the corresponding products.

Synthesis and characterization of pyrrolo[2,1-*a*]isoquinolines (3a-3v)

N-(2-(3-Cyanopyrrolo[2,1-a]isoquinolin-1-yl)phenyl)-4-methylbenzenesulfonamide (3a). The general procedure was followed using 3-nitro-N-tosyl indole 1a (100 mg, 0.32 mmol), 2-(cyanomethyl)isoquinolin-2-ium-bromide 2a (118 mg, 0.47 mmol) and KOH (71 mg, 1.26 mmol) at rt for 1 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 3a as a pale yellow solid (122 mg, 88%). Mp: 147-150 °C. IR (neat) v_{max}: 3884, 3822, 3732, 3485, 3010, 2356, 1546, 1493, 1452, 1334, 1161, 1091, 903, 762 cm⁻¹. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3, \text{TMS}): \delta 8.09 \text{ (d}, J = 7 \text{ Hz}, 1\text{H}), 7.84 \text{ (d}, J = 8.5$ Hz, 1H), 7.68 (d, J = 7.5 Hz, 1H), 7.50–7.44 (m, 2H), 7.38 (d, J = 8.5 Hz, 2H), 7.25-7.21 (m, 2H), 7.17-7.13 (m, 3H), 7.10 (d, J = 8 Hz, 2H), 6.44 (s, 1H), 6.38 (s, 1H), 2.37 (s, 3H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.0, 136.2, 135.6, 131.6, 130.1, 129.7, 129.6, 128.6, 128.4, 128.1, 127.5, 127.0, 126.8, 125.4, 124.9, 122.8, 122.7, 122.5, 121.7, 114.6, 113.0, 112.9, 98.0, 21.6 ppm. HRMS (ESI-Orbitrap) m/z: $(M + Na)^+$ calcd for C₂₆H₁₉N₃NaO₂S 460.10902, found 460.11007.

N-(4-Bromo-2-(3-cyanopyrrolo[2,1-*a*]isoquinolin-1-yl)phenyl)-4-methylbenzenesulfonamide (3b). The general procedure was followed using 5-bromo-3-nitro-*N*-tosyl indole 1b (100 mg, 0.25 mmol), 2-(cyanomethyl)isoquinolin-2-ium-bromide 2a (95 mg, 0.38 mmol) and KOH (57 mg, 1.01 mmol) at rt for 1 h. Chromatography (eluent: 25% ethyl acetate in hexane) afforded the desired product 3b as a brown solid (98 mg, 75%). Mp: 208–210 °C. IR (neat) ν_{max} : 3837, 3747, 3534, 3463, 3273, 2959, 2205, 1721, 1451, 1269, 1116, 1069, 885, 740 cm⁻¹. ¹H NMR (500 MHz, (CD₃)₂CO, TMS): δ 8.20 (d, *J* = 7.5 Hz, 1H), 8.13 (s, 1H), 7.85 (d, *J* = 8 Hz, 1H), 7.77 (d, *J* = 8.5 Hz, 1H), 7.71 (dd, *J*₁ = 9 Hz, *J*₂ = 1.5 Hz, 1H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.51 (d, *J* = 1.5 Hz, 1H), 7.44 (d, J = 8 Hz, 2H), 7.35 (d, J = 7.5 Hz, 1H), 7.29–7.24 (m, 2H), 7.17 (d, J = 7.5 Hz, 2H), 6.73 (s, 1H), 2.36 (s, 3H) ppm. ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): δ 143.7, 137.3, 136.1, 134.4, 132.2, 130.5, 130.4, 129.4, 128.6, 128.2, 127.9, 127.6, 126.8, 125.1, 124.9, 123.2, 122.8, 122.6, 117.5, 114.3, 112.6, 112.5, 97.8, 20.6 ppm. HRMS (ESI-Orbitrap) m/z: (M + Na)⁺ calcd for C₂₆H₁₈BrN₃NaO₂S 538.01953, found 538.02063.

N-(4-Chloro-2-(3-cyanopyrrolo[2,1-a]isoquinolin-1-yl)phenyl)-4-methylbenzenesulfonamide (3c). The general procedure was followed using 5-chloro-3-nitro-N-tosyl indole 1c (100 mg, 0.28 mmol), 2-(cyanomethyl)isoquinolin-2-ium-bromide 2a (106 mg, 0.42 mmol) and KOH (64 mg, 1.14 mmol) at rt for 1 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 3c as a yellow solid (96 mg, 72%). Mp: 190-192 °C. IR (neat) ν_{max} : 3839, 3751, 3570, 3481, 3265, 3239, 3142, 3048, 2952, 2207, 1595, 1490, 1327, 1160, 1087, 890, 778, 674 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 8.02 (d, J = 7.5 Hz, 1H), 7.72 (d, J = 9 Hz, 1H), 7.63 (d, J = 7.5 Hz, 1H), 7.42–7.37 (m, 2H), 7.29 (d, J = 8 Hz, 2H), 7.16–7.05 (m, 6H), 6.32 (s, 1H), 6.25 (s, 1H), 2.32 (s, 3H) ppm. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (125 MHz, CDCl₃): δ 144.4, 135.9, 134.3, 131.4, 130.7, 130.1, 129.8, 129.7, 128.8, 128.6, 128.5, 128.3, 127.7, 127.0, 124.7, 123.1, 122.7, 122.5, 114.8, 112.6, 111.6, 98.3, 21.6 ppm. HRMS (ESI-Orbitrap) m/z: (M + Na)⁺ calcd for C₂₆H₁₈ClN₃NaO₂S 494.07004, found 494.07205.

N-(2-(3-Cyanopyrrolo[2,1-a]isoquinolin-1-yl)-4-fluorophenyl)-4-methylbenzenesulfonamide (3d). The general procedure was followed using 5-flouro-3-nitro-N-tosyl-indole 1d (100 mg, 0.29 mmol), 2-(cyanomethyl)isoquinolin-2-ium-bromide 2a (111 mg, 0.44 mmol) and KOH (67 mg, 1.19 mmol) at rt for 1 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 3d as a brown solid (97 mg, 71%). Mp: 172–174 °C. IR (neat) ν_{max} : 3869, 3805, 3714, 3622, 3479, 3326, 3190, 2214, 1546, 1453, 1324, 1154, 1087, 784, 662 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 8.07 (d, J = 7 Hz, 1H), 7.85–7.82 (m, 1H), 7.69 (d, J = 8 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.30 (d, J = 8 Hz, 2H), 7.25–7.17 (m, 3H), 7.15 (d, J = 7.5 Hz, 1H), 7.10 (d, J = 7.5 Hz, 2H), 6.94 (d, J = 8 Hz, 1H), 6.27 (s, 1H), 6.26 (s, 1H), 2.38 (s, 3H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): *δ* 161.0, 159.1, 144.2, 135.9, 131.6, 131.6, 129.9, 129.7, 129.6, 128.8, 128.5, 128.3, 127.7, 127.0, 125.0, 124.9, 124.6, 122.6, 122.5, 122.4, 118.3, 118.1, 116.8, 116.6, 114.8, 112.7, 112.0, 98.1, 21.6 ppm. HRMS (ESI-Orbitrap) m/z: (M + Na)⁺ calcd for C₂₆H₁₈FN₃NaO₂S 478.09960, found 478.10168.

N-(4-Cyano-2-(3-cyanopyrrolo[2,1-*a*]isoquinolin-1-yl)phenyl)-4-methylbenzenesulfonamide (3e). The general procedure was followed using 5-cyano-3-nitro-*N*-tosyl-indole 1e (100 mg, 0.29 mmol), 2-(cyanomethyl)isoquinolin-2-ium-bromide 2a (110 mg, 0.44 mmol) and KOH (66 mg, 1.17 mmol) at rt for 1 h. Chromatography (eluent: 25% ethyl acetate in hexane) afforded the desired product 3e as a yellow solid (71 mg, 52%). Mp: 217–220 °C. IR (neat) ν_{max} : 3920, 3870, 3815, 3750, 3674, 3535, 3463, 2906, 2209, 1523, 1490, 1334, 1163, 901 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 8.13 (d, *J* = 7.5 Hz, 1H), 7.88 (d, *J* = 9 Hz, 1H), 7.72 (t, *J* = 7 Hz, 2H), 7.53–7.46 (m, 4H), 7.22–7.15 (m, 4H), 7.06 (d, *J* = 8.5 Hz, 1H), 6.76 (s, 1H), 6.69 (s, 1H), 2.40 (s, 3H) ppm. ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃): δ 144.8, 140.2, 135.6, 135.5, 133.6, 130.3, 129.9, 128.8, 128.6, 128.4, 127.8, 127.1, 126.4, 124.5, 124.1, 122.6, 122.6, 122.4, 122.0, 120.7, 119.8, 119.3, 118.0, 115.1, 112.4, 111.0, 110.0, 108.0, 102.7, 99.0, 21.6 ppm. HRMS (ESI-Orbitrap) *m/z*: (M + Na)⁺ calcd for C₂₇H₁₈N₄NaO₂S 485.10427, found 485.10656.

tert-Butyl(2-(3-cyanopyrrolo[2,1-*a*]isoquinolin-1-yl)phenyl) carbamate (3g). The general procedure was followed using 3-nitro-N-Boc indole 1g (100 mg, 0.38 mmol), 2-(cyanomethyl) isoquinolin-2-ium-bromide 2a (143 mg, 0.57 mmol) and KOH (85 mg, 1.53 mmol) at rt for 1 h. Chromatography (eluent: 10% ethyl acetate in hexane) afforded the desired product 3g as a colourless solid (110 mg, 75%). Mp: 157–160 °C. IR (neat) ν_{max} : 3804, 3586, 3533, 3506, 3365, 2992, 2359, 2326, 2206, 1717, 1513, 1452, 1151, 1021, 829, 763, 739, 702 cm⁻¹. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3, \text{TMS}): \delta 8.14 \text{ (d}, J = 8 \text{ Hz}, 1\text{H}), 8.07 \text{ (d}, J = 7.5 \text{ Hz})$ Hz, 1H), 7.61 (d, J = 8 Hz, 1H), 7.47 (d, J = 8.5 Hz, 1H), 7.42-7.39 (m, 2H), 7.26-7.22 (m, 2H), 7.19 (s, 1H), 7.17 (s, 1H), 7.10–7.07 (m, 2H), 6.22 (s, 1H), 1.23 (s, 9H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 152.7, 137.1, 131.3, 130.1, 129.4, 128.6, 128.4, 128.0, 127.2, 125.4, 124.2, 123.5, 123.4, 123.2, 122.7, 119.8, 114.5, 114.3, 113.3, 98.2, 80.6, 28.1 ppm. HRMS (ESI-Orbitrap) m/z: (M + Na)⁺ calcd for C₂₄H₂₁N₃NaO₂ 406.15260, found 406.15397.

N-(2-(3-Cyanopyrrolo[2,1-a]isoquinolin-1-yl)phenyl)methanesulfonamide (3h). The general procedure was followed using 1-(methylsulfonyl)-3-nitro-1H-indole 1h (100 mg, 0.42 mmol), 2-(cyanomethyl)isoquinolin-2-ium-bromide 2a (155)mg, 0.62 mmol) and KOH (93 mg, 1.66 mmol) at rt for 1 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 3h as a colourless solid (78 mg, 52%). Mp: 167–169 °C. IR (neat) ν_{max} : 3884, 3769, 3688, 3546, 3478, 3269, 2903, 2206, 1569, 1485, 1385, 1326, 1157, 1101, 969, 768 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 8.08 (d, J = 7.5 Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.64 (d, J = 8 Hz, 1H), 7.47 (t, J = 8 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.35 (d, J = 8 Hz, 1H), 7.31 (d, J = 7.5 Hz, 1H), 7.24–7.19 (m, 2H), 7.12–7.10 (m, 2H), 6.22 (s, 1H), 2.78 (s, 3H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 136.0, 132.2, 130.2, 128.7, 128.6, 128.4, 127.8, 125.4, 125.0, 124.9, 122.9, 122.7, 122.7, 118.8, 114.9, 112.9, 112.8, 98.6, 39.9 ppm. HRMS (ESI-Orbitrap) m/z: $(M + Na)^+$ calcd for C₂₀H₁₅N₃NaO₂S 384.07772, found 384.07822.

N-(2-(3-Cyanopyrrolo[2,1-*a*]isoquinolin-1-yl)phenyl)benzenesulfonamide (3i). The general procedure was followed using 3-nitro-1-(phenylsulfonyl)-1*H*-indole 1i (100 mg, 0.33 mmol), 2-(cyanomethyl)isoquinolin-2-ium-bromide 2a (124 mg, 0.50 mmol) and KOH (74 mg, 1.32 mmol) at rt for 1 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 3i as a colourless solid (85 mg, 61%). Mp: 203–205 °C. IR (neat) ν_{max} : 3870, 3848, 3726, 3675, 3536, 3451, 3301, 3260, 2876, 2355, 2196, 1576, 1487, 1445, 1386, 1329, 1159, 1092, 896 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 8.02 (d, *J* = 7 Hz, 1H), 7.77 (d, *J* = 8 Hz, 1H), 7.61 (d, *J* = 8 Hz, 1H), 7.45–7.38 (m, 5H), 7.28–7.25 (m, 1H), 7.19–7.11 (m, 5H), 7.08 (d, *J* = 8 Hz, 1H), 6.31 (s, 2H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 139.0, 135.4, 133.1, 131.7, 130.1, 129.8, 129.0, 128.7, 128.4, 128.2, 127.6, 127.0, 126.9, 125.5, 124.9, 122.8, 122.6, 122.5, 121.7, 114.7, 112.9, 98.1 ppm. HRMS (ESI-Orbitrap) m/z: (M + Na)⁺ calcd for C₂₅H₁₇N₃NaO₂S 446.09337, found 446.09430.

N-(2-(3-Cyanopyrrolo[2,1-a]isoquinolin-1-yl)phenyl)-2,4,6-trimethylbenzenesulfonamide (3i). The general procedure was 1-(mesitylsulfonyl)-3-nitro-1H-indole followed using 1j (100 mg, 0.29 mmol), 2-(cyanomethyl)isoquinolin-2-iumbromide 2a (109 mg, 0.44 mmol) and KOH (65 mg, 1.16 mmol) at rt for 1 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 3j as a colourless solid (77 mg, 57%). Mp: 213–215 °C. IR (neat) ν_{max} : 3895, 3788, 3669, 3636, 3531, 3436, 3300, 3123, 2922, 2794, 2340, 2207, 1573, 1485, 1441, 1330, 1258, 1156, 1011, 791 cm⁻¹. ¹H NMR (500 MHz, $CDCl_3$, TMS): δ 8.02 (d, J = 7 Hz, 1H), 7.66 (d, J= 8.5 Hz, 1H), 7.61 (d, J = 8 Hz, 1H), 7.41–7.38 (m, 2H), 7.19-7.18 (m, 2H), 7.15-7.13 (m, 2H), 7.07 (d, J = 7 Hz, 1H), 6.59 (s, 1H), 6.57 (s, 2H), 6.45 (s, 1H), 2.11 (s, 3H), 2.04 (s, 6H) ppm. ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃): δ 142.4, 138.8, 135.3, 133.9, 131.8, 131.6, 129.9, 129.5, 128.6, 128.4, 128.2, 128.0, 127.5, 125.9, 124.9, 123.8, 122.9, 122.6, 122.4, 114.6, 113.7, 112.9, 98.1, 22.8, 21.0 ppm. HRMS (ESI-Orbitrap) m/z: (M + Na)⁺ calcd for $C_{28}H_{23}N_3NaO_2S$ 488.14032, found 488.14207.

N-(2-(3-Cyanopyrrolo[2,1-a]isoquinolin-1-yl)phenyl)-4-methoxybenzenesulfonamide (3k). The general procedure was followed using 1-((4-methoxyphenyl)sulfonyl)-3-nitro-1H-indole 1k (100 mg, 0.30 mmol), 2-(cyanomethyl)isoquinolin-2-iumbromide 2a (112 mg, 0.45 mmol) and KOH (68 mg, 1.20 mmol) at rt for 1 h. Chromatography (eluent: 25% ethyl acetate in hexane) afforded the desired product 3k as a brown solid (125 mg, 91%). Mp: 183-185 °C. IR (neat) v_{max}: 3838, 3728, 3675, 3644, 3459, 3217, 2319, 1700, 1543, 1402, 1324, 1153, 1091, 1019, 892, 836, 785, 660 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 8.02 (d, *J* = 7.5 Hz, 1H), 7.77 (d, *J* = 8.5 Hz, 1H), 7.60 (d, J = 8 Hz, 1H), 7.43–7.34 (m, 4H), 7.17–7.15 (m, 2H), 7.10-7.06 (m, 3H), 6.68 (d, J = 8.5 Hz, 2H), 6.43 (s, 1H), 6.30 (s, 1H), 3.75 (s, 3H) ppm. ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃): δ 163.2, 135.6, 131.6, 130.6, 129.8, 129.2, 128.6, 128.4, 128.1, 127.5, 126.7, 125.3, 124.9, 122.9, 122.7, 122.5, 121.5, 114.7, 114.1, 113.0, 55.6 ppm. HRMS (ESI-Orbitrap) m/z: (M + Na)⁺ calcd for C₂₆H₁₉N₃NaO₃S 476.10393, found 476.10366.

N-(2-(3-Cyanopyrrolo[2,1-*a*]isoquinolin-1-yl)phenyl)-2-nitrobenzenesulfonamide (3l). The general procedure was followed using 3-nitro-1-((2-nitrophenyl)sulfonyl)-1*H*-indole 1l (100 mg, 0.29 mmol), 2-(cyanomethyl)isoquinolin-2-ium-bromide 2a (108 mg, 0.43 mmol) and KOH (64 mg, 1.15 mmol) at rt for 1 h. Chromatography (eluent: 25% ethyl acetate in hexane) afforded the desired product 3l as a yellow solid (66 mg, 49%). Mp: 132–135 °C. IR (neat) ν_{max} : 3865, 3803, 3680, 3605, 3453, 3112, 2203, 1635, 1582, 1532, 1400, 1349, 1173, 1121, 898, 850, 777, 733 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.94 (d, *J* = 7 Hz, 1H), 7.84 (d, *J* = 8 Hz, 1H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.58 (d, *J* = 8 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.23–7.19 (m, 2H), 7.04–7.00 (m, 3H), 6.42 (s, 1H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 147.1, 135.0, 133.7, 132.9, 132.4, 131.5, 130.5, 130.2,

129.8, 129.0, 128.6, 128.5, 128.0, 127.7, 126.9, 125.5, 125.1, 124.9, 122.5, 122.2, 114.6, 113.5, 112.8 ppm. HRMS (ESI-Orbitrap) m/z: (M + Na)⁺ calcd for C₂₅H₁₆N₄NaO₄S 491.07845, found 491.07918.

N-(2-(3-Cyanopyrrolo[2,1-a]isoquinolin-1-yl)phenyl)-4-nitrobenzenesulfonamide (3m). The general procedure was followed using 3-nitro-1-((4-nitrophenyl)sulfonyl)-1H-indole 1m (100 mg, 0.29 mmol), 2-(cyanomethyl)isoquinolin-2-iumbromide 2a (108 mg, 0.43 mmol) and KOH (65 mg, 1.15 mmol) at rt for 1 h. Chromatography (eluent: 25% ethyl acetate in hexane) afforded the desired product 3m as a yellow solid (54 mg, 40%). Mp: 209–212 °C. IR (neat) ν_{max} : 3825, 3711, 3630, 3484, 3187, 2364, 1562, 1520, 1338, 1156, 862, 754, 679 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 8.03 (d, I = 7.5Hz, 1H), 7.80–7.76 (m, 3H), 7.55 (d, J = 7.5 Hz, 1H), 7.49–7.44 (m, 3H), 7.31 (t, J = 7.5 Hz, 1H), 7.24–7.19 (m, 2H), 7.05 (d, J = 7.5 Hz, 1H), 6.95 (t, J = 7.5 Hz, 1H), 6.85 (d, J = 8.5 Hz, 1H), 6.82 (s, 1H), 6.64 (s, 1H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 149.8, 144.8, 134.5, 132.0, 130.1, 130.0, 128.3, 128.2, 128.2, 127.9, 127.7, 127.3, 126.3, 124.7, 123.8, 122.6, 122.4, 122.3, 122.2, 114.8, 112.8, 112.6, 98.5 ppm. HRMS (ESI-Orbitrap) m/z: $(M + Na)^{+}$ calcd for $C_{25}H_{16}N_4NaO_4S$ 491.07845, found 491.08002.

N-(2-(3-Benzoylpyrrolo[2,1-a]isoquinolin-1-yl)phenyl)-4-methylbenzenesulfonamide (3n). The general procedure was followed using 3-nitro-N-tosyl indole 1a (100 mg, 0.32 mmol), 2-(2-oxo-2-phenylethyl)isoquinolin-2-ium-bromide 2b (156)mg, 0.47 mmol) and KOH (71 mg, 1.26 mmol) at rt for 4 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 3n as a yellow solid (111 mg, 68%). Mp: 223-226 °C. IR (neat) ν_{max} : 3843, 3741, 3633, 3438, 3251, 2371, 1608, 1487, 1436, 1334, 1231, 1159, 905, 871, 807 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.59 (d, J = 7.5 Hz, 1H), 7.78-7.76 (m, 3H), 7.64 (d, J = 8 Hz, 1H), 7.54-7.52 (m, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.42–7.36 (m, 2H), 7.24 (s, 1H), 7.21–7.19 (m, 2H), 7.15–7.11 (m, 3H), 7.04 (t, J = 7.5 Hz, 1H), 6.73 (d, J = 8 Hz, 2H), 6.65 (s, 1H), 6.46 (s, 1H), 2.07 (s, 3H) ppm. ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃): δ 185.4, 143.7, 140.2, 136.0, 135.7, 132.7, 131.7, 131.5, 129.6, 129.5, 129.3, 129.2, 128.4, 128.0, 127.8, 127.2, 127.0, 127.0, 126.8, 125.5, 125.0, 124.6, 124.0, 123.4, 120.5, 114.3, 113.1, 21.4 ppm. HRMS (ESI-Orbitrap) m/z: $(M + H)^+$ calcd for $C_{32}H_{25}N_2O_3S$ 517.15804, found 517.15996.

N-(2-(3-(4-Chlorobenzoyl)pyrrolo[2,1-*a*]isoquinolin-1-yl)phenyl)-4-methylbenzenesulfonamide (30). The general procedure was followed using 3-nitro-*N*-tosyl indole 1a (100 mg, 0.32 mmol), 2-(2-(4-chlorophenyl)-2-oxoethyl)isoquinolin-2-ium bromide 2c (172 mg, 0.47 mmol) and KOH (71 mg, 1.26 mmol) at rt for 1 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 3o as a yellow solid (127 mg, 73%). Mp: 215–218 °C. IR (neat) ν_{max} : 3837, 3750, 3478, 3247, 2360, 1606, 1433, 1365, 1331, 1155, 1084, 900, 804 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.54 (d, *J* = 7.5 Hz, 1H), 7.76 (d, *J* = 8.5 Hz, 1H), 7.71 (d, *J* = 8.5 Hz, 2H), 7.64 (d, *J* = 8 Hz, 1H), 7.43–7.36 (m, 4H), 7.26 (d, *J* = 8 Hz, 2H), 7.20–7.12 (m, 4H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.74 (d, *J* = 7.5 Hz, 2H), 6.60 (s,

Paper

1H), 6.44 (s, 1H), 2.11 (s, 3H) ppm. $^{13}C{^{1}H}$ NMR (125 MHz, CDCl₃): δ 183.9, 143.8, 138.5, 137.8, 136.0, 135.7, 133.0, 131.7, 130.5, 129.6, 129.3, 128.7, 128.2, 127.9, 127.1, 127.0, 126.7, 125.4, 125.0, 124.5, 123.7, 123.4, 120.5, 114.5, 113.3, 21.4 ppm. HRMS (ESI-Orbitrap) *m*/*z*: (M + Na)⁺ calcd for C₃₂H₃₃ClN₂NaO₃S 573.10101, found 573.10307.

4-Methyl-N-(2-(3-(4-nitrobenzoyl)pyrrolo[2,1-a]isoquinolin-1yl)phenyl)benzenesulfonamide (3p). The general procedure was followed using 3-nitro-N-tosyl indole 1a (100 mg, 0.32 mmol), 2-(2-(4-nitrophenyl)-2-oxoethyl)isoquinolin-2-ium bromide 2d (177 mg, 0.47 mmol) and KOH (71 mg, 1.26 mmol) at rt for 1 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 3p as a bright yellow solid (134 mg, 75%). Mp: 199–203 °C. IR (neat) ν_{max} : 3876, 3831, 3798, 3717, 3573, 3463, 3404, 3229, 2348, 1740, 1650, 1587, 1523, 1440, 1333, 1161, 1086, 798, 704 cm⁻¹. ¹H NMR (500 MHz, $CDCl_3$, TMS): δ 9.61 (d, J = 7.5 Hz, 1H), 8.30 (d, J = 8.5 Hz, 2H), 7.91 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8 Hz, 1H), 7.68 (d, J = 8 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 8 Hz, 2H), 7.20-7.19 (m, 2H), 7.16-7.11 (m, 2H), 7.05 (t, J = 7.5 Hz, 1H), 6.79 (d, J = 8 Hz, 2H), 6.73 (s, 1H), 6.45 (s, 1H), 2.12 (s, 3H) ppm. ¹³C¹₁H} NMR (125 MHz, CDCl₃): *δ* 182.7, 149.3, 145.6, 143.8, 136.1, 135.7, 133.7, 131.7, 129.9, 129.8, 129.4, 128.5, 128.1, 127.3, 127.2, 127.0, 126.5, 125.4, 124.9, 124.4, 124.6, 123.6, 123.2, 120.1, 115.1, 114.0, 21.4 ppm. HRMS (ESI-Orbitrap) m/z: (M + Na)⁺ calcd for C₃₂H₂₃N₃NaO₅S 584.12506, found 584.12785.

N-(4-Bromo-2-(3-(4-nitrobenzoyl)pyrrolo[2,1-*a*]isoquinolin-1yl)phenyl)-4 methylbenzene sulfonamide (3q). The general procedure was followed using 5-bromo-3-nitro-N-tosyl indole 1b (100 mg, 0.25 mmol), 2-(2-(4-nitrophenyl)-2-oxoethyl)isoquinolin-2-ium bromide 2d (142 mg, 0.38 mmol) and KOH (57 mg, 1.01 mmol) at rt for 1 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 3q as a yellow solid (115 mg, 71%). Mp: 250–252 °C. IR (neat) ν_{max} : 3937, 3870, 3792, 3726, 3597, 3560, 3527, 3396, 3337, 3238, 3043, 2927, 1729, 1694, 1589, 1518, 1468, 1435, 1334, 1163, 802, 702 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.59 (d, J = 7.5 Hz, 1H), 8.31 (d, J = 8.5 Hz, 2H), 7.90 (d, J = 8 Hz, 2H), 7.69 (d, J = 7.5 Hz, 1H), 7.60 (d, J = 9 Hz, 1H), 7.49-7.46 (m, 2H),7.34 (s, 1H), 7.28 (s, 1H), 7.21-7.19 (m, 2H), 7.16-7.10 (m, 2H), 6.81 (d, J = 7.5 Hz, 2H), 6.69 (s, 1H), 6.42 (s, 1H), 2.14 (s, 3H) ppm. ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃): δ 182.8, 149.4, 145.4, 144.0, 135.9, 135.0, 134.3, 133.5, 132.7, 129.9, 129.8, 129.5, 128.7, 128.5, 128.3, 127.3, 127.1, 127.0, 125.4, 124.1, 123.6, 123.5, 123.4, 121.5, 117.6, 115.2, 112.4, 21.4 ppm. HRMS (ESI-Orbitrap) m/z: (M + Na)⁺ calcd for C₃₂H₂₂BrN₃NaO₅S 662.03558, found 662.03709.

Ethyl 1-(2-(4-methylphenylsulfonamido)phenyl)pyrrolo[2,1*a*]isoquinoline-3-carboxylate (3r). The general procedure was followed using 3-nitro-*N*-tosyl indole 1a (100 mg, 0.32 mmol), 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium-bromide 2e (140 mg, 0.47 mmol) and KOH (71 mg, 1.26 mmol) at rt for 1 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 3r as a colourless solid (95 mg, 62%). Mp: 125–126 °C. IR (neat) ν_{max} : 3904, 3831, 3700, 3437, 3267, 2837, 1684, 1544, 1493, 1447, 1380, 1332, 1290, 1203, 1158, 1079, 954, 902, 790, 742 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.23 (d, *J* = 7.5 Hz, 1H), 7.77 (d, *J* = 8.5 Hz, 1H), 7.56 (d, *J* = 8 Hz, 1H), 7.38–7.30 (m, 2H), 7.27 (d, *J* = 8 Hz, 2H), 7.18–7.10 (m, 2H), 7.04 (d, *J* = 8 Hz, 1H), 7.00–6.95 (m, 2H), 6.87–6.86 (m, 3H), 6.54 (s, 1H), 4.35 (q, *J* = 7 Hz, 2H,), 2.19 (s, 3H), 1.37 (t, *J* = 7 Hz, 3H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.1, 143.6, 136.0, 135.5, 131.7, 131.1, 130.3, 129.4, 129.3, 128.5, 127.7, 127.6, 127.4, 127.0, 127.0, 127.0, 125.0, 125.0, 124.6, 122.9, 122.0, 120.8, 116.3, 113.5, 112.3, 60.3, 21.6, 14.6 ppm. HRMS (ESI-Orbitrap) *m/z*: (M + Na)⁺ calcd for C₂₈H₂₄N₂NaO₄S 507.13490, found 507.13644.

N-(2-(7-Bromo-3-cyanopyrrolo[2,1-a]isoquinolin-1-yl)phenyl)-4-methylbenzenesulfonamide (3s). The general procedure followed using 3-nitro-N-tosyl indole 1a (100 mg, was 5-bromo-2-(cyanomethyl)isoquinolin-2-ium-0.32 mmol), bromide 2f (156 mg, 0.47 mmol) and KOH (71 mg, 1.26 mmol) at rt for 1 h. Chromatography (eluent: 10% ethyl acetate in hexane) afforded the desired product 3s as a colourless solid (96 mg, 59%). Mp: 74-76 °C. ¹H NMR (500 MHz, CDCl₃, TMS): δ 8.13 (d, J = 7.5 Hz, 1H), 7.82 (d, J = 8.5 Hz, 1H), 7.69 (d, J = 8 Hz, 1H), 7.56 (d, J = 7.5 Hz, 1H), 7.50–7.46 (m, 1H), 7.36 (d, J = 8 Hz, 2H), 7.24–7.14 (m, 3H), 7.08 (d, J = 8 Hz, 2H), 6.98 (t, J = 8 Hz, 1H), 6.50 (s, 1H), 6.40 (s, 1H), 2.37 (s, 3H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.1, 136.1, 135.5, 131.9, 131.5, 130.0, 129.6, 129.3, 129.0, 127.6, 127.0, 126.5, 126.4, 125.5, 123.7, 123.4, 122.5, 122.1, 121.8, 113.8, 113.2, 112.5, 98.3, 21.6 ppm. HRMS (ESI-Orbitrap) m/z: (M + Na)⁺ calcd for C₂₆H₁₈BrN₃NaO₂S 538.01953, found 538.02089.

N-(2-(3-Benzoyl-7-bromopyrrolo[2,1-a]isoquinolin-1-yl)phenyl)-4-methylbenzenesulfonamide (3t). The general procedure was followed using 3 -nitro-N-tosyl indole 1a (100 mg, 0.32 mmol), 5-bromo-2-(2-oxo-2-phenylethyl)isoquinolin-2-ium bromide 2g (192 mg, 0.47 mmol) and KOH (71 mg, 1.26 mmol) at rt for 4 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 3t as a yellow solid (98 mg, 52%). Mp: 243–247 °C. IR (neat) ν_{max} : 3916, 3877, 3804, 3670, 3529, 3444, 2957, 2450, 1727, 1673, 1618, 1334, 1162, 911, 867, 787 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.62 (d, J = 7.5 Hz, 1H), 7.79–7.75 (m, 3H), 7.64 (d, J = 7.5 Hz, 1H), 7.55–7.53 (m, 2H), 7.46 (t, J = 7.5 Hz, 2H), 7.40–7.37 (m,1H), 7.25 (d, J = 8 Hz, 2H), 7.17–7.11 (m, 3H), 6.86 (t, J = 8 Hz, 1H), 6.74 (d, J = 8 Hz, 2H), 6.71 (s, 1H), 6.42 (s, 1H), 2.08 (s, 3H) ppm. ${}^{13}C{}^{1}H{}$ NMR (125 MHz, CDCl₃): δ 185.5, 143.8, 139.9, 136.0, 135.6, 131.8, 131.8, 131.7, 131.6, 129.7, 129.3, 129.2, 128.6, 128.4, 128.2, 127.0, 127.0, 126.7, 126.1, 125.1, 124.0, 122.8, 122.0, 120.8, 113.7, 112.8, 21.4 ppm. HRMS (ESI-Orbitrap) m/z: (M + $(H)^+$ calcd for 617.05050, found 617.05084.

N-(2-(6-Bromo-3-cyanopyrrolo[2,1-*a*]isoquinolin-1-yl)phenyl)-4-methylbenzenesulfonamide (3u). The general procedure was followed using 3-nitro-*N*-tosyl indole **1a** (100 mg, 0.32 mmol), 4-bromo-2-(cyanomethyl)isoquinolin-2-iumbromide **2h** (156 mg, 0.47 mmol) and KOH (70 mg, 1.26 mmol) at rt for 1 h. Chromatography (eluent: 10% ethyl acetate in hexane) afforded the desired product **3u** as a yellow solid (88 mg, 54%). Mp: 167–170 °C. IR (neat) ν_{max} : 3917, 3847,

Organic & Biomolecular Chemistry

3803, 3619, 3448, 3227, 2204, 1591, 1489, 1434, 1331, 1159, 1086, 915, 811 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 8.37 (s, 1H), 8.04 (d, *J* = 8 Hz, 1H), 7.84 (d, *J* = 8.5 Hz, 1H), 7.56–7.53 (m, 1H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.37 (d, *J* = 7.5 Hz, 2H), 7.28–7.21 (m, 4H), 7.09 (d, *J* = 7.5 Hz, 2H), 6.46 (s, 2H), 2.38 (s, 3H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.0, 136.2, 135.6, 131.5, 129.9, 129.5, 129.4, 128.6, 127.3, 127.2, 127.0, 126.4, 125.4, 125.0, 123.6, 123.1, 122.9, 121.8, 113.6, 112.4, 110.8, 98.0, 21.6 ppm. HRMS (ESI-Orbitrap) *m/z*: (M + Na)⁺ calcd for C₂₆H₁₈BrN₃NaO₂S 538.01953, found 538.02112.

N-(2-(3-Benzoyl-6-bromopyrrolo[2,1-a]isoquinolin-1-yl)phenyl)-4-methylbenzenesulfonamide (3v). The general procedure was followed using 3-nitro-N-tosyl indole 1a (100 mg, 0.32 mmol), 4-bromo-2-(2-oxo-2-phenylethyl)isoquinolin-2-ium bromide 2i (192 mg, 0.47 mmol) and KOH (71 mg, 1.26 mmol) at rt for 4 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 3v as a yellow solid (90 mg, 48%). Mp: 230–234 °C. IR (neat) ν_{max} : 3878, 3744, 3638, 3557, 3492, 3264, 3059, 1744, 1708, 1649, 1613, 1428, 1335, 1160, 1089, 980, 903, 814, 762, 727 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.92 (s, 1H), 8.02 (d, J = 8 Hz, 1H), 7.77–7.74 (m, 3H), 7.53 (t, J = 7 Hz, 1H), 7.50–7.43 (m, 3H), 7.38 (t, J = 7.5 Hz, 1H), 7.24 (d, J = 8 Hz, 2H), 7.19-7.12 (m, 3H), 7.08 (t, J = 7.5 Hz, 1H),6.72 (d, J = 8 Hz, 2H), 6.67 (s, 1H), 6.43 (s, 1H), 2.07 (s, 3H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 185.4, 143.8, 139.8, 136.0, 135.6, 131.8, 131.7, 131.6, 129.7, 129.3, 129.2, 128.7, 128.5, 128.2, 126.9, 126.9, 126.9, 126.6, 126.6, 125.2, 124.5, 123.8, 123.5, 120.9, 113.5, 110.6, 21.5 ppm. HRMS (ESI-Orbitrap) m/z: $(M + H)^+$ calcd for $C_{32}H_{23}BrN_2NaO_sS$ 617.05050, found 617.05255.

Phenyl(1-phenylpyrrolo[2,1-a]isoquinolin-3-yl)methanone (3w). The general procedure was followed using 3-nitro-N-methyl indole 1n (100 mg, 0.57 mmol), 2-(2-oxo-2-phenylethyl)isoquinolin-2-ium-bromide 2b (279 mg, 0.85 mmol) and KOH (128 mg, 2.28 mmol) at rt for 1 h. Chromatography (eluent: 5% ethyl acetate in hexane) afforded the desired product 3w as a yellow solid (65 mg, 33%). Mp: 183-185 °C. IR (neat) ν_{max} : 3700, 3643, 3531, 3557, 3358, 2328, 1911, 1764, 1730, 1598, 1566, 1443, 1393, 1364, 1331, 1282, 1195, 902, 790, 747, 718 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.30 (d, J = 8 Hz, 1H), 8.19 (d, J = 7.5 Hz, 1H), 7.72 (d, J = 7.5 Hz, 1H), 7.59–7.55 (m, 2H), 7.52 (d, J = 8 Hz, 2H), 7.19 (t, J = 7 Hz, 1H), 7.15–7.13 (m, 3H), 7.09–7.04 (m, 6H) ppm. ${}^{13}C{}^{1}H{}$ NMR (125 MHz, CDCl₃): δ 187.6, 139.7, 138.1, 135.8, 134.8, 131.2, 130.1, 129.8, 128.9, 127.9, 127.7, 127.7, 127.5, 126.9, 126.6, 125.3, 124.7, 123.4, 122.0, 113.0, 103.6 ppm. HRMS (ESI-Orbitrap) m/z: (M + H)⁺ calcd forC₂₅H₁₈NO 348.13829, found 348.13923.

Synthesis and characterization of 4

The compound **3a** (100 mg, 0.23 mmol) was treated with concentrated H_2SO_4 (2.0 equiv.) at room temperature for 2 hours. After completion of the reaction as indicated from the TLC, the reaction mixture was cooled and quenched by drop-wise addition of saturated NaHCO₃ solution and the aqueous layer extracted three times with ethyl acetate. The organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under vacuum. The residue was then purified by column chromatography (50% ethyl acetate in hexane) to afford the pyrrolo[2,1-*a*]isoquinoline 4 as a brown solid (49 mg, 71%). Analytical data of 4: Mp: 118–120 °C. ¹H NMR (500 MHz, (CD₃)₂CO, TMS): δ 9.45 (d, *J* = 7.5 Hz, 1H), 7.64 (d, *J* = 8 Hz, 1H), 7.58 (d, *J* = 7.5 Hz, 1H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.24 (s, 1H), 7.13 (t, *J* = 7.5 Hz, 1H), 7.06 (t, *J* = 7.5 Hz, 1H), 7.02 (d, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 8 Hz, 1H), 6.75 (d, *J* = 8 Hz, 1H), 6.60 (t, *J* = 7 Hz, 1H), 4.28 (s, 2H) ppm. ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): δ 163.3, 146.7, 131.2, 129.0, 128.7, 128.1, 127.0, 126.6, 126.5, 126.0, 125.2, 123.4, 121.3, 118.7, 118.5, 116.8, 115.7, 115.1, 114.6, 112.0 ppm. HRMS (ESI-Orbitrap) *m/z*: (M + H)⁺ calcd for C₁₉H₁₆N₃O 302.12879, found 302.12991.

Experimental procedure for the reaction between 3-nitrobenzothiophene and isoquinolinium salt

A mixture of 3-nitrobenzothiophene (1.0 equiv., 100 mg), isoquinolinium salt (1.5 equiv.) and K_3PO_4 (2.0 equiv.) was weighed into a dry reaction tube. Dry CH_3CN was added and allowed to stir at 60 °C for 24 h. After completion of the reaction, the solvent was removed under vacuum. The residue was then purified by column chromatography (silica gel, eluent: mixtures of ethyl acetate/hexanes) to afford the corresponding products.

Synthesis and characterization of bis-pyrrolo[2,1-*a*] isoquinolines (6a–6e)

(1,1'-(Disulfanediylbis(2,1-phenylene))bis(pyrrolo[2,1-a]isoquinoline-3,1-diyl))bis(phenylmethanone) (6a). The general procedure was followed using 3-nitrobenzo[b]thiophene 5a (100 mg, 0.56 mmol), 2-(2-oxo-2-phenylethyl)isoquinolin-2ium-bromide 2b (275 mg, 0.84 mmol) and K₃PO₄ (237 mg, 1.12 mmol) at 60 °C for 24 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 6a as a yellow solid (169 mg, 80%). Mp: 249–252 °C. IR (neat) ν_{max} : 3945, 3846, 3779, 3682, 3538, 2961, 2363, 1728, 1613, 1414, 1331, 1227, 1168, 1121, 1072, 1031, 965, 932, 871, 791, 756, 727, 688 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.61 (dd, J_1 = 7.5 Hz, J₂ = 1 Hz, 2H), 7.80-7.77 (m, 4H), 7.63 (t, J = 7 Hz, 2H), 7.47-7.42 (m, 5H), 7.41-7.37 (m, 7H), 7.25-7.20 (m, 3H), 7.17–7.14 (m, 3H), 7.12–7.05 (m, 6H) ppm. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (125 MHz, CDCl₃): δ 185.6, 185.5, 140.5, 140.4, 137.1, 137.1, 134.4, 134.4, 132.8, 132.7, 131.3, 131.3, 129.7, 129.6, 129.2, 128.9, 128.9, 128.2, 127.9, 127.8, 127.8, 127.6, 127.5, 127.0, 126.9, 126.5, 126.4, 125.7, 125.7, 125.5, 125.4, 125.2, 125.1, 124.0, 123.7, 123.7, 116.4, 114.0 ppm. HRMS (ESI-Orbitrap) m/ z: $(M + H)^+$ calcd for $C_{50}H_{33}N_2O_2S_2$ 757.19780, found 757.20007.

(1,1'-(Disulfanediylbis(2,1-phenylene))bis(pyrrolo[2,1-*a*]isoquinoline-3,1-diyl))bis((4-nitrophenyl)methanone) (6b). The general procedure was followed using 3-nitrobenzo[*b*]thiophene 5a (100 mg, 0.56 mmol), 2-(2-(4-nitrophenyl)-2-oxoethyl) isoquinolin-2-ium-bromide 2d (312 mg, 0.84 mmol) and K₃PO₄ (237 mg, 1.12 mmol) at 60 °C for 24 h. Chromatography (eluent: 20% ethyl acetate in hexane) afforded the desired product 6b as a yellow solid (145 mg, 61%). Mp: 290–292 °C.

Paper

IR (neat) ν_{max} : 3900, 3822, 3722, 3650, 3430, 2959, 2918, 2336, 1727, 1616, 1519, 1334, 1282, 1119, 1072, 853, 798, 729, 697 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.62 (d, J = 7.5 Hz, 2H), 8.26–8.24 (m, 4H), 7.93–7.90 (m, 4H), 7.69 (t, J = 7 Hz, 2H), 7.50–7.36 (m, 7H), 7.27–7.23 (m, 3H), 7.17–7.06 (m, 8H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 182.8, 182.7, 149.2, 145.9, 145.9, 137.0, 137.0, 134.0, 133.9, 133.8, 133.7, 131.3, 129.9, 129.1, 129.1, 128.5, 128.4, 127.9, 127.9, 127.8, 127.8, 127.2, 127.1, 126.7, 126.7, 125.6, 125.5, 125.0, 124.9, 124.1, 123.5, 123.1, 123.0, 117.2, 117.2, 114.7 ppm. HRMS (ESI-Orbitrap) m/z: (M + H)⁺ calcd for C₂₅H₁₅N₂O₃S 847.16795, found 847.16754.

(1,1'-(Disulfanediylbis(3-bromo-6,1phenylene))bis(pyrrolo [2,1-*a*]isoquinoline-3,1 diyl))bis(phenylmethanone) (6c). The general procedure was followed using 5-bromo-3-nitrobenzo[b]thiophene 5b (100 mg, 0.39 mmol), 2-(2-oxo-2-phenylethyl)isoquinolin-2-ium-bromide 2b (191 mg, 0.58 mmol) and K₃PO₄ (165 mg, 0.78 mmol) at 60 °C for 24 h. Chromatography (eluent: 10% ethyl acetate in hexane) afforded the desired product 6c as a light yellow solid (117 mg, 66%). Mp: 230–232 °C. IR (neat) v_{max}: 3952, 3803, 3390, 3072, 2958, 2922, 2357, 1722, 1606, 1572, 1457, 1328, 1279, 1118, 1070, 938, 868, 791, 742, 687 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.60 (d, J = 7.5 Hz, 2H), 7.78 (t, J = 7 Hz, 4H), 7.70–7.66 (m, 2H), 7.50-7.46 (m, 3H), 7.44-7.39 (m, 8H), 7.33 (d, J = 8 Hz, 1H), 7.26-7.22 (m, 2H), 7.18-7.05 (m, 8H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 185.6, 185.6, 140.3, 140.2, 136.4, 136.4, 136.3, 133.9, 132.6, 132.4, 131.9, 131.8, 131.5, 129.7, 129.6, 129.2, 128.3, 128.3, 128.2, 128.2, 127.7, 127.6, 127.5, 127.5, 127.4, 127.3, 127.2, 127.1, 125.7, 125.6, 124.9, 124.8, 123.9, 123.8, 123.7, 120.4, 120.4, 114.9, 114.9, 114.2, 114.2 ppm. HRMS (ESI-Orbitrap) m/z: $(M + H)^+$ calcd for $C_{50}H_{31}Br_2N_2O_2S_2$ 915.01677, found 915.01770.

Diethyl1,1'-(disulfanediylbis(2,1-phenylene))bis(pyrrolo[2,1alisoquinoline-3-carboxylate)(6d). The general procedure was followed using 3-nitrobenzo[b]thiophene 5a (100 mg, 0.56 mmol), 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium-bromide 2e (248 mg, 0.84 mmol) and K₃PO₄ (237 mg, 1.12 mmol) at 60 °C for 24 h. Chromatography (eluent: 5% ethyl acetate in hexane) afforded the desired product 6d as a colourless solid (93 mg, 48%). Mp: 248–250 °C. IR (neat) ν_{max} : 3898, 3841, 3732, 3598, 3357, 2917, 2846, 2312, 1738, 1477, 1444, 1374, 1331, 1203, 1074, 693, 665 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): 8 9.26 (d, J = 7.5 Hz, 2H), 7.60-7.58 (m, 2H), 7.48-7.46 (m, 1H), 7.42 (dd, J_1 = 8 Hz, J_2 = 1 Hz, 1H), 7.39–7.32 (m, 6H), 7.23-7.20 (m, 2H), 7.18-7.10 (m, 6H), 6.99 (d, J = 7.5 Hz, 2H), 4.36–4.29 (m, 4H), 1.36–1.32 (m, 6H) ppm. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (125 MHz, $CDCl_3$): δ 161.4, 161.4, 137.1, 137.0, 134.6, 131.3, 131.2, 131.1, 128.8, 128.7, 128.6, 128.5, 127.5, 127.4, 127.2, 126.9, 126.8, 126.3, 126.3, 125.6, 125.6, 125.3, 125.2, 124.8, 124.8, 123.5, 122.6, 115.9, 115.9, 115.6, 115.6, 60.2, 14.5 ppm. HRMS (ESI-Orbitrap) m/z: (M + Na)⁺ calcd for C₄₂H₃₂N₂NaO₄S₂ 715.16957, found 715.17230.

Diethyl 1,1'-(disulfanediylbis(3-bromo-6,1-phenylene))bis (pyrrolo[2,1-a]isoquinoline-3-carboxylate) (6e). The general procedure was followed using 5-bromo-3-nitrobenzo[*b*]thio-

phene 5b (100 mg, 0.39 mmol), 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium-bromide 2e (172 mg, 0.58 mmol) and K₃PO₄ (165 mg, 0.78 mmol) at 60 °C for 24 h. Chromatography (eluent: 10% ethyl acetate in hexane) afforded the desired product 6e as a colourless solid (66 mg, 40%). Mp: 237-240 °C. IR (neat) ν_{max} : 3911, 3840, 3754, 3681, 3603, 3564, 3263, 3130, 2361, 1691, 1457, 1375, 1340, 1214, 1077, 801, 745, 691, 638 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.26 (dd, J_1 = 7.5 Hz, $J_2 = 1.5$ Hz, 2H), 7.64–7.60 (m, 2H), 7.43–7.38 (m, 4H), 7.34-7.31 (m, 2H), 7.28-7.27 (m, 2H), 7.22-7.14 (m, 6H), 7.03-7.00 (m, 2H), 4.37-4.29 (m, 4H),1.36-1.32 (m, 6H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.3, 161.2, 136.7, 136.3, 136.3, 133.9, 133.9, 131.8, 131.7, 131.1, 130.9, 128.6, 128.6, 127.6, 127.6, 127.5, 127.5, 127.4, 127.1, 127.0, 125.3, 125.2, 124.8, 124.8, 123.2, 122.4, 122.3, 120.3, 120.3, 116.2, 116.1, 114.2, 114.1, 113.4, 113.4, 60.3, 60.3, 14.5, 14.5 ppm. HRMS (ESI-Orbitrap) m/z: $(M + Na)^+$ calcd for $C_{42}H_{30}Br_2N_2NaO_4S_2$ 872.98855, found 872.98987.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

SAB, NPR, VKO and RP thank CSIR and UGC for research fellowship. JJ thanks CSIR (HCP-029) for financial assistance. The authors thank Prof. Mahesh Hariharan and Mr Alex Andrews of IISER-Thiruvananthapuram for single-crystal X-ray analysis. The authors also thank Mrs Saumini Mathew and Mrs Viji S. of CSIR-NIIST for recording the NMR and mass spectra, respectively.

Notes and references

- 1 M. Bandini, *Org. Biomol. Chem.*, 2013, **11**, 5206 and references cited therein.
- 2 (a) E. T. Pelkey, L. Chang and G. W. Gribble, Chem. Commun., 1996, 1909; (b) E. T. Pelkey and G. W. Gribble, Chem. Commun., 1997, 1873; (c) B. Biolatto, M. Kneeteman and P. M. E. Mancini, Tetrahedron Lett., 1999, 40, 3343; (d) I. Chataigner, E. Hess, L. Toupet and S. R. Piettre, Org. Lett., 2001, 3, 525; (e) B. Biolatto, M. Kneeteman, E. Paredes and P. M. E. Mancini, J. Org. Chem., 2001, 66, 3906; (f) T. L. S. Kishbaugh and G. W. Gribble, Tetrahedron Lett., 2001, 42, 4783; (g) A. Chrtien, I. Chataigner, N. L.'. Helias and S. R. Piettre, J. Org. Chem., 2003, 68, 7990; (h) S. Roy, T. L. S. Kishbaugh, J. P. Jasinski and G. W. Gribble, Tetrahedron Lett., 2007, 48, 1313; (i) S. Lee, S. Diab, P. Queval, M. Sebban, I. Chataigner and S. R. Piettre, Chem. - Eur. J., 2013, 19, 7181; (j) C. Beemelmanns, S. Gross and H.-U. Reissig, Chem. - Eur. J., 2013, 19, 17801; (k) B. M. Trost, V. Ehmke, B. M. O'Keffe and D. A. Bringely, J. Am. Chem. Soc., 2014, 136, 8213; (l) J.-Q. Zhao,

M.-Q. Zhou, Z.-J. Wu, Z.-H. Wang, D.-F. Yue, X.-Y. Xu, X.
-M. Zhang and W.-C. Yuan, Org. Lett., 2015, 17, 2238;
(m) Y. Li, F. Tur, R. P. Nielsen, H. Jiang, F. Jensen and K. A. Jørgensen, Angew. Chem., Int. Ed., 2016, 55, 1020;
(n) M. Andreini, F. Chapellas, S. Diab, K. Pasturaud, S. R. Piettre, J. Legrosand and I. Chataigner, Org. Biomol. Chem., 2016, 14, 2833; (o) D. J. Rivinoja, Y. S. Gee, M. G. Gardiner, J. H. Ryan and C. J. T. Hyland, ACS Catal., 2017, 7, 1053; (p) J.-J. Suo, W. Liu, J. Du, C.-H. Ding and X.-L. Hou, Chem. – Asian J., 2018, 13, 959; (q) H. Wang, J. Zhang, Y. Tu and J. Zhang, Angew. Chem., Int. Ed., 2019, 58, 5422; (r) J. Ling, D. Mara, B. Roure, M. Laugeois and M. R. Vitale, J. Org. Chem., 2020, 85, 3838.

- 3 G. W. Gribble, E. T. Pelkey and F. L. Switzer, *Synlett*, 1988, 1061.
- 4 S. Roy, T. L. S. Kishbaugh, J. P. Jasinski and G. W. Gribble, *Tetrahedron Lett.*, 2007, **48**, 1313.
- 5 (a) A. Awata and T. Arai, *Angew. Chem., Int. Ed.*, 2014, 53, 10462; (b) A. W. Geerten and L. M. Stanley, *Org. Chem. Front.*, 2016, 3, 339.
- 6 X. Liu, D. Yang, K. Wang, J. Zhang and R. Wang, *Green Chem.*, 2017, **19**, 82.
- 7 (a) P. V. Santhini, S. A. Babu, A. R. Krishnan, E. Suresh and J. John, Org. Lett., 2017, 19, 2458; (b) P. V. Santhini, A. R. Krishnan, S. A. Babu, B. S. Simethy, G. Das, V. K. Praveen, S. Varughese and J. John, J. Org. Chem., 2017, 82, 10537; (c) P. V. Santhini, V. Jayadev, S. C. Pradhan, S. Lingamoorthy, P. R. Nitha, M. V. Chaithanya, R. K. Mishra, K. N. Narayanan Unni, J. John and S. Soman, New J. Chem., 2019, 43, 862; (d) P. R. Nitha, V. Jayadev, C. P. Sourava, V. V. Divya, C. H. Suresh, J. John, S. Soman and A. Ajayaghosh, Chem. Asian J., 2020, 15, 3503.
- 8 For reviews see: (a) I. Zugravescu and M. Petrovanu, *Chem. Heterocycl. Compd.*, 1997, 33, 243; (b) J. Jacobs, E. Van Hende, S. Claessens and N. De Kimpe, *Curr. Org. Chem.*, 2011, 15, 1340; (c) A. Kakehi, *Heterocycles*, 2012, 85, 1529.
- 9 (a) X.-C. Zhang and W.-Y. Huang, Synthesis, 1999, 51;
 (b) O. Tsuge, S. Kanemasa and S. Takenaka, Bull. Chem. Soc. Jpn., 1985, 58, 3137; (c) J. An, Q.-Q. Yang, Q. Wang and W.-J. Xiao, Tetrahedron Lett., 2013, 54, 3834; (d) Y. Shen, Y. Shang and J. Sun, J. Fluor. Chem., 2002, 116, 157;
 (e) Y. Shang, L. Wang, X. He and M. Zhang, RSC Adv., 2012, 2, 7681; (f) L. Wu, J. Sun and C.-G. Yan, Org. Biomol. Chem., 2012, 10, 9452; (g) J. Brioche, C. Meyer and J. Cossy, Org. Lett., 2015, 17, 2800; (h) D. S. Allgäuer and H. Mayr, Eur. J. Org. Chem., 2013, 6379.
- 10 A. Baranski and V. I. Kelarev, *Chem. Heterocycl. Compd.*, 1990, **26**, 371.

- 11 M. Kucukdisli and T. Opatz, Eur. J. Org. Chem., 2012, 4555.
- 12 J. Fang and C.-G. Yan, *Mol. Divers.*, 2014, **18**, 91.
- 13 A. G. Mikhailovskii and V. S. Shklyaev, *Chem. Heterocycl. Compd.*, 1997, **33**, 243 and references cited therein.
- 14 (a) U. Passler and H. J. Knölker, Alkaloids, 2011, 70, 79 and references cited therein. (b) H. Fan, J. Peng, M. T. Hamann and J.-F. Hu, Chem. Rev., 2008, 108, 264; (c) A. Heim, A. Terpin and W. Steglich, Angew. Chem., Int. Ed. Engl., 1997, 36, 155; (d) Q. Zhang, G. Tu, Y. Zhao and T. Cheng, Tetrahedron, 2002, 58, 6795; (e) T. Ohta, T. Fukuda, F. Ishibashi and M. Iwao, J. Org. Chem., 2009, 74, 8143.
- 15 (a) M. D. Matveeva, R. Purgatorio, L. G. Voskressensky and C. D. Altomare, Future Med. Chem., 2019, 11, 2735 and references cited therein. (*b*) В. E. Maryanoff, D. F. McComsey, J. F. Gardocki, R. P. Shank, M. J. Costanzo, S. O. Nortey, C. R. Schneider and Setler, J. Med. *Chem.*, 1987, 30, P. E. 1433: (c) W. K. Anderson, A. R. Heider, N. Raju and J. A. Yucht, J. Med. Chem., 1988, 31, 2097; (d) A. A. Nevskaya, M. D. Matveeva, T. N. Borisova, M. Niso, N. A. Colabufo, A. Boccarelli, R. Purgatorio, M. de Candia, S. Cellamare, L. G. Voskressensky and C. D. Altomare, ChemMedChem, 2018, 13, 1588; (e) S. Kakhki, S. Shahosseini and A. Zarghi, Iran. J. Pharm. Res., 2016, 15, 743; (f) T.-L. Su, T. C. Lee and R. Kakadiya, Eur. J. Med. Chem., 2013, 69, 609; (g) L. Moreno, J. Párraga, A. Galán, N. Cabedo, J. Primo and D. Cortes, Bioorg. Med. Chem., 2012, 20, 6589; (h) C.-C. Wu, W.-Y. Wang, R.-Y. Kuo, F.-R. Chang and Y.-C. Wu, Eur. J. Pharmacol., 2004, 483, 187.
- 16 (a) Q. Han, Y. Jiang, C. Jin, S. Cheng, X. Wang, X. Wang and B. Wang, *Polym. Chem.*, 2014, 5, 5900; (b) Y. Jiang, W. Kong, Y. Shen and B. Wang, *Tetrahedron*, 2015, 71, 5584; (c) F. Zeng, Y. Jiang, B. Wang, C. Mao, Q. Han and Z. Ma, *Macromol. Chem. Phys.*, 2017, 218, 1600616.
- 17 (a) F. Dumitrascu, E. Georgescu, F. Georgescu, M. M. Popa and D. Dumitrescu, *Molecules*, 2013, 18, 2635;
 (b) M. R. Caira, M. M. Popa, C. Draghici, L. Barbu, D. Dumitrescu and F. Dumitrascu, *Tetrahedron Lett.*, 2014, 55, 5635; (c) L.-L. Sun, Z.-Y. Liao, R.-Y. Tang, C.-L. Deng and X.-G. Zhang, *J. Org. Chem.*, 2012, 77, 2850;
 (d) J. M. Wiest, A. Pöthig and T. Bach, *Org. Lett.*, 2016, 18, 852; (e) M. Leonardi, M. Villacampa and J. C. Menendez, *J. Org. Chem.*, 2017, 82, 2570; (f) L. G. Voskressensky, T. N. Borisova, M. D. Matveeva, V. N. Khrustalev, A. V. Aksenov, A. A. Titov, A. E. Vartanova and A. V. Varlamov, *RSC Adv.*, 2016, 6, 74068.
- 18 K. K. Dong and Q. Huang, Tetrahedron Lett., 2019, 60, 1871.