

Tetrahedron Letters 44 (2003) 3053-3057

TETRAHEDRON LETTERS

Parallel synthesis of multi-branched oligosaccharides related to elicitor active pentasaccharide in rice cell based on orthogonal deprotection and glycosylation strategy

Hiroshi Tanaka, Toru Amaya and Takashi Takahashi*

Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan

Received 18 January 2003; revised 21 February 2003; accepted 26 February 2003

Abstract—We describe a parallel and efficient synthesis of multi-branched oligosaccharides 3a-g based upon the structure of the phytoalexin elicitor active branched pentasaccharide 2. One-pot sequential orthogonal deprotection of tetrasaccharide 5 with three different protecting groups provided each of seven glycosyl acceptors 4a-g. Glycosylation of the acceptors 4a-g, followed by deprotection provided branched oligosaccharides 3a-g. All the reaction processes from scaffold 5 to 3a-g except for final hydrogenolysis were achieved utilizing an automated synthesizer in a parallel fashion. © 2003 Published by Elsevier Science Ltd.

Branched oligosaccharides play important roles in biological events that occur at cell surfaces.¹ For example, β -glucan hydrosates such as β -(1,6) glucan **1** with two β -(1,3) branching saccharides² and β -(1,3) glucan **2** with a β -(1,6) branching saccharide³ have phytoalexin elicitor activity in soybean and rice, respectively (Fig. 1). The position of the branching glucoses is essential for their biological activity. We have already reported several syntheses^{4,5} of related compounds by solid-phase synthesis and one-pot glycosylation in solution-phase, which are based on a sequential coupling strategy using several building blocks. The sequential coupling reactions are effective to form the β -(1,6) linked backbone. However, coupling at the C-3 hydroxy group is more difficult than coupling at the C-6 hydroxyl group due to their steric hindrance.

In order to elucidate structure–activity relationships of 2, we designed multi-branched oligosaccharides 3a-g varying in the number and position of their branching glucoses (Scheme 1). The synthesis of the branched oligosaccharides 3a-g based on a sequential coupling strategy requires multiple β -(1,3) coupling reactions, which would not be effective for a library synthesis in terms of yields and efficiency. Therefore, we designed an alternative strategy for the synthesis of the branched

Figure 1. Structure of phytoalexin elicitors 1 and 2 for soybean and rice.

0040-4039/03/\$ - see front matter @ 2003 Published by Elsevier Science Ltd. doi:10.1016/S0040-4039(03)00553-7

Keywords: combinatorial chemistry; branched oligosaccharides; phytoalexin elicitor; orthogonal deprotection; automated synthesizer. * Corresponding author. Fax: +81-3-5734-2884; e-mail: ttakashi@o.cc.titech.ac.jp

Scheme 1. Reagents and conditions: (a) $Pd(PPh_3)_4$, dimedone, THF, rt; (b) piperidine, THF, rt; (c) hydrazine acetate, THF, rt; (d) 6 (2.5 equiv.), DMTST, CH_2Cl_2 , rt, then NEt₃, rt; (e) 6 (5.0 equiv.), DMTST, CH_2Cl_2 , rt, then NEt₃, rt; (f) 6 (7.5 equiv.), DMTST, CH_2Cl_2 , rt, then NEt₃, rt; (g) TBAF, THF, 50°C, then NaOMe, MeOH; (h) H₂, Pd(OH)₂, ethyl acetate–MeOH–H₂O.

oligosaccharides 3a-g in a parallel fashion. Herein we report the effective synthesis of mono- to tri-branched oligosaccharides based on orthogonal deprotection and glycosylation strategy.

Our new strategy for the synthesis of β -(1,3) linked oligosaccharides 3a-g having tri-, di-, and mono-β-(1,6) branched glucoses involves preparation of seven acceptors 4a-g with mono- to tri-hydroxyl groups from a scaffold **5** by orthogonal deprotection,⁶ followed by glycosylation of all hydroxy groups. All branching in **3a**–g can be achieved by β -(1,6) glycosylation reaction. In order to demonstrate the applicability of the solution-phase methodology to a library synthesis, the processes for the synthesis of 3a-g from the key intermediate 5 would be achieved utilizing an automated synthesizer in a parallel fashion. For the selective deprotection, we selected three orthogonally removable protecting groups; allyloxycarbonyl (Alloc),⁷ 9fluorenylmethoxycarbonyl (Fmoc),^{6d,8} and levulinoyl $(Lev)^9$ which can be removed by $Pd(PPh_3)_4$ with dimedone, piperidine, and hydrazine acetate, respectively.

The preparation of the building blocks for the synthesis of scaffold 5 is described in Scheme 2. Reductive cleavage of the benzylidene acetal of thioglycoside 7^{8b} provided the primary alcohol 8a. Protection of the resulting alcohol with the appropriate protecting reagents gave the three glycosyl donors 8b–d each hav-

Scheme 2. Reagents and conditions: (a) BH_3 ·NMe₃, AlCl₃, CH₂Cl₂, Et₂O, 90%; (b) AllocCl, Py, CH₂Cl₂, 82%; (c) EDCI, LevOH, CH₂Cl₂, 87%; (d) FmocCl, Py, CH₂Cl₂, 44% (recryst. from methanol); (e) BnOH, NIS, TfOH, CH₂Cl₂, MS4A; (f) HF·Py, Py, 81%, two steps; (g) **8b**, NIS, TfOH, CH₂Cl₂, MS4A; (h) HF·Py, Py, 50%, two steps (recryst. from hexane-ether); (i) **8c**, NIS, TfOH, CH₂Cl₂, MS4A; (j) HF·Py, Py, 61%, two steps; (k) **8d**, NIS, TfOH, CH₂Cl₂, MS4A, 90%.

ing a different protecting group at the 6 position. The synthesis of **5** is as follows. Glycosylation of benzyl alcohol with thioglycoside **7** in the presence of NIS/TfOH, followed by removal of the TBS group provided glycosyl acceptor **9**. Acceptor **9** was coupled with donor **8b**, followed by deprotection of the TBS group to give disaccharide **10** in 50% yield after recrystallization from hexane–ether. Coupling of disaccharide **10** with donor **8c**, followed by removal of the TBS group afforded trisaccharide **11** in 61% yield. Finally, glycosylation of trisaccharide **11** with donor **8d** gave the key intermediate **5**¹⁰ in 90% yield.

The orthogonal deprotection of three protecting group (Alloc, Fmoc, or Lev) of 5 was examined (Scheme 1). Treatment of 5 with each of the three deprotection reagents $Pd(PPh_3)_4$ (25 mol%) and dimedone (2.0 equiv.),¹¹ piperidine (10 equiv.) in THF, and hydrazine acetate (50 equiv.) in THF provided the corresponding monools 4a-c in good yield. The sequential addition of two deprotection reagents; piperidine-hydrazine, Pd reagents-piperidine, and Pd reagents-hydrazine acetate afforded diols **4d**–**f** in good yields. Deprotection of all protecting groups was achieved by sequential addition of the three deprotection reagents to yield triol 4g in 85% yield. The sequential deprotection reactions proceeded smoothly at room temperature. It should be noted that each of the acceptors 4a-g can be prepared from scaffold 5 by these synthetic protocols. The sequential deprotection reaction is adaptable to an automated synthesizer (L-COSTM)^{12,13} with computer controlled stirring, reaction temperature, and rate of addition of reagents. Purification was achieved utilizing automated parallel column chromatography (Combi FlashTM).¹⁴ Structure determination of acceptors 4a-g was achieved by analysis of ¹H and ¹³C NMR and mass spectra.

The synthesis of the branched oligosaccharides 3a-gfrom 4a-g is illustrated in Scheme 1. Complete glycosylation of the glycosyl acceptors 4a-g with thioglycoside 6 in the presence of dimethyl(methylthio)sulfonium triflate (DMTST) provided the corresponding penta- to hepta-saccharides in high yield (61–98%). Treatment of the reaction mixtures with triethylamine for neutralization resulted in removal of the Fmoc group. Sequential deprotection of the TBS group and the acyl protecting groups (55-95%), followed by hydrogenolysis of the benzyl ethers and the benzylidene acetal afforded the deprotected oligosaccharides 3a-g in good yield (97%) quant). Analysis of the ¹³C NMR spectra of **3a**-g^{15,16} indicated that the all glycosidic linkages except for that in the reduced end were formed with the β -configuration.¹⁷ All reaction processes from 5 to 3a-g except for the final hydrogenolysis were achieved utilizing an automated synthesizer in a parallel fashion.

In summary we have demonstrated an efficient synthesis of multi-branched oligosaccharides 3a-g by orthogonal deprotection and glycosylation strategy. This methodology is effective for the synthesis of branched oligosaccharides having a common backbone with various branching saccharides at different positions. Multi-

ple deprotection reactions and glycosylation of resulting hydroxyl groups are attractive protocols to achieve utilizing an automated synthesizer. The phytoalexin elicitor activity of these oligosaccharides is currently being explored along with the application of the onepot deprotection method to other oligosaccharide libraries.

Acknowledgements

This work was supported by the Ministry of Education, Science, Sports, and Culture, Japan.

References

- (a) Varki, A. *Glycobiology* 1993, *3*, 97–130; (b) Varki, A.; Cummings, R.; Esko, J.; Freeze, H.; Hart, G.; Marth, J. *Essentials of Glycobiology*; Cold Spring Harbor Laboratory Press: New York, 1999; (c) Ernst, B.; Hart, G. W.; Sinaÿ, P. *Carbohydrates in Chemistry and Biology*; Wiley-VCH: Weinheim, 2000; Vol. 3 and 4.
- (a) Sharp, J. K.; Valent, B.; Albersheim, P. J. Biol. Chem. 1984, 259, 11312–11320; (b) Sharp, J. K.; McNeil, M.; Albersheim, P. J. Biol. Chem. 1984, 259, 11321–11336; (c) Sharp, J. K.; Albersheim, P.; Ossowski, P.; Pilotti, Å.; Garegg, P.; Lindberg, B. J. Biol. Chem. 1984, 259, 11341– 11345.
- (a) Yamaguchi, T.; Yamada, A.; Hong, N.; Ogawa, T.; Ishii, T.; Shibuya, N. *Plant Cell* **2000**, *12*, 817–826; (b) Yamaguchi, T.; Maehara, Y.; Kodama, O.; Okada, M.; Matsumura, M.; Shibuya, N. *J. Plant Physiol.* **2002**, *159*, 1147–1149.
- For synthetic studies of phytoalexin elicitors in soybeans, see: (a) Yamada, H.; Harada, T.; Takahashi, T. J. Am. Chem. Soc. 1994, 116, 7919–7920; (b) Yamada, H.; Takimoto, H.; Ikeda, T.; Tsukamoto, H.; Harada, T.; Takahashi, T. Synlett 2001, 1751–1754; (c) Tanaka, H.; Adachi, M.; Tsukamoto, H.; Ikeda, T.; Yamada, H.; Takahashi, T. Org. Lett. 2002, 4, 4213–4216.
- For synthetic studies of phytoalexin elicitors in rice, see: (a) Amaya, T.; Tanaka, H.; Yamaguchi, T.; Shibuya, N.; Takahashi, T. *Tetrahedron Lett.* 2001, *42*, 9191–9194; (b) Takahashi, T.; Okano, A.; Amaya, T.; Tanaka, H.; Doi, T. *Synlett* 2002, 911–914.
- For orthogonal deprotection strategy on a mono-saccharide scaffold, see: (a) Wunberg, T.; Kallus, C.; Opatz, T.; Henke, S.; Schmidt, W.; Kunz, H. Angew. Chem., Int. Ed. 1998, 37, 2503–2505; (b) Wong, C.-H.; Ye, X.-S.; Zhang, Z. J. Am. Chem. Soc. 1998, 120, 7137–7138; (c) Kallus, C.; Opatz, T.; Wunberg, T.; Schmidt, W.; Henke, S.; Kunz, H. Tetrahedron Lett. 1999, 40, 7783–7786; (d) Zhu, T.; Boons, G.-J. Tetrahedron: Asymmetry 2000, 11, 199–205.
- The use of Alloc as a hydroxyl protecting group in oligosaccharide synthesis has been reported in a few examples. See: (a) Teshima, T.; Nakajima, K.; Takahashi, M.; Shiba, T. *Tetrahedron Lett.* **1992**, *33*, 363–366; (b) Harada, T.; Yamada, H.; Tsukamoto, H.; Takahashi, T. *J. Carbohydr. Chem.* **1995**, *14*, 165–170; (c) Depré, D.; Düffels, A.; Green, L. G.; Lenz, R.; Ley, S. V.; Wong,

C.-H. *Chem. Eur. J.* **1999**, *5*, 3326–3340; (d) Adinolfi, M.; Barone, G.; Guariniello, L.; Iadonisi, A. *Tetrahedron Lett.* **2000**, *41*, 9305–9309.

- The use of Fmoc as a hydroxyl protecting group in oligosaccharide synthesis has been reported in a few examples. See: (a) Freese, S. J.; Vann, W. F. Carbohydr. Res. 1996, 281, 313–319; (b) Nicolaou, K. C.; Winssinger, N.; Pastor, J.; DeRoose, F. J. Am. Chem. Soc. 1997, 119, 449–450; (c) Nicolaou, K. C.; Watanabe, N.; Li, J.; Pastor, J.; Winssinger, N. Angew. Chem., Int. Ed. 1998, 37, 1559–1561; (d) Roussel, F.; Knerr, L.; Grathwohl, M.; Schmidt, R. R. Org. Lett. 2000, 2, 3043–3046; (e) Zhu, T.; Boons, G.-J. J. Am. Chem. Soc. 2000, 122, 10222–10223; (f) Wu, X.; Grathwohl, M.; Schmidt, R. R. Org. Lett. 2001, 3, 747–750.
- 9. Green, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis; 3rd ed.; John Wiley & Sons: New York, 1999; p. 168.
- 10. Spectral data of 5: ¹H NMR (270 MHz, CDCl₃): δ -0.41 (s, 3H), -0.14 (s, 3H), 0.72 (s, 9H), 2.00 (s, 3H), 2.18 (t, 2H, J = 6.6 Hz), 2.39 (t, 2H, J = 6.6 Hz), 3.29–3.71 (m, 13H), 3.88 (dd, 1H, J = 6.9, 6.9 Hz), 4.04–4.59 (m, 20H), 4.72–4.93 (m, 6H), 5.02 (dd, 1H, J=7.9, 8.3 Hz), 5.19 (dd, 1H, J=10.6, 10.6 Hz), 5.24 (br-d, 1H, J=10.2 Hz), 5.34 (br-d, 1H, J=17.5 Hz), 5.51 (s, 1H), 5.92 (ddt, 1H, J=10.2, 17.5, 5.9 Hz), 7.04–7.61 (m, 45H, Ar), 7.72 (d, 2H, J=8.6 Hz), 7.77 (d, 2H, J=9.2 Hz), 7.93 (d, 2H, J=7.3 Hz), 7.98 (d, 2H, J=7.3 Hz); ¹³C NMR (67.8 MHz, CDCl₃): δ -4.6, -4.1, 17.7, 25.6, 27.6, 29.7, 37.7, 46.7, 66.3, 66.5, 68.5, 70.1, 70.2, 71.7, 72.8, 73.1, 73.2, 73.7, 74.0, 74.2, 74.6, 74.8, 75.0, 75.4, 77.2, 77.3, 78.7, 78.9, 79.0, 79.3, 97.7, 98.3, 99.4, 99.9, 102.0, 119.0, 120.0, 125.2×2, 126.6, 127.7×2, 127.8, 127.9, 128.0, 128.1, 128.3×2, 128.4, 128.5, 128.8, 128.9, 129.2, 129.3, 129.6×2, 129.7, 129.9, 130.2, 131.6, 133.2, 133.7, 136.7, 137.3, 137.5, 137.9, 138.2, 141.3, 143.3, 143.4, 154.8, 154.9, 164.3, 164.5, 164.7, 165.5, 172.3; IR (KBr) 2998, 2996, 2892, 2800, 1720, 1255, 1985, 769 cm⁻¹. Anal. calcd for C₁₁₇H₁₂₀O₃₁Si: C, 68.54; H, 5.90. Found: C, 65.55; H, 6.01%.
- 11. Kunz, H.; Unverzagt, C. Angew. Chem., Int. Ed. Engl. 1984, 23, 436-437.
- 12. Experimental procedure for the sequential selective deprotection of 5 utilizing an automated synthesizer (L-COSTM): Seven reaction vessels 1-7 were placed on the L-COS[™]. A solution of 5 (35 mg, 0.017 mmol) in THF (0.5 mL) was added to each of the reaction vessels 1-7 at room temperature. For removal of the Alloc groups, two solutions of dimedone (5 mg, 36.0 µmol) in THF (0.2 mL) and Pd(PPh₃)₄ (5 mg, 4.3 μ mol) in THF (0.2 mL) were added to each of the reaction vessels 1-4 at room temperature. The reaction mixtures were stirred at the same temperature for 15 min. For removal of the Fmoc group, a solution of piperidine (20 µL, 0.20 mmol) in THF (0.2 mL) was added to each of the reaction vessels 2, 3, 5, and 6 at room temperature. The reaction mixtures were stirred at the same temperature for 15 min. For removal of the Lev group, a solution of hydrazine (29 μ L, 0.93 mmol)-acetic acid (73 µL, 1.28 mmol) in THF (0.2 mL) was added to each of the reaction vessels 3, 4, 6, and 7 at the same temperature. After stirring at the same temperature for 30 min, the reaction mixtures were auto-

matically subjected to flash chromatography in parallel fashion, eluting with hexane: ethyl acetate (1: 4) to give the seven tetrasaccharides **4a** (26.4 mg, 0.013 mmol, 79% yield), **4b** (26.3 mg, 0.014 mmol, 79% yield), **4c** (25.8 mg, 0.014 mmol, 83% yield), **4d** (24.4 mg, 0.014 mmol, 83% yield), **4e** (22.7 mg, 0.013 mmol, 76% yield) **4f** (24.4 mg, 0.013 mmol, 77% yield), **4g** (24.0 mg, 0.015 mmol, 85% yield), respectively.

- 13. L-COS[™] is purchased from Moritex Corporation, Japan.
- 14. Combi Flash[™] automated column chromatograph with ten parallel columns is purchased from Isco, Incorporation.
- 15. Compound **3c**: $[\alpha]_D^{24} = -12.3$ (*c* 0.96, H₂O); Selected ¹³C NMR (67.8 MHz, D₂O, 30°C): δ 94.7, 98.3, 105.2–105.5; HRMS (ESI-TOF) calcd for C₃₀H₅₂O₂₆Na (M+Na⁺): 851.2645, found: 851.2675. Compound **3d**: $[\alpha]_D^{23} = -10.3$ (*c* 0.88, H₂O); Selected ¹³C NMR (67.8 MHz, D₂O, 30°C): δ

94.6, 98.3, 105.2–105.5; HRMS (ESI-TOF) calcd for $C_{36}H_{67}O_{31}$ (M+H⁺): 1008.3619, found 1008.3597. Compound **3e**: $[\alpha]_{D}^{23} = -15.1$ (*c* 0.91, H₂O); Selected ¹³C NMR (67.8 MHz, D₂O, 30°C): δ 94.7, 98.4, 105.2–105.5; HRMS (ESI-TOF) calcd for $C_{36}H_{67}O_{31}$ (M+H⁺): 1008.3619, found 1008.3654. Compounds **3f**: $[\alpha]_{D}^{20} = -14.7$ (*c* 0.74, H₂O); Selected ¹³C NMR (67.8 MHz, D₂O, 30°C): δ 94.7, 98.4, 105.2–105.5; HRMS (ESI-TOF) calcd for $C_{36}H_{67}O_{31}$ (M+H⁺): 1008.3619, found 1008.3655. Compounds **3g**: $[\alpha]_{D}^{20} = -13.4$ (*c* 1.0, H₂O); Selected ¹³C NMR (67.8 MHz, D₂O, 30°C): δ 94.7, 98.4, 105.2–105.5; HRMS (ESI-TOF) calcd for C₃₆H₆₇O₃₁ (M+H⁺): 1008.3619, found 1008.3635. Compounds **3g**: $[\alpha]_{D}^{20} = -13.4$ (*c* 1.0, H₂O); Selected ¹³C NMR (67.8 MHz, D₂O, 30°C): δ 94.7, 98.4, 105.2–105.5; HRMS (ESI-TOF) calcd for C₄₂H₇₃O₃₆ (M+H⁺): 1170.4147, found 1170.4194.

- Analytical data (¹H and ¹³C NMR, and MS) of pentaglycosides 3a and 3b were identical with those of our previous reported authentic samples, see Ref. 5a.
- 17. Agrawal, P. K. Phytochemistry 1992, 31, 3307-3330.