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2-Formylphenoxy quinones can be converted into xanthones via an acyl radical intermediate with NBS
and AIBN.

� 2011 Elsevier Ltd. All rights reserved.
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Xanthones are found in many plants, including Hypericum and
Prunella species. Many xanthones bearing hydroxyl substituents
exhibit valuable biological activity.1 Daviditin A (1) preserves
endothelial dysfunction elicited by lysophosphatidyl choline
(Fig. 1). The protective effect of daviditin A on the endothelium is
related to reduction of asymmetric dimethylarginine concentra-
tion.2 Xanthone 2 was shown to relax the corpus cavernosal
smooth muscle by 97% compared to Viagra.3 Bellidifolin (3) im-
proved insulin resistance by enhancing insulin signaling.4

Because of the diverse biological activities of xanthones, several
approaches have been reported.5 Of these methods, Friedel–Crafts
acylation/cyclization protocols6 are the most commonly used
methods. However, synthetic methods for highly hydroxylated
xanthones are limited. Recently, strategies employing photochem-
istry,7 benzyne addition,8 and directed metallation9 have been re-
ported. We report herein a synthesis of polyhydroxylated
xanthones employing acyl radical intermediates.
ll rights reserved.

: +1 515 294 0105.
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Figure 1. Structures of xanthones.

Scheme 1. Strategy for xanthone synthesis.
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Scheme 2. Synthesis of xanthone 9.
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Scheme 3. Proposed mechanism for the production of 7 from 6.
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We recently reported that radicals generated by decarboxyl-
ation of an acid with persulfate underwent intramolecular cycliza-
tion to a quinone, resulting in a direct synthesis of Bauhinoxepin
J.10 If an acyl radical could be generated from 6,11 the cyclization
could lead to a direct synthesis of xanthones (Scheme 1). The qui-
none 6 can be synthesized by a coupling reaction of acetal 4 with
bromoquinone 5.

We first tried directly coupling salicyladehyde with bromoqui-
none 5 to generate quinone 6, but the reaction failed. After conver-
sion of salicyladehyde to acetal 4,12 the reaction of acetal 4 with
bromoquinone 5 and K2CO3 in DMF followed by HCl hydrolysis affor-
ded quinone 6 in 78% yields (Scheme 2). To the best of our knowl-
edge, there have been no reports for the synthesis of xanthones
from quinones such as 6. Initially, we irradiated quinone 6 under
conditions where an intramolecular hydrogen atom abstraction
via an excited state quinone could lead to an acyl radical. Unfortu-
nately, only starting material was recovered. We next attempted
to generate the acyl radical through hydrogen atom abstraction
using the diradical of benzophenone, a strategy we had used suc-
cessfully to generate acylhydroquinones.13 This approach also
failed.

Cheung and later Marko reported that aryl aldehydes could be
converted to acid bromides with NBS.14 Although this transforma-
tion has not been extensively studied, this reaction likely proceeds
through an acyl radical intermediate. Treatment of quinone 6 with
NBS and a catalytic amount of AIBN in CHCl3 and CCl4 produced xan-
thone 7. A number of experiments were conducted to optimize the
transformation and it was found that two equivalents of NBS and
0.2 equiv of AIBN were necessary to achieve good conversion. Unfor-
tunately, xanthone 7 was not stable to column chromatography. The
xanthone 7 was reduced by catalytic hydrogenation to generate xan-
thone 9, albeit in only 15% yield after two steps. The structure of xan-
thone 9 was confirmed by X-ray spectroscopy. Reduction of
xanthone 7 with zinc in acetic acid afforded benzophenone 8 in
67% yields after two steps, whose structure was also determined
by X-ray spectroscopy. This appears to be the first example of xan-
thone cleavage under reductive conditions. Moreover, this result
was unexpected and suggests that production of xanthone 7 pre-
sumably arises from a spirocyclic intermediate such as 10 that
would result from a 5-exo-trig radical cyclization. Elimination of
the phenoxide radical followed by cyclization and oxidation pro-
vides a route to 7 (Scheme 3). Attempts to isolate intermediates in
the rearrangement by conducting the reaction using only one equiv-
alent of NBS produced starting material plus a reduced yield of 7. It is
possible that the mechanism involves a 6-endo closure followed by a
rearrangement. Benzophenone 8 could be readily cyclized to form
xanthone 9 by heating in aqueous DMF at 180 �C for 16 h.7 Xanthone
9 is produced in an overall yield of 40%. Interestingly, benzophenone
8 is a natural product isolated from Dalbergia cochinchinensis.15

This procedure was applied to other bromoquinones. The re-
sults in Table 1 show the quinone precursors that were synthe-
sized. The overall yields are in the range of 52–78%.

The xanthones in Table 2 were prepared from the corresponding
quinones by cyclization with AIBN and NBS, reduction with zinc,
and cyclization in DMF/water. The xanthone in entry 2 is a natural
product isolated from Centaurium erythraea16 that had not previ-
ously been synthesized. The overall yields for different xanthones
are 40% (entry 1), 36% (entry 2), 31% (entry 3), 29% (entry 4), and
30% (entry 5).

In summary, the first synthesis of xanthones by acyl radical
chemistry has been achieved. Two natural products were synthe-
sized. This novel approach will permit the direct synthesis of novel
polyhydroxylated xanthones.



Table 1
Reaction of 4 with 5 to generate quinone 6
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Table 2
Reaction of quinone 6 to generate 8 and xanthone 9
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Table 2 (continued)

Entry 6 8a Isolated yield (%) 9b Isolated yield (%)
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a Entry 1 is a natural product isolated from Dalbergia cochinchinensis.
b Entry 2 is a natural product isolated from Centaurium erythraea.
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