July 1996 SYNTHESIS 863 # Bryophyte Constituents; 6: Synthesis of Herbertene-Derived Sesquiterpenes from *Herberta* adunca Theophil Eicher,* Frank Servet, Andreas Speicher* Fachbereich 11 Organische Chemie, Universität des Saarlandes, D-66041 Saarbrücken, Germany Fax +49(681)3022409 E-mail: th.eicher@rz.uni-sb.de Received 29 December 1995 Efficient total syntheses are described for the racemic sesquiterpenes herbertenolide (2), α -herbertenol (3) and β -herbertenol (4) from *Herberta adunca. ent*-Herbertenolide [(+)-2] was prepared from enantiopure (-)-ethyl (1R)-1-methyl-2-oxocyclopentanecarboxylate (9) obtained from ethyl 2-oxocyclopentanecarboxylate (19) via reduction with baker's yeast. (-)-Herbertene (1), the parent compound of a new type of sesquiterpenes isomeric to cuparene, was isolated by Matsuo et al. from the liverwort *Herberta adunca* (Dicks.) S. Gray in 1981. Numerous compounds of this structure type were found in *Herbertus* species and other liverworts. Up to now, chemical synthesis was performed only for the parent system herbertene (1). In the course of our interdisciplinary investigations on bryophyte constituents and their biological activity we elaborated expeditious synthetic routes to herbertenolide (2), α -herbertenol (3) and β -herbertenol (4). From retrosynthetic considerations, the strategy for the synthesis of 2 (Scheme 1) was directed to a key intermediate 5, which should arise from the tertiary alcohol 6 resulting from addition of an OH-protected p-cresol unit 7 to the cyclopentanone moiety 8. Scheme 1 The synthesis of herbertenolide (2) started with ethyl 1-methyl-2-oxocyclopentanecarboxylate [rac-(9)]⁷. Diastereoselective coupling with the Grignard reagent 10 derived from 2-bromo-4-methylanisole⁸ yielded the ter- tiary alcohol rac-11. Dehydration9 to the olefin rac-12 followed by saponification (to rac-13) and cleavage of the methyl ether led to spontaneous formation of the lactone rac-14. Introduction of the desired carbonyl group could be achieved by epoxidation, oxirane opening with formic acid and subsequent treatment with sulfuric acid.¹⁰ The unexpected stereostructure¹¹ of the intermediate *rac-***15** was deduced from an X-ray analysis,¹² the oxolactone rac-16 was obtained as a single diastereomer. Methylation¹⁰ of the angular benzyl position gave rac-17 with the desired *trans*-arrangement of the methyl groups at the C-2/C-3 centers. The carbonyl group of the cyclopentanone 17 was reduced according to the Wolff-Kishner procedure yielding rac-18 (5.5:1 mixture with the lactone 2) and the lactone ring closure was completed by treatment with acid. Thus, the target molecule racherbertenolide (2) was obtained as a single diastereomer in 6% overall yield in a racemic but diastereoselective 9-step sequence (Scheme 2). The structure of 2 was confirmed by X-ray analysis, 12 all spectroscopic data were identical with the literature. 13 For an enantioselective approach to 2 enantiopure starting material analogous to rac-9 was required in a preparative scale. 14 Enantiopure methyl (1R)-1-methyl-2oxocyclopentane-1-carboxylate can be synthesized by an enzymatic route¹⁵ or – though in lower optical yield – by an enantioselective alkylation method. 16 We prepared (1R)-1-methyl-2-oxocyclopentane-1-carboxylate [(-)-(1R)-9] by an improved procedure according to Scheme 3, namely by reduction of rac-ethyl 2-oxocyclopentane-1-carboxylate (19) with baker's yeast (Saccharomyces cerevisiae) to the hydroxy ester (+)-20,17 diastereoselective (> 98 % de) methylation to (+)- 21^{18} and oxidation.¹⁷ The synthetic route outlined in Scheme 2 was then performed with (-)-(1R)-9 and resulted in the formation of (+)-(1R,2S)-ent-herbertenolide (2) in enantiopure form. The synthesis of 2 could be improved (Scheme 4), when for the introductory step the benzyl ether protected Grignard reagent 22¹⁹ instead of the methyl ether 10 was used. Again, after dehydration and saponification of the resulting tertiary alcohol 23 (to 24) the carbonyl group was introduced via epoxidation and oxirane ring opening; deprotection of 25 yielded the lactone 16 described in . Scheme 2. By this modification, the overall yield of *rac*herbertenolide (2) was raised to 13% (8 steps). The strategy of the synthesis developed for 2 could be successfully applied also to the synthesis of $rac-\alpha$ - and β -herbertenol (3 and 4). According to Scheme 5, first the carboxylate function of the key intermediate 12 was reduced (via aldehyde 26) to the saturated methyl group of the cyclopentene 27.²⁰ The carbonyl auxiliary was Scheme 2. Total Synthesis of rac- and ent-(+)-Herbertenolide (2) (DME: 1,2-dimethoxyethane, DEG: diethylene glycol) Scheme 3 (DMPU: dimethylpropyleneurea) Scheme 4 introduced via epoxidation or, with better results, by hydroboration/oxidation followed by Jones oxidation to give the cyclopentanone 29. The intermediate alcohol 28 was obtained as a single diastereomer. Methylation of 29 proceeded regioselectively to give 30. When 30 was subjected to Wolff-Kishner reduction with hydrazine hydrate/NaOH additional cleavage of the methyl ether protective group occurred giving rise to rac-herbertenol (3) (8% overall yield in a 7-step sequence). All spectroscopic data were identical with the literature. 13 The isomeric β -herbertenol (4) was synthesized (Scheme 6) starting with cyclopentanone derivative 9, and the Grignard reagent 31 derived from 4-bromo-2-methylanisole. The tertiary alcohol 32 was transformed via intermediates 33/34 to the dimethylcyclopentene 35 using the foregoing procedure (see Schemes 2 and 5). Hydroboration/oxidation followed by oxidation with pyridinium chlorochromate in acetate buffer gave the best results for introducing the carbonyl auxiliary function in 36. The synthesis was completed according to Scheme 5 as already described for compound 3. rac- β -Herbertenol (4) was obtained in 3% overall yield in this 9-step sequence. All spectroscopic data were identical with the literature. ^1H NMR and ^{13}C NMR (TMS as internal standard): Bruker AM 400. IR: Beckmann Acculab 8. MS: Finnigan MAT 90 or Varian MAT 311. Optical rotations: Perkin-Elmer polarimeter 241. Microanalyses: Leco CHNS-932. TLC: Merck aluminium roll silica gel 60 F_{254} pre-coated. Column chromatography (CC): Silica gel (J.T. Baker, 63–200 μm). Anhydrous solvents were dried by conventional methods. All reactions sensitive against air or moisture were carried out under N_2 . Satisfactory microanalyses obtained for all new compounds: C \pm 0.3, H \pm 0.29. July 1996 SYNTHESIS 865 Scheme 5. Synthesis of rac-α-Herbertenol (3) (PCC: pyridinium chlorochromate) # Ethyl $(1R^*,2S^*)$ -2-Hydroxy-2-(2-methoxy-5-methylphenyl)-1-methylcyclopentane-1-carboxylate (11): To Grignard reagent 10, prepared from Mg (9.72 g, 0.40 mol, 30 mL anhyd THF) and 2-bromo-4-methylanisole⁸ (80.4 g, 0.40 mol in 200 mL anhyd THF; reflux, 1 h) was added anhyd THF (100 mL) followed by rac-9 (54.4 g, 0.32 mol) in anhyd THF (100 mL) at -40° C. The mixture was allowed to warm to r.t. within 10 h. Ice-cold sat. aq NH₄Cl (400 mL) was added at 5 °C and the mixture was separated. The aqueous layer was extracted with Et₂O (3 × 200 mL) and the combined organic layers were dried (MgSO₄) and concentrated. The residue was purified by distillation; yield: 61.6 g (66%) of rac-11; colourless oil; bp 133–135 °C/0.005 mbar. IR (film): v = 3510 (OH), 1725 (C=O) cm⁻¹. ¹H NMR (CDCl₃): δ = 7.00 (d, J = 1.1 Hz, 1 H), 6.98 (dd, J = 8.4, 1.1 Hz, 1 H), 6.77 (d, J = 8.4 Hz, 1 H), 5.29 (d, J = 2.4 Hz, 1 H, OH), 3.83 (s, 3 H, OCH₃), 3.66–3.55 (m, 2 H), 2.72–2.69 (m, 1 H), 2.38–2.31 (m, 1 H), 2.23 (s, 3 H, ArCH₃), 2.02–1.88 (m, 3 H), 1.72–1.69 (m, 1 H), 1.37 (s, 3 H, CH₃), 0.86 (t, J = 7.1 Hz, 3 H). ¹³C NMR (CDCl₃): δ = 176.6, 155.8, 130.0, 129.7, 128.7, 128.3, 111.4, 87.1, 60.0, 59.5, 55.5, 38.7, 37.6, 21.7, 20.6, 19.5, 13.6. MS (CI, 120 eV): m/z (%) = 292 (56, M⁺), 275 (100), 218 (21), 201 MS (C1, 120 eV): m/z (%) = 292 (56, M⁺), 275 (100), 218 (21), 201 (87), 179 (8), 171 (28), 157 (7), 149 (20), 142 (6), 125 (7). (-)-(1*R*)-9 (29.8 g, 0.175 mmol) was transformed analogously to (1R,2S)-11; $[\alpha]_D^{20} - 40.8$ (c = 1.32, CHCl₃). # Ethyl 2-(2-Methoxy-5-methylphenyl)-1-methylcyclopent-2-ene-1-carboxylate (12): A mixture of rac-11 (19.8 g, 67.7 mmol) and KHSO₄ (1.00 g, 7.34 mmol) was heated to 140 °C for 1 h, cooled, taken up in Et₂O (150 mL), washed (sat. aq NaHCO₃, brine), dried (MgSO₄) and concentrated. The crude product was purified by CC (short column, Et₂O/hexane, 1:3). yield: 18.1 g (97%) of *rac-*12; colourless oil. IR (film): v = 1735 (C=O) cm⁻¹. ¹H NMR (CDCl₃): δ = 7.01 (d, J = 1.9 Hz, 1 H), 6.98 (m, 1 H), 6.72 (d, J = 8.2 Hz, 1 H), 6.10 (t, J = 2.5 Hz, 1 H, C=CH), 4.22–4.04 (m, 2 H), 3.68 (s, 3 H, OCH₃), 2.68–2.61 (m, 1 H), 2.46–2.33 (m, 2 H), 2.25 (s, 3 H, ArCH₃), 1.92–1.84 (m, 1 H), 1.25 (s, 3 H, CH₃), 1.20 (t, J = 7.1 Hz, 3 H). ¹³C NMR (CDCl₃): δ = 176.9, 154.8, 145.1, 132.8, 130.9, 129.4, 128.7, 125.4, 110.7, 60.1, 56.5, 54.9, 40.0, 31.2, 22.7, 20.4, 14.2. MS (CI, 120 eV): m/z (%) = 274 (62, M⁺), 202 (100), 200 (48), 186 (5), 172 (3), 159 (5), 145 (15), 142 (5), 128 (3), 121 (6), 115 (5), 105 (2), 69 (2). (-)-(1*R*,2*S*)-11 (25.7 g, 87.3 mmol) was transformed analogously yielding (1*R*)-12; $[\alpha]_D$ - 2.2 (c = 1.02, CHCl₃). #### 2-(2-Methoxy-5-methylphenyl)-1-methylcyclopent-2-ene-1-carboxy-lic Acid (13): A mixture of rac-12 (83.6 g, 0.305 mol) and KOH (52.2 g, 0.935 mol) in EtOH (800 mL) was heated to reflux for 40 h. The solvent was removed in vacuo, the residue taken up in H_2O (200 mL) and extracted with Et_2O (3 × 50 mL). The aqueous layer was acidified with conc. HCl and the carboxylic acid was extracted with Et_2O , the Et_2O layer was washed with brine and dried (MgSO₄). The crude product after evaporation could be crystallized from Et_2O /hexane; yield: 70.9 g (94%) of rac-13, colourless crystals; mp 153 °C. IR (film): v = 3500-3000 (OH), 1695 (C=O), 1500 (C=C) cm⁻¹. 866 Papers SYNTHESIS ¹H NMR (CDCl₃): δ = 7.03 (s, 1 H), 7.00 (d, J = 1.8 Hz, 1 H), 6.72 (d, J = 8.1 Hz, 1 H), 6.13 (t, J = 2.4 Hz, 1 H, C = CH), 3.67 (s, 3 H, OCH₃), 2.75–2.69 (m, 1 H), 2.47–2.39 (m, 2 H), 2.25 (s, 3 H, ArCH₃), 1.97–1.89 (m, 1 H), 1.35 (s, 3 H, CH₃). ¹³C NMR (CDCl₃): δ = 183.4, 154.4, 145.2, 133.3, 131.1, 129.6, 129.0, 125.2, 110.7, 56.2, 54.5, 40.5, 31.1, 22.3, 20.4. MS (CI, 120 eV): m/z (%) = 246 (45, M⁺), 239 (2), 215 (7), 201 (100), 200 (41), 193 (13), 187 (10), 171 (3), 159 (2), 153 (13), 145 (3), 139 (3). (-)-(1*R*)-12 (20.3 g, 74.0 mmol) was transformed analogously to (1*R*)-13; $[\alpha]_D^{20}$ -1.1 (*c* = 1.09, CHCl₃). # 2-(2-Hydroxy-5-methylphenyl)-1-methylcyclopent-2-ene-1-carboxy-lic Acid Lactone (14): To a NaSEt solution, prepared (exothermic reaction, 0° C to r.t., 1 h) from ethanethiol (46.5 g, 0.75 mol) and NaH (18.0 g, 0.75 mol) in anhyd DME (500 mL), was added rac-13 (44.3 g, 0.18 mol) at r.t. The mixture was heated to 150° C for 48 h, cooled and poured into 10% aq HCl (100 mL), stirred for 3 h and extracted with Et₂O (4 × 300 mL). The combined organic layers were washed with H₂O and sat. aq NaCl, dried (MgSO₄) and concentrated. The crude product was purified by CC (short column, CHCl₃); yield: 35.9 g (93%), colourless oil. IR (film): v = 1775 (C=O), 1485 (C=C) cm⁻¹. ¹H NMR (CDCl₃): δ = 7.27 (d, J = 1.8 Hz, 1 H), 7.07 (dd, J = 8.3, 1.8 Hz, 1 H), 6.96 (d, J = 8.3 Hz, 1 H), 6.04 (t, J = 2.6 Hz, 1 H, C=CH), 2.57–2.53 (m, 2 H), 2.46–2.36 (m, 1 H), 2.33 (s, 3 H, ArCH₃), 2.18–2.13 (m, 1 H), 1.29 (s, 3 H, CH₃). ¹³C NMR (CDCl₃): δ = 173.2, 149.0, 138.5, 133.9, 130.2, 125.7, 125.4, 118.4, 116.5, 51.6, 34.6, 30.2, 23.5, 20.7. MS (CI, 120 eV): m/z (%) = 215 (100, M⁺ + 1), 214 (26, M⁺), 186 (10), 171 (4), 158 (2), 121 (2). (-)-(1*R*)-13 (15.3 g, 62.0 mmol) was transformed analogously yielding (1*R*)-14; $[\alpha]_D^{20}$ - 73.5 (c = 2.00, CHCl₃). # $(1R^*,2R^*,3R^*)$ -3-Formyloxy-2-hydroxy-2-(2-hydroxy-5-methylphen-yl)-1-methylcyclopentane-1-carboxylic Acid Lactone (15): To a cooled mixture of rac-14 (25.0 g, 0.117 mol) and 85 % aq formic acid (190 mL) was added dropwise 30 % aq H_2O_2 (39.7 g, 0.35 mol). After removal of the ice bath, the reaction temperature was raised to 35 °C and the mixture was stirred for additional 20 h at room temp. H_2O (200 mL) was added, the product collected and washed with H_2O ; yield: 13.5 g (42 %); colourless crystals; mp 200 °C. IR (film): v = 3435 (OH), 1770 (C=O), 1700 (HC=O) cm⁻¹. ¹H NMR (CDCl₃): δ = 8.24 (s, 1 H), 7.15 (dd, J = 8.2, 1.2 Hz, 1 H), 7.01 (d, J = 8.2 Hz, 1 H), 6.95 (d, J = 1.2 Hz, 1 H), 5.63–5.60 (m, 1 H), 2.74 (s, 1 H, OH), 2.71–2.63 (m, 2 H), 2.32 (s, 3 H, ArCH₃), 1.93–1.86 (m, 1 H), 1.81–1.76 (m, 1 H), 1.03 (s, 3 H, CH₃). ¹³C NMR (CDCl₃): δ = 171.2, 160.0, 150.4, 134.2, 130.7, 125.4, 124.7, 116.7, 79.9, 74.9, 50.6, 28.8, 28.2, 20.8, 20.2. MS (CI, 120 eV): m/z (%) = 277 (100, M⁺ + 1), 276 (32, M⁺), 259 (30), 243 (3), 231 (56), 213 (10), 205 (18), 203 (12), 187 (12), 149 (9), 135 (8). (-)-(1*R*)-14 (15.3 g, 62.0 mmol) was transformed analogously to (1R,2R,3R)-15; $[\alpha]_D^{20}$ + 77.4 (c = 1.04, CHCl₃). # (1R*,2R*)-2-(2-Hydroxy-5-methylphenyl)-1-methyl-3-oxocyclopentane-1-carboxylic Acid Lactone (16): To 30% aq $\rm H_2SO_4$ (135 mL) was added rac-15 (13.5 g, 48.9 mmol) in one portion at 130°C and stirring was continued for 0.5 h. The mixture was cooled, diluted with ice-cold $\rm H_2O$ (100 mL) and extracted with $\rm CH_2Cl_2$ (3 × 100 mL). The organic layers were washed with sat. aq NaHCO₃ (3 × 100 mL) and dried (MgSO₄). The product obtained after evaporation was recrystallized from EtOH; yield: 6.72 g (60%); colourless crystals; mp 101°C. IR (film): v = 1760 (OC=O), 1755 (C=O) cm⁻¹. $^{1}\mathrm{H}$ NMR (CDCl₃): $\delta=7.11-7.09$ (m, 2 H), 6.92 (d, J=8.9 Hz, 1 H), 3.22 (s, 1 H), 2.88–2.81 (m, 1 H), 2.54–2.46 (m, 1 H), 2.35–2.25 (m, 1 H), 2.33 (s, 3 H, ArCH₃), 1.97–1.89 (m, 1 H), 1.47 (s, 3 H, CH₃). ¹³C NMR (CDCl₃): δ = 212.5, 171.2, 148.3, 134.7, 130.0, 116.5, 115.8, 57.0, 45.5, 35.7, 32.1, 23.4, 20.7. MS (CI, 120 eV): m/z (%) = 231 (100, M⁺ + 1), 230 (22, M⁺), 215 (2), 205 (2), 203 (3), 175 (7). (+)-(1R,2R,3R)-15 (5.53 g, 20.0 mmol) was transformed analogously to (1R,2R)-16; $[\alpha]_{n}^{20}$ - 48.7 (c = 1.12, CHCl₃). #### (1R*,2S*)-2-(2-Hydroxy-5-methylphenyl)-1,2-dimethyl-3-oxocyclopentane-1-carboxylic Acid Lactone (17): To rac-16 (6.90 g, 30.0 mmol) in anhyd DME (100 mL) was added NaH (790 mg, 33.0 mmol) in one portion at $-78\,^{\circ}$ C. Hydrogen evolution was induced by removing the cooling agent and the temperature was allowed to rise up to $0\,^{\circ}$ C. MeI (6.80 g, 47.9 mmol) in anhyd DME (30 mL) was added to the suspension and stirring was continued for 20 h at r.t. H_2O (200 mL) was added and the mixture extracted with Et₂O (4 × 100 mL). The organic layers were washed twice with H_2O , brine and dried (MgSO₄). The product obtained after evaporation was crystallized from EtOH; yield: 4.39 g (60 %); colourless crystals; mp 127 °C. IR (film): v = 1780 (OC=O), 1750 (C=O) cm⁻¹. $^{1}\mathrm{H}$ NMR (CDCl₃): $\delta=7.89$ (d, J=2.0 Hz, 1 H), 7.07 (dd, J=8.3, 2.0 Hz, 1 H), 6.95 (d, J=8.3 Hz, 1 H), 2.71–2.66 (m, 1 H), 2.54–2.42 (m, 2 H), 2.35 (s, 3 H, ArC H_3), 2.10–2.04 (m, 1 H), 1.32 (s, 3 H, CH₃), 1.04 (s, 3 H), CH₃). ¹³C NMR (CDCl₃): δ = 211.5, 171.6, 148.9, 134.6, 128.9, 127.3, 125.1, 116.1, 51.3, 47.4, 34.3, 25.2, 22.6, 21.0, 20.4. MS (CI, 120 eV): m/z (%) = 245 (100, M⁺ + 1), 244 (33, M⁺), 227 (29), 217 (23), 205 (14), 189 (15), 160 (15), 151 (10), 125 (15), 111 (15), 97 (17). (-)-(1*R*,2*R*)-16 (2.53 g, 11.0 mmol) was transformed analogously to (1R,2S)-17; $[\alpha]_D^{20} + 110$ (c = 1.02, CHCl₃). # 2-(2-Hydroxy-5-methylphenyl)-1,2-dimethylcyclopentane-1-carboxylic Acid (18): A mixture of rac-17 (3.00 g, 12.3 mmol), hydrazine monohydrate (1.86 g, 37.1 mmol), NaOH (2.22 g, 55.5 mmol) and diethylene glycol (40 mL) was heated to 240 °C (bath temp.) for 24 h. After cooling, $\rm H_2O$ (300 mL) was added, the mixture extracted with $\rm Et_2O$ (2 \times 100 mL), acidified with conc. HCl and the carboxylic acid was extracted with $\rm Et_2O$ (4 \times 100 mL). The combined organic layers were washed with brine, dried (MgSO₄) and concentrated; yield: 2.37 g (78 %) of a colourless oil, 5.5:1 mixture of 18 and 2 according to $^1\rm H$ NMR. IR (film): v = 3440 (OH), 1675 (C=O) cm⁻¹. $^{1}\text{H NMR (CDCl}_{3}): \delta = 7.84 \, (\text{s, 1 H, OH}), 7.03 \, (\text{d, }J = 2.2 \, \text{Hz, 1 H}), 6.88 \, (\text{dd, }J_{1} = 8.0 \, \text{Hz, }J_{2} = 2.2 \, \text{Hz, 1 H}), 6.68 \, (\text{d, }J = 8.0 \, \text{Hz, 1 H}), 2.61 - 2.50 \, (\text{m, 2 H}), 2.25 \, (\text{s, 3 H, ArC}H_{3}), 1.99 - 1.69 \, (\text{m, 4 H}), 1.49 \, (\text{s, 3 H, CH}_{3}), 0.97 \, (\text{s, 3 H, CH}_{3}).$ $^{13}\mathrm{C\ NMR}$ (CDCl₃): $\delta=185.5,\ 152.0,\ 132.6,\ 129.2,\ 128.8,\ 117.1,\ 54.0,\ 53.3,\ 40.2,\ 39.5,\ 31.5,\ 24.8,\ 23.6,\ 21.0.$ MS (EI, 70 eV): m/z (%) = 248 (7, M⁺). (+)-(1*R*,2*S*)-17 (1.22 g, 5.00 mmol) was transformed analogously to (1*R*,2*R*,*S*)-18; 5.5:1 mixture with (+)-2; $[\alpha]_D^{20}$ + 56.2 (c = 0.72, CHCl₃). # (1R*,2S*)-2-(2-Hydroxy-5-methylphenyl)-1,2-dimethylcyclopentane-1-carboxylic Acid Lactone (*rac*-herbertenolide) (2): A mixture of rac-18 (1.99 g, 8.00 mmol), p-TosOH \cdot H₂O (385 mg, 2.00 mmol) and toluene (200 mL) was heated to reflux for 48 h, cooled, washed with H₂O (2 × 50 mL), sat. aq NaHCO₃ (2 × 50 mL) and dried (MgSO₄). The crude product after concentration was recrystallized from hexane; yield: 1.71 g (93 %); colourless crystals; mp 74 °C. IR (film): v = 3050, 3010, 2965, 2930, 2870, 2850, 1770, 1490, 1380, 1275, 1210, 1125, 1085, 1050, 930 cm⁻¹. $^{1}\mathrm{H}$ NMR (CDCl₃): $\delta=7.01$ (dd, J=8.2,~1.6 Hz, 1 H), 6.92 (d, J=8.2 Hz, 1 H), 6.88 (d, J=1.6 Hz, 1 H), 2.32 (s, 3 H, ArCH₃), 2.21-2.16 (m, 1 H), 2.02-1.88 (m, 4 H), 1.79-1.73 (m, 1 H), 1.12 (s, 3 H, CH₃), 0.92 (s, 3 H, CH₃); the *trans*-substitution was confirmed by NOESY-technique. July 1996 SYNTHESIS 867 ¹³C NMR (CDCl₃): δ = 173.6, 149.7, 134.1, 133.1, 128.1, 125.3, 115.8, 50.8, 47.1, 29.7, 29.1, 25.4, 20.9, 19.9, 19.8. MS (EI, 70 eV): m/z (%) = 230 (63, M⁺), 215 (59), 202 (30), 187 (100), 173 (19), 159 (65), 145 (27), 134 (12), 121 (15), 115 (16), 105 (16), 91 (20), 79 (19), 69 (5), 55 (14), 40 (34). The spectroscopical data were identical with the literature. 13 (+)-(1*R*,2*R*)-18 (1.00 g, 4.00 mmol) was transformed yielding (1*R*,2*S*)-2, *ent*-herbertenolide (100 % de, > 98 % ee); $[\alpha]_D^{20}$ + 96.8 (*c* = 1.08, CHCl₃); Lit. ¹³ $[\alpha]_D$ – 86.4. #### (+)-Ethyl (1R,2S)-2-Hydroxycyclopentane-1-carboxylate (20): In a 3 L Erlenmeyer flask connected to a stirring or shaking apparatus, baker's yeast (225 g; Pleser, Darmstadt) was suspended in a solution of sugar (225 g) in $\rm H_2O$ (1.5 L). After 0.5 h ethyl 2-oxocyclopentane-1-carboxylate (19; 22.5 g, 143 mmol) and Triton®X 114 (450 mg, Fluka) were added and the mixture was stirred for 48 h. Hyflow Super Cel® (80 g, Fluka) was added in portions with stirring and the mixture was filtered through a G2-frit, saturated with NaCl, extracted with Et₂O (4 × 300 mL) and dried (MgSO₄). Four such experiments were combined and the residue purified by distillation; yield: 62.6 g (65%); colourless oil; bp 95°C/10 mbar. All spectroscopic data were identical with the literature; 22 [α] 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 # (+)-Ethyl (1R,2S)-2-Hydroxy-1-methylcyclopentane-1-carboxylate (21): To a solution of LDA, prepared (-78° C, then 0° C, 1 h) from diisopropylamine ($60.7 \, \mathrm{g}$, $0.60 \, \mathrm{mol}$) in anhyd THF ($225 \, \mathrm{mL}$) and MeLi ($375 \, \mathrm{mL}$, $0.60 \, \mathrm{mol}$, $1.6 \, \mathrm{M}$ in Et₂O) was added in one portion at -50° C the carboxylate **20** ($40.1 \, \mathrm{g}$, $0.25 \, \mathrm{mol}$) in anhyd THF ($60 \, \mathrm{mL}$). The temperature was raised up to -10° C and stirring was continued for $0.5 \, \mathrm{h}$ at this temperature. MeI ($49.7 \, \mathrm{g}$, $0.35 \, \mathrm{mol}$) in HMPA ($125 \, \mathrm{mL}$) was added the temperature rising up to $+40^{\circ}$ C. Stirring was continued for $20 \, \mathrm{h}$ at r.t. and the mixture was pourion into sat. aq NH₄Cl ($1000 \, \mathrm{mL}$), extracted with Et₂O ($4 \times 200 \, \mathrm{mL}$) and the combined organic layers were washed with brine, dried (MgSO₄) and concentrated. The crude product was purified by distillation; yield: $36.1 \, \mathrm{g}$ ($84 \, \%$); colourless oil; bp 99° C/ $10 \, \mathrm{mbar}$; [α] $100 \mathrm{mb$ Note: MeLi can be replaced by BuLi (2.5 M in hexane) and HMPA by DMPU; yield: 84%. IR (film): v = 3455 (OH), 1730, 1720, 1705 (C=O) cm⁻¹. ¹H NMR (CDCl₃): δ = 4.18 (q, J = 7.1 Hz, 2 H), 4.00–3.96 (m, 1 H), 3.19 (m, 1 H), 2.27–2.18 (m, 1 H), 2.02–1.98 (m, 1 H), 1.86–1.82 (m, 1 H), 1.73–1.64 (m, 2 H), 1.59–1.53 (m, 1 H), 1.27 (t, J = 7.1 Hz, 3 H), 1.18 (s, 3 H, CH₃). $^{13}{\rm C\ NMR\ (CDCl_3)};\ \delta=177.2,\ 80.0,\ 60.6,\ 54.1,\ 33.3,\ 32.0,\ 22.4,\ 20.5,\ 14.2.$ MS (CI, 120 eV): m/z (%) = 173 (100, $M^+ + 1$), 172 (1, M^+), 155 (6), 127 (3), 81 (3). #### (-)-Ethyl (1R)-1-Methyl-2-oxocyclopentane-1-carboxylate (9): To a solution of (+)-(1R,2S)-21 (34.4 g, 0.20 mol) in Et₂O (200 mL) was added dropwise a solution of Na₂Cr₂O₇ · 2H₂O (89.4 g, 0.30 mol) and conc. H₂SO₄ (75 g) in H₂O (200 mL) at 0-5 °C and stirring was continued for 20 h at r.t. H₂O (220 mL) was added and the mixture was extracted with Et₂O (4 × 200 mL) and the combined organic layers were washed with sat. aq NaHCO₃, brine, dried (MgSO₄) and concentrated. The crude product was purified by distillation; yield: 23.5 g (69 %), colourless oil; bp 96 °C/10 mbar; [α]_D²⁰ - 13.3 (c = 1.09, CHCl₃). IR (film): v = 1750 (C = O), 1735 (C=O) cm⁻¹. ¹H NMR (CDCl₃): δ = 4.15 (q, J = 7.1 Hz, 2 H), 2.53–2.39 (m, 2 H), 2.35–2.27 (m, 1 H), 2.11–2.02 (m, 1 H), 1.96–1.82 (m, 2 H), 1.30 (s, 3 H, CH₃), 1.24 (t, J = 7.1 Hz, 3 H). ¹³C NMR (CDCl₃): δ = 215.7, 172.4, 61.3, 55.9, 37.6, 36.3, 19.6, 19.4, 14.1. MS (CI, 120 eV): m/z (%) = 171 (100, $M^+ + 1$), 170 (4, M^+), 142 (18), 125 (14), 113 (4). ### Ethyl $(1R^*,2S^*)$ -2-(Benzyloxy-5-methylphenyl)-2-hydroxy-1-methyl-cyclopentane-1-carboxylate (23): To Grignard reagent 22, prepared from Mg (8.77 g, 0.36 mol, 20 mL anhyd THF) and 4-benzyloxy-3-bromotoluene (100 g, 0.36 mol in 300 mL anhyd THF; reflux, 1 h) was added rac-9 (54.4 g, 0.32 mol) in anhyd THF (100 mL) at -20 °C. The mixture was allowed to warm to r.t. within 10 h. Ice-cold sat. aq NH₄Cl (400 mL) was added at -5 °C and the mixture was separated (any precipitate formed was hydrolysed with sat. aq NH₄Cl). The aqueous layer was extracted with Et₂O (3 × 100 mL) and the combined organic layers were dried (MgSO₄) and concentrated. The solid residue was sufficiently pure; yield: 90.4 g (74 %); colourless crystals; mp 74 °C (crude product). IR (film): v = 3485 (OH), 1710 (C=O) cm⁻¹. ¹H NMR (CDCl₃): δ = 7.44–7.33 (m, 5 H), 6.99–6.97 (m, 2 H), 6.87–6.84 (m, 1 H), 5.44 (d, J = 2.5 Hz, 1 H, OH), 5.11/5.05 (d, J = 11.0 Hz, 2 H, PhC H_2), 3.64 (q, J = 7.1 Hz, 2 H), 2.75–2.72 (m, 1 H), 2.35–2.28 (m, 1 H), 2.23 (s, 3 H, ArC H_3), 1.99–1.87 (m, 3 H), 1.69–1.63 (m, 1 H), 1.28 (s, 3 H, CH₃), 0.88 (t, J = 7.1 Hz, 3 H). ¹³C NMR (CDCl₃): δ = 176.6, 155.2, 136.1, 130.0, 129.9, 128.8, 128.7, 128.4, 127.9, 112.5, 87.3, 71.1, 60.0, 59.8, 38.7, 37.1, 21.7, 20.6, 19.6, 13.6. MS (CI, 120 eV): m/z (%) = 368 (24, M⁺), 351 (100), 305 (4), 278 (27), 187 (7), 142 (2), 135 (3), 109 (3), 91 (8). ### 2-(2-Benzyloxy-5-methylphenyl)-1-methylcyclopent-2-ene-1-carboxylic Acid (24): A mixture of 23 (88.4 g, 0.24 mol) and KHSO₄ (3.00 g, 22.0 mmol) was heated to 140 °C for 1 h, cooled, taken up in Et₂O (300 mL), washed (sat. aq NaHCO₃, brine) and dried (MgSO₄). The crude product after concentration (83.2 g, 0.238 mol, 99 %) was taken up in EtOH (700 mL), KOH (42.0 g, 0.75 mol) was added and the mixture heated to reflux for 24 h. The solvent was removed in vacuo and the residue taken up in H₂O (150 mL) and extracted with Et₂O (3 × 50 mL). The aqueous layer was acidified with conc. HCl, the carboxylic acid was filtered and recrystallized from Et₂O/hexane (1:1); yield: 52.2 g (68%); colourless crystals; mp 117 °C. IR (film): v = 3500 - 3000 (OH), 1690 (C=O), 1495 (C=C) cm⁻¹. ¹H NMR (CDCl₃): $\delta = 7.34 - 7.21$ (m, 5H), 6.99 (d, J = 1.9 Hz, 1H), 6.88 (dd, J = 8.3, 1.9 Hz, 1 H), 6.65 (d, J = 8.3 Hz, 1 H), 6.12 (t, J = 2.4 Hz, 1 H, C=CH), 5.00 (s, 2 H, PhC H_2), 2.63–2.57 (m, 1 H), 2.41–2.26 (m, 2 H), 2.19 (s, 3 H, ArC H_3), 1.88–1.80 (m, 1 H), 1.27 (s, 3 H, CH₃). $^{13}\text{C NMR}$ (CDCl₃): $\delta = 183.0,\ 153.8,\ 144.2,\ 137.6,\ 133.6,\ 130.9,\ 129.7\ 128.8,\ 128.4,\ 127.5,\ 126.9,\ 125.6,\ 112.7,\ 70.0,\ 56.5,\ 40.1,\ 31.1,\ 22.4,\ 20.4.$ MS (CI, 120 eV): m/z (%) = 322 (41, M⁺), 305 (29), 277 (100), 214 (14), 185 (14), 145 (2), 91 (14). #### 2-(2-Benzyloxy-5-methylphenyl)-1-methyl-3-oxocyclopentane-1-carboxylic Acid (25): To 85% aq formic acid (190 mL) was added dropwise 30% aq $\rm H_2O_2$ (21.5 g, 0.19 mol) at 0°C. After stirring for 0.5 h **24** (51.6 g, 0.16 mol) was added in small portions and the ice-bath removed the reaction temperature rising up to 40°C. The mixture was stirred for an additional 2 h at this temperature, cooled and poured into ice-cold $\rm H_2O$ (200 mL) containing NaHSO₃. The yellow oil formed was extracted with $\rm Et_2O$, washed twice with $\rm H_2O$, dried (MgSO₄) and concentrated; yield: 50.4 g (93%); yellow oil; mixture of diastereomers. IR (film): v = 3500-3000 (OH), 1735 (C=O), 1700 (C=O) cm⁻¹. ¹H NMR (CDCl₃): $\delta = 9.10$ (s, 1 H, OH), 7.38–7.27 (m, 5 H), 6.88–6.77 (comb. m, 3 H), 4.97–4.86 (m, 2 H, PhC H_2), 4.05/3.81 (s, 1 H, ArCH), 2.68–2.63, 2.48–2.12 (m, 3 H), 2.25/2.18 (s, 3 H, ArC H_3), 1.93–1.81 (m, 1 H), 1.39/1.05 (s, 3 H, CH₃). $^{13}\mathrm{C\ NMR}\ (\mathrm{CDCl_3}):\ \delta=216.9,\ 215.6,\ 182.8,\ 180.9,\ 164.7,\ 155.1,\ 154.5,\ 136.9,\ 136.6,\ 133.3,\ 131.8,\ 130.5,\ 130.3,\ 130.0,\ 129.4,\ 128.5,\ 128.1,\ 127.9,\ 127.8,\ 127.7,\ 124.6,\ 123.0,\ 112.1,\ 111.6,\ 70.7,\ 70.6,\ 65.8,\ 60.0,\ 58.2,\ 52.7,\ 50.8,\ 36.9,\ 36.8,\ 32.8,\ 32.5,\ 24.2,\ 20.5,\ 19.5,\ 15.1.$ 868 Papers SYNTHESIS MS (CI, 120 eV): m/z (%) = 338 (17, M⁺), 321 (18), 293 (56), 247 (11) 231 (25), 203 (21), 135 (9), 91 (100), 75 (50). ### (1R*,2R*)-2-(2-Hydroxy-5-methylphenyl)-1-methyl-3-oxocyclopentane-1-carboxylic Acid Lactone (16) (from 25): To 25 (2.00 g, 5.91 mmol) in anhyd $\rm CH_2Cl_2$ (100 mL) was added $\rm BBr_3$ (20 mL, 1 M in $\rm CH_2Cl_2$, 20.0 mmol) at $-70\,^{\circ}\rm C$. The mixture was allowed to warm to $-30\,^{\circ}\rm C$ within 4 h and poured into ice-cold $\rm H_2O$ (150 mL). The aqueous layer was extracted with $\rm Et_2O$ (3 × 100 mL) and the combined organic layers were washed with sat. aq NaHCO₃ (2 × 100 mL), brine (2 × 50 mL), dried (MgSO₄) and concentrated. Benzyl bromide was removed by filtering through a silica gel pad eluting with petroleum ether and the product was eluted with $\rm Et_2O$ and crystallized from $\rm Et_2O/hexane$ (1:1); yield: 730 mg (54%); colourless crystals; mp 101 °C. The spectroscopic data were identical with the product $\rm rac$ -16 obtained from $\rm rac$ -15 (see above). ### 2-(2-Methoxy-5-methylphenyl)-1-methylcyclopent-2-ene-1-carbaldehyde (26): To rac-12 (50.0 g, 182 mmol) in anhyd THF (180 mL) was added dropwise LiAlH₄ (9.00 g, 237 mmol) in anhyd THF (250 mL). The mixture was heated to reflux for 3 h, cooled and hydrolysed with ice-cold H₂O and 1 N NaOH. The aqueous layer was filtered and extracted with Et₂O (3 × 100 mL). The combined organic layers were washed with brine and dried (MgSO₄). The product crystallized after evaporation of the solvent; yield: 40.7 g (96 %); an analytical sample could be obtained from hexane. The crude primary alcohol (40.0 g, 172 mmol) was dissolved in anhyd $\mathrm{CH_2Cl_2}$ (600 mL) and treated with pyridinium chlorochromate (55.8 g, 258 mmol) in one portion. The mixture was stirred at room temperature for 24 h, the solvent removed in vacuo and the residue dissolved in $\mathrm{Et_2O}$ (5 × 100 mL). The combined organic layers were washed with brine, dried (MgSO₄) and concentrated. The crude product was purified by filtration through a silica gel pad eluting with $\mathrm{CH_2Cl_2}$; yield: 28.8 g (73%); yellow oil. IR (film): v=2795 (CH=O), 2700 (CH=O), 1725 (C=O) cm⁻¹. ¹H NMR (CDCl₃): $\delta=9.64$ (s, 1 H), 7.02 (dd, J=8.4, 2.1 Hz, 1 H), 6.98 (d, J=2.1 Hz, 1 H), 6.98 (d, J=8.4 Hz, 1 H), 6.10 (t, J=2.4 Hz, 1 H, C=H), 3.61 (s, 3 H, OCH₃), 2.56–2.52 (m, 1 H), 2.48–2.41 (m, 1 H), 2.29–2.23 (m, 1 H), 2.27 (s, 3 H, ArCH₃), 1.91–1.83 (m, 1 H), 1.07 (s, 3 H, CH₃). $^{13}{\rm C~NMR}$ (CDCl₃): $\delta = 203.0,~154.3,~145.0,~133.3,~131.3,~129.7,~129.3,~125.2,~110.4,~61.1,~54.3,~36.8,~30.9,~20.4,~18.5.$ MS (CI, 120 eV): m/z (%) = 230 (33, M⁺), 202 (74), 173 (39), 171 (51), 159 (59), 145 (100), 141 (31), 128 (68), 121 (47), 115 (59), 105 (48), 91 (50), 77 (52), 61 (35), 51 (33), 46 (86), 45 (94). #### 2-(2-Methoxy-5-methylphenyl)-3,3-dimethylcyclopentane (27): A mixture of **26** (20.1 g, 87.2 mmol), $N_2H_4 \cdot H_2O$ (14.1 g, 0.28 mol), NaOH (16.9 g, 0.42 mol) and diethylene glycol (250 mL) was heated to 195 °C (bath temp.) for 24 h. After cooling H_2O (600 mL) was added and the mixture extracted with Et_2O (3 × 200 mL). The combined organic layers were washed with brine, dried (MgSO₄) and concentrated. The product was purified by distillation; yield: 14.5 g (77%); colourless oil; bp 85 °C/0.01 mbar. IR (film): v = 3035, 1610, 1505 (C=C) cm⁻¹. ¹H NMR (CDCl₃): δ = 7.01 (dd, J = 8.3, 2.1 Hz, 1 H), 6.82 (d, J = 2.1 Hz, 1 H), 6.76 (d, J = 8.3 Hz, 1 H), 5.52 (t, J = 2.3 Hz, 1 H, C=CH), 3.72 (s, 3 H, OCH₃), 2.39 (td, J₁ = 7.0 Hz, J₂ = 2.3 Hz, 2 H), 2.26 (s, 3 H, ArCH₃), 1.85 (t, J = 7.0 Hz, 2 H), 1.04 (s, 6 H, 2 CH₃). $^{13}{\rm C\,NMR}$ (CDCl₃): $\delta=155.6,\ 149.6,\ 131.9,\ 128.9,\ 128.3,\ 127.8,\ 127.4,\ 110.8,\ 55.6,\ 48.0,\ 41.0,\ 30.0,\ 27.3,\ 20.5.$ MS (CI, 120 eV): m/z (%) = 216 (100, M⁺), 201 (74), 186 (7), 173 (15), 159 (10), 145 (20), 137 (7), 121 (7). #### 2-(2-Methoxy-5-methylphenyl)-3,3-dimethylcyclopentan-1-ol (28): The olefin 27 (17.5 g, $80.9 \,\mathrm{mmol}$) was dissolved in anhyd THF (480 mL), NaBH₄ (1.05 g, 27.7 mmol) and Et₂O·BF₃ (6.68 g, 5.80 mL, 47.1 mmol) were added and the mixture was stirred for 20 h at r.t. 3 N aq NaOH (32 mL) was added dropwise followed by 30% aq $\rm H_2O_2$ (30 mL) with additional stirring for 20 h. The mixture was saturated with NaCl and extracted with Et₂O (3 × 100 mL). The combined organic layers were washed twice with brine, dried (MgSO₄) and concentrated. The product was purified by CC (CH₂Cl₂); yield: 14.8 g (78%); colourless oil. IR (film): v = 3400 (OH), 3020 cm⁻¹. ¹H NMR (CDCl₃): δ = 6.98–6.96 (m, 2 H), 6.75 (d, J = 8.9 Hz, 1 H), 4.62–4.56 (m, 1 H, CHO), 3.72 (s, 3 H, OCH₃), 3.21 (s, 1 H, OH), 2.27 (s, 3 H, Ar-CH₃), 2.20–2.13 (m, 1 H), 1.82–1.75 (m, 2 H), 1.71–1.64 (m, 1 H), 1.59–1.52 (m, 1 H), 1.00 (s, 3 H, CH₃), 0.67 (s, 3 H, CH₃). $^{13}\text{C NMR}$ (CDCl₃): $\delta = 156.7, 129.6, 129.1, 127.6, 127.5, 110.7, 76.8, 56.6, 55.4, 41.8, 39.2, 31.8, 29.9, 25.1, 20.7.$ MS (CI, 120 eV): m/z (%) = 234 (100, M⁺), 219 (13), 165 (10), 136 (25), 105 (13), 99 (20), 84 (12), 81 (11), 4 (25). ### 2-(2-Methoxy-5-methylphenyl)-3,3-dimethylcyclopentanone (29) (from 28): To a solution of 28 (14.8 g, 63.1 mmol) in Et₂O (110 mL) was added dropwise a solution of Na₂Cr₂O₇ · 2H₂O (33.8 g, 0.11 mol) and conc. H₂SO₄ (15 g) in H₂O (80 mL) at $0-5^{\circ}$ C and stirring was continued for 20 h at r.t. Ice-cold H₂O (220 mL) was added and the mixture extracted with Et₂O (3 × 100 mL) and the combined organic layers were washed with sat. aq. NaHCO₃, brine, dried (MgSO₄) and concentrated. The crude oil was purified by CC (CH₂Cl₂); yield: 7.60 g (52%); colourless crystals; mp 62°C. IR (film): v = 3060, 3025, 1735 (C=O) cm⁻¹. ¹H NMR (CDCl₃): δ = 7.01 (dd, J = 8.3, 2.1 Hz, 1 H), 6.76 (d, J = 8.3 Hz, 1 H), 6.73 (d, J = 2.1 Hz, 1 H), 3.71 (s, 3 H, OCH₃), 3.65 (s, 1 H, ArC*H*), 2.39 (dt, J = 2.6, 7.6 Hz, 2 H), 2.26 (s, 3 H, ArC*H*₃), 1.92–1.82 (m, 2 H), 1.13 (s, 3 H, CH₃), 0.78 (s, 3 H, CH₃). ¹³C NMR (CDCl₃): δ = 218.8, 155.8, 132.3, 129.4, 128.6, 124.5, 110.8, 61.1, 55.4, 41.6, 36.8, 35.9, 29.4, 23.2, 10.6. MS (CI, 120 eV): m/z (%) = 232 (100, M⁺), 177 (47), 162 (46), 149 (28), 135 (97), 121 (33), 112 (18), 105 (43), 97 (19), 91 (26), 77 (18). ### 2-(2-Methoxy-5-methylphenyl)-3,3-dimethylcyclopentanone (29) (from 27): To 27 (2.00 g, 9.25 mmol) in formic acid (20 mL) was added dropwise 30% aq $\rm H_2O_2$ (1.67 g, 14.7 mmol) at 0°C. The mixture was stirred (0°C, 1 h, 20°C, 20 h) and poured into ice-cold $\rm H_2O$ (150 mL) containing a trace of NaHSO₃. The yellow oil formed was extracted with $\rm Et_2O$ (3 × 50 mL), washed with 2% aq NaOH (25 mL) and brine, dried (MgSO₄) and concentrated. The crude oil was purified by CC (CH₂Cl₂) and recrystallized from hexane; yield: 800 mg (37%); colourless crystals; mp 62°C. All spectroscopic data were identical with the product obtained from 28 (see above). #### 2-(2-Methoxy-5-methylphenyl)-2,3,3-trimethylcyclopentanone (30): To **29** (5.40 g, 23.2 mmol) in anhyd DME (100 mL) was added NaH (612 mg, 25.5 mmol) in one portion at -50° C. Hydrogen evolution was induced by removing the cooling agent and the temperature was allowed to rise up to 0° C. Iodomethane (5.24 g, 36.9 mmol) in anhyd DME (20 mL) was added dropwise and stirring was continued (3 h at 0° C, 20 h at r.t.). The mixture was poured into H₂O (150 mL) and extracted with Et₂O (3 × 100 mL). The organic layers were washed with brine and dried (MgSO₄). The product obtained after evaporation was purified by CC (Et₂O/hexane, 1:2); yield: 3.73 g (65%); colourless crystals; mp 66°C. IR (film): v = 3025, 1735 (C=O) cm⁻¹. $^1\mathrm{H}$ NMR (CDCl₃): $\delta=7.00-6.98$ (m, 2 H), 6.75 (d, J=8.2 Hz, 1 H), 3.63 (s, 3 H, OCH₃), 2.71–2.61 (m, 1 H), 2.39–2.31 (m, 1 H), 2.27 (s, 3 H, ArCH₃), 1.85–1.73 (m, 2 H), 1.29 (s, 3 H, CH₃), 1.02 (s, 3 H, CH₃), 0.78 (s, 3 H, CH₃). ¹³C NMR (CDCl₃): δ = 221.1, 154.7, 131.5, 130.1, 129.6, 128.3, 112.9, 56.6, 55.5, 43.7, 35.5, 35.4, 26.1, 25.5, 20.8, 20.5. MS (CI, 120 eV): m/z (%) = 246 (63, M⁺), 191 (11), 176 (20), 161 (17), 149 (100), 135 (41), 119 (13), 112 (19), 105 (22), 91 (19), 77 (11). ### 1-(2-Hydroxy-5-methylphenyl)-1,2,2-trimethylcyclopentane (rac-3, rac- α -Herbertenol): A mixture of 30 (1.00 g, 4.06 mmol), $N_2H_4 \cdot H_2O$ (1.22 g, 24.4 mmol), NaOH (1.46 g, 36.5 mmol) and diethylene glycol (40 mL) was heated to 220 °C (bath temp.) for 72 h. After cooling, H_2O (200 mL) was added and the mixture extracted with Et_2O (3 × 50 mL). The organic layers were washed with brine, dried (MgSO₄) and concentrated. The crude oil was purified by CC (Et_2O /hexane, 1:4); yield: 500 mg (56%); colourless oil. IR (film): v = 3605, 3535 (OH), 1610, 1510, 1410, 1390, 1375, 1250, 1170, 1150, 810 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.09 (d, J = 2.0 Hz, 1 H), 6.84 (dd, J = 7.9, 2.0 Hz, 1 H), 6.54 (d, J = 7.9 Hz, 1 H), 4.65 (s, 1 H, OH), 2.60–2.57 (m, 1 H), 2.25 (s, 3 H, ArCH₃), 1.77–1.61 (m, 4 H), 1.57–1.52 (m, 1 H), 1.40 (s, 3 H, CH₃), 1.17 (s, 3 H, CH₃), 0.75 (s, 3 H, CH₃). ¹³C NMR (CDCl₃): δ = 152.3, 133.1, 130.1, 129.0, 127.3, 116.8, 51.0, 44.7, 41.4, 39.5, 27.0, 25.6, 23.0, 20.9, 20.4. MS (CI, 120 eV): m/z (%) = 218 (100, M⁺), 203 (5), 175 (7), 161 (21), 148 (61), 135 (53), 121 (13), 105 (7), 91 (5), 79 (2), 69 (3), 41 (4). All spectroscopic data were identical with the literature.¹³ ### Ethyl 2-Hydroxy-2-(4-methoxy-3-methylphenyl)-1-methylcyclopentane-1-carboxylate (32): To the Grignard reagent 31, prepared from Mg (8.46 g, 0.35 mol, 30 mL anhyd THF) and 4-bromo-2-methylanisole (70.0 g, 0.35 mol in 250 mL anhyd THF; reflux, 1 h) was added rac-9 (53.8 g, 0.315 mol) in anhyd THF (80 mL) at -40° C. The mixture was allowed to warm to r. t. within 10 h, re-cooled to -20° C and the precipitate was filtered and hydrolysed with sat. aq NH₄Cl. The aqueous layer was extracted with Et₂O (3 × 150 mL) and the organic layers were dried (MgSO₄) and concentrated; yield: 71.1 g (77 %); colourless oil. IR (film): v = 3505 (OH), 1725 (C=O) cm⁻¹. ¹H NMR (CDCl₃): δ = 7.20–7.17 (m, 2 H), 6.72 (d, J = 8.3 Hz, 1 H), 3.78 (s, 3 H, OCH₃), 3.82–3.69 (m, 2 H), 2.67–2.64 (m, 1 H), 2.36–2.31 (m, 1 H), 2.18 (s, 3 H, ArCH₃), 2.12 (s, 1 H, OH), 1.96–1.86 (m, 3 H), 1.82–1.75 (m, 1 H), 1.32 (s, 3 H, CH₃), 0.92 (t, J = 7.1 Hz, 3 H). ¹³C NMR (CDCl₃): δ = 176.4, 156.9, 135.5, 128.2, 125.6, 124.2, 109.1, 84.8, 60.2, 58.3, 55.3, 38.9, 35.8, 20.6, 18.7, 16.4, 13.7. MS (CI, 120 eV): m/z (%) = 292 (22, M⁺), 218 (34), 170 (21), 149 (21), 142 (24), 122 (100), 115 (29), 107 (27), 91 (18), 87 (20), 77 (15). # Ethyl 2-(4-Methoxy-3-methylphenyl)-1-methylcyclopent-2-ene-1-carboxylate (33): A mixture of the alcohol 32 (61.4 g, 0.21 mol) and KHSO₄ (3.00 g, 22.0 mmol) was heated to $140\,^{\circ}$ C for 1 h, cooled, taken up in Et₂O (150 mL) washed (sat. aq NaHCO₃, brine) dried (MgSO₄) and concentrated; yield: 57.0 g (99%); colourless oil. IR (film): $v = 1725 (C = O) \text{ cm}^{-1}$. ¹H NMR (CDCl₃): δ = 7.11 (d, J = 2.0 Hz, 1 H), 6.96 (dd, J = 8.4, 2.0 Hz, 1 H), 6.71 (d, J = 8.4 Hz, 1 H), 6.03 (t, J = 2.5 Hz, 1 H, C=CH), 4.17–4.10 (m, 2 H), 3.78 (s, 3 H, OCH₃), 2.57–2.39 (m, 3 H), 2.18 (s, 3 H, ArCH₃), 1.96–1.89 (m, 1 H), 1.42 (s, 3 H, CH₃), 1.16 (t, J = 7.1 Hz, 3 H). ¹³C NMR (CDCl₃): δ = 177.6, 157.0, 146.2, 129.0, 127.9, 127.8, 126.3, 124.4, 109.6, 60.6, 56.0, 55.3, 39.8, 30.8, 22.6, 16.3, 14.1. MS (CI, 120 eV): m/z (%) = 274 (72, M⁺), 201 (100), 149 (15), 142 (15), 115 (28), 91 (15), 87 (21), 69 (26), 58 (26), 56 (15), 43 (63), 41 (30). # 2-(4-Methoxy-3-methylphenyl)-1-methylcyclopent-2-ene-1-carbaldehyde (34): To the carboxylate 33 (54.8 g, 0.20 mol) in anhyd THF (200 mL) was added dropwise LiAlH₄ (10.2 g, 0.27 mol) in anhyd THF (280 mL). The mixture was heated to reflux for 4 h, cooled and hydrolysed with ice-cold $\rm H_2O$ and 1 N NaOH (200 mL). The aqueous layer was filtered and extracted with $\rm Et_2O$ (3 × 200 mL). The combined organic layers were washed with brine, dried (MgSO₄) and concentrated; yield: 46.0 g (99 %); yellow oil. The crude material (44.1 g, 0.19 mol) in anhyd $\rm CH_2Cl_2$ (800 mL) was treated with pyridinium chlorochromate (61.5 g, 0.285 mol) in one portion. The mixture was stirred at 20 °C for 24 h, the solvent removed in vacuo and the residue extracted with $\rm Et_2O$ (5 × 100 mL). The combined organic layers were washed with brine, dried (MgSO₄) and concentrated. The crude product was purified by CC (CH₂Cl₂); yield: 21.0 g (48 %); yellow oil. IR (film): v = 2800 (CH = O), 2700 (CH = O), 1725 (C = O) cm⁻¹. ¹H NMR (CDCl₃): $\delta = 9.64$ (s, 1 H, CHO), 7.08 (d, J = 1.9 Hz, 1 H), 7.01 (dd, J = 8.4, 1.9 Hz, 1 H), 6.70 (d, J = 8.4 Hz, 1 H), 6.17 (t, J = 2.6 Hz, 1 H, C = CH), 3.78 (s, 3 H, OCH₃), 2.54 (td, J = 7.0, 2.6 Hz, 2 H), 2.36–2.29 (m, 1 H), 2.17 (s, 3 H, ArCH₃), 1.85–1.78 (m, 1 H), 1.32 (s, 3 H, CH₃). $^{13}\mathrm{C\ NMR\ (CDCl_3)};\ \delta=203.7,\ 157.3,\ 144.0,\ 129.9,\ 128.9,\ 127.5,\ 126.6,\ 124.8,\ 109.7,\ 61.5,\ 55.3,\ 35.4,\ 30.6,\ 18.4,\ 16.2.$ MS (CI, 120 eV): m/z (%) = 230 (42, M⁺), 214 (28), 201 (100), 185 (20), 149 (15), 141 (12), 128 (13), 115 (14), 91 (10), 43 (14). #### 2-(4-Methoxy-3-methylphenyl)-3,3-dimethylcyclopentene (35): A mixture of 34 (20.7 g, 90.0 mmol), N_2H_4 · H_2O (15.0 g, 0.30 mol), NaOH (17.6 g, 0.44 mol) and diethylene glycol (250 mL) was heated to 195 °C (bath temp) for 7 h. After cooling H_2O (600 mL) was added and the mixture extracted with Et_2O (3 × 200 mL). The combined organic layers were washed with brine, dried (MgSO₄) and concentrated. The product was purified by CC (hexane); yield: 9.75 g (50%); yellow oil. IR (film): v = 3035, 1610, 1505 (C=C) cm⁻¹. ¹H NMR (CDCl₃): δ = 7.13–7.11 (m, 2 H), 6.73 (d, J = 9.1 Hz, 1 H), 5.64 (t, J = 2.5 Hz, 1 H, C=CH), 3.79 (s, 3 H, OCH₃), 2.33 (td, J = 7.0, 2.5 Hz, 2 H), 2.20 (s, 3 H, ArCH₃), 1.83 (t, J = 7.0 Hz, 2 H), 1.19 (s, 6 H, 2 CH₃). ¹³C NMR (CDCl₃): δ = 156.7, 151.8, 130.1, 126.0, 125.9, 125.7, 109.4, 55.2, 46.5, 42.5, 29.3, 27.5, 16.3. MS (CI, 120 eV): m/z (%) = 216 (100, M⁺). #### 2-(4-Methoxy-3-methylphenyl)-3,3-dimethylcyclopentanone (36): To 35 (8.40 g, 38.8 mmol) in anhyd THF (220 mL) were added NaBH₄ (500 mg, 13.2 mmol) and Et₂O · BF₃ (2.31 g, 2.00 mL, 16.3 mmol) and the mixture was stirred for 20 h at r.t. 3 N aq NaOH (16 mL) was added dropwise followed by 30% aq H₂O₂ (14 mL) with additional stirring for 2 h. The organic layer was separated, the aqueous layer saturated with NaCl and extracted with Et₂O (2 × 100 mL). The combined organic layers were washed with brine (2 × 50 mL), dried (MgSO₄) and concentrated. The crude product in anhyd CH₂Cl₂ (60 mL) was added in one portion to a slurry of PCC (12.5 g, 58.2 mmol) and anhyd NaOAc (10.0 g, 122 mmol) in anhyd CH₂Cl₂ (250 mL). The mixture was stirred for 20 h at r.t. and filtered through a silica gel pad eluting with CH₂Cl₂. The crude material was purified by CC (CH₂Cl₂); yield: 3.90 g (43%); colourless oil. IR (film): v = 1745 (C=O) cm⁻¹. ¹H NMR (CDCl₃): δ = 6.84–6.77 (m, 3 H), 3.80 (s, 3 H, OCH₃), 3.10 (s, 1 H, ArC*H*), 2.46–2.34 (m, 2 H), 2.19 (s, 3 H, ArC*H*₃), 1.94–1.78 (m, 2 H), 1.15 (s, 3 H, CH₃), 0.74 (s, 3 H, CH₃). $^{13}\text{C NMR}$ (CDCl₃): $\delta = 218.4,\ 156.9,\ 132.5,\ 128.6,\ 126.8,\ 126.3,\ 109.8,\ 67.1,\ 55.3,\ 41.2,\ 36.1,\ 35.4,\ 28.7,\ 22.5,\ 16.3$ MS (CI, 120 eV): m/z (%) = 232 (100, M⁺). #### 2-(4-Methoxy-3-methylphenyl)-2,3,3-trimethylcyclopentanone (37): To 36 (2.10 g, 9.00 mmol) in anhyd DME (50 mL) was added NaH (230 mg, 9.50 mmol) in one portion at -50° C. Hydrogen evolution was induced by removing the cooling agent and the temperature was allowed to rise up to 0° C for 0.5 h. MeI (3.00 g, 21.1 mmol) in anhyd DME (5 mL) was added dropwise and stirring was continued (3 h at 0° C, 20 h at r.t.). The mixture was poured into H₂O (75 mL) and extracted with Et₂O (3 × 50 mL). The combined organic layers were washed with brine, dried (MgSO₄) and concentrated; yield: 1.50 g (67%); colourless oil. IR (film): $v = 1740 \text{ (C=O) cm}^{-1}$. ¹H NMR (CDCl₃): $\delta = 6.93 - 6.89$ (m, 2 H), 6.72 (d, J = 8.4 Hz, 870 Papers SYNTHESIS 1 H), 3.78 (s, 3 H, OCH₃), 2.49–2.45 (m, 2 H), 2.19 (s, 3 H, ArC*H*₃), 1.86–1.69 (m, 2 H), 1.29 (s, 3 H, CH₃), 1.04 (s, 3 H, CH₃), 0.66 (s, 3 H, CH₃). $^{13}\text{C NMR}$ (CDCl₃): $\delta = 222.1,\,156.3,\,132.7,\,130.3,\,126.2,\,125.6,\,109.3,\,59.6,\,55.3,\,42.8,\,36.0,\,33.5,\,26.6,\,23.9,\,19.4,\,16.4.$ MS (CI, 120 eV): m/z (%) = 246 (63, M⁺), 149 (100). ### 1-(4-Hydroxy-3-methylphenyl)-1,2,2-trimethylcyclopentane (*rac*-4, *rac*-β-Herbertenol): A mixture of 37 (1.48 g, 6.00 mmol), $N_2H_4 \cdot H_2O$ (1.80 g, 36.0 mmol), NaOH (2.20 g, 55.0 mmol) and diethylene glycol (60 mL) was heated to 220 °C (bath temp) for 72 h. After cooling, H_2O (300 mL) was added and the mixture extracted with Et_2O (3×100 mL). The combined organic layers were washed (brine), dried (MgSO₄) and concentrated. The crude material was purified by CC (CH₂Cl₂) and recrystallized from hexane; yield: 600 mg (45%); colourless crystals; mp 84°C. IR (film): v = 3330, 1510, 1385, 1375, 1365, 1320, 1275, 1125, 995, $815 \,\mathrm{cm}^{-1}$. ¹H NMR (CDCl₃): δ = 7.08 (d, J = 2.2 Hz, 1 H), 7.03 (dd, J = 8.4, 2.2 Hz, 1 H), 6.66 (d, J = 8.4 Hz, 1 H), 4.90 (s, 1 H, OH), 2.48–2.40 (m, 1 H), 2.23 (s, 3 H, ArCH₃), 1.78–1.72 (m, 2 H), 1.69–1.61 (m, 2 H), 1.56–1.49 (m, 1 H), 1.22 (s, 3 H, CH₃), 1.03 (s, 3 H, CH₃), 0.55 (s, 3 H, CH₃). ¹³CNMR (CDCl₃): δ = 151.5, 140.0, 129.7, 125.6, 122.4, 114.1, 50.0, 44.2, 39.9, 37.0, 26.5, 24.6, 24.3, 19.8, 16.1. MS (EI, 70 eV): m/z (%) = 218 (25, M⁺), 203 (5), 175 (6), 161 (51), 148 (100), 135 (59), 121 (28), 105 (14), 91 (30), 77 (26), 69 (15), 55 (34), 41 (10). All spectroscopic data were identical with the literature. 13 - (1) Matsuo, A.; Yuki, S.; Nakayama, M.; Hayashi, S. J. Chem. Soc., Chem. Commun. 1981, 864. - (2) Matsuo, A.; Yuki, S.; Nakayama, M.; Hayashi, S. Chem. Lett. 1982, 463. - (3) Fukuyama, Y.; Asakawa, Y. J. Chem. Soc., Perkin Trans. 1 1991, 2737. - (4) Matsuo, A.; Yuki, S.; Nakayama, M. Chem. Lett. 1983, 1041. - (5) (a) Leriverend, M.-L.; Vazeux, M. J. Chem. Soc., Chem. Commun. 1982, 866. - (b) Takano, S.; Moriya, M.; Ogasawara, K. Tetrahedron Lett. 1992, 33, 329. - (c) Saha, A.K.; Das, S.; Mukherjee, D.; Fronczek, F.R. Tetrahedron Lett. 1994, 35, 3353. - (6) (a) Zinsmeister, H.D.; Becker, H.; Eicher, T. Angew. Chem. 1991, 103, 134; Angew. Chem., Int. Ed. Engl. 1991, 30, 130. (b) Speicher, A.; Eicher, T. Synthesis 1995, 998. - (7) Sato, K.; Suzuki, S.; Kojima, Y. J. Org. Chem. 1967, 32, 339. - (8) Koenig, K.E.; Lein, G.M.; Stuckler, P.; Kaneda, T.; Cram, D.J. J. Am. Chem. Soc. 1979, 101, 3553. - (9) Bird, C. W.; Yeong, Y. C. Synthesis 1974, 27. - (10) Yamada, K.; Yazawa, H.; Uemura, D.; Toda, M.; Hirata, Y. *Tetrahedron* **1969**, *25*, 3509. - (11) (a) Roesen, W. E.; Dorfman, L.; Linfield, M. P. J. Org. Chem. 1964, 29, 1723. - (b) Balsamo, A.; Berti, G.; Crotti, P.; Ferretti, M.; Macchia, B.; Macchia, F. J. Org. Chem. 1974, 39, 2596. - (12) We thank Dr. V. Huch and Prof. Dr. M. Veith, Fachbereich Anorganische Chemie, Universität des Saarlandes for performing X-ray analyses of compounds 15 and 2. - (13) Matsuo, A.; Yuki, S.; Nakayama, M. J. Chem. Soc., Perkin Trans. 1 1986, 701. - (14) (a) Saigo, K.; Koda, H.; Nohira, H. Bull. Chem. Soc. Jpn. 1979, 52, 3119. - (b) Valli, V.L.K.; Sarma, G.V.M.; Choudary, B.M. *Ind. J. Chem.* **1990**, *29B*, 481. - (c) The synthesis of methyl (1S)- and (1R)-1-methyl-2-oxocyclopentanecarboxylate (99/92% ee) was reported: - Kato, K.; Suemune, H.; Sakai, K. *Tetrahedron* **1994**, *50*, 3315. In our hands the method applied did not prove to be suitable for the preparation of (S)-9 in a preparative scale. - (15) Sato, T.; Maeno, H.; Noro, T.; Fujisawa, J. Chem. Lett. 1988, 1739. - (16) Enders, D.; Zamponi, A.; Schäfer, T.; Nübling, C.; Eichenauer, H.; Sitki Demir, A.; Raabe, G. Chem. Ber. 1994, 127, 1707. - (17) Frater, G. Helv. Chim. Acta 1980, 63, 1383. - (18) Frater, G. Helv. Chim. Acta 1979, 62, 2825, 2829. - (19) Orth, U.; Pfeiffer, H.-P.; Breitmaier, E. Chem. Ber. 1986, 119, 3507. - (20) Wolff-Kishner procedure at more than $215\,^{\circ}\mathrm{C}$ induced cleavage of the methyl ether. - (21) Nasipuri, D.; Roy, D.N. J. Ind. Chem. Soc. 1963, 40, 334. - (22) Seebach, D.; Roggo, D.; Maetzke, T. Helv. Chim. Acta 1987, 70, 1605.