Tetrahedron 67 (2011) 1649-1653

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Stereoselective synthesis of malyngic acid and fulgidic acid

Yusuke Kurashina, Ayako Miura, Masaru Enomoto, Shigefumi Kuwahara*

Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan

ARTICLE INFO

Article history: Received 20 December 2010 Received in revised form 28 December 2010 Accepted 4 January 2011 Available online 9 January 2011

Keywords: Malyngic acid Fulgidic acid Oxylipin Total synthesis Diastereoselective reduction

ABSTRACT

A new stereoselective total synthesis of malyngic acid has been achieved from a known oxazolidinone derivative via eight steps involving the Evans asymmetric alkylation as the chirality-inducing step and chelation-controlled $Zn(BH_4)_2$ reduction of an α -hydroxy ketone intermediate for the installation of the 12,13-*anti* stereochemistry. Fulgidic acid, the C12-epimer of malyngic acid, has also been synthesized in eight steps from the same starting material by using *syn*-selective K-Selectride reduction of an α -alkoxy ketone intermediate.

© 2011 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

Malyngic acid (1), which belongs to the oxylipin family of natural products, was isolated by Cardellina and Moore from the marine blue-green alga *Lyngbya majuscula*, and characterized as a trihydroxy unsaturated fatty acid on the basis of spectroscopic analyses coupled with chemical degradation to known compounds (Fig. 1).¹ Fulgidic acid (2), on the other hand, was first isolated by Herz and Kulanthaivel from the terrestrial higher plant *Rudbeckia fulgida*, and identified as the C12-epimer of 1 from the comparison of its NMR data with those of malyngic acid (1).² Soon after the isolation from *R. fulgida*, the fatty acid 2 was also isolated by Kato

Fig. 1. Structures of malyngic acid (1), fulgidic acid (2), and pinellic acid (3).

and co-workers from the rice plant Oryza sativa along with its 15,16-dihydro analog 3. Both 2 and 3 were found to play an essential role in the self defense of the rice plant by exhibiting antifungal activity against the rice blast fungus Pyricularia oryzae.³ Compound 3 was later reisolated by Nagai and co-workers from the medicinal plant Pinelliae tuber as an effective oral adjuvant for nasal influenza vaccine, and named pinellic acid.⁴ The interesting arrangement of hydroxyls on the unsaturated fatty acid chains of 1-3 as well as the agriculturally and medicinally important bioactivities of **2** and **3**, respectively, prompted a considerable number of synthetic studies on these natural products.^{5–7} From the viewpoint of methodology to install the C12,13-stereochemistry, those syntheses could be classified into four groups: (1) ring opening of a *cis*-substituted epoxide with oxygen nucleophiles;³ (2) the Sharpless asymmetric oxidations;^{4b,5a,6e,7d,e,g,h} (3) derivation from natural products with an appropriate vicinal diol unit;^{5b,6b,c,7b,i,j,1} and (4) diastereoselective addition of organometallics to α -oxygenated aldehydes.^{7f,k} We describe herein a new stereodivergent approach to 1 and 2 using two types of diastereoselective reductions of chiral *a*-oxygenated ketone intermediates for the establishment of the C12,13-anti and cis stereochemistries embedded in 1 and 2, respectively.

2. Results and discussion

Our retrosynthetic analysis of **1** and **2** is shown in Scheme 1. We envisaged that malyngic acid **1** with C12,13-*anti* stereochemistry would be obtainable from **4** via a diastereoselective reduction under chelation-controlled conditions, while fulgidic acid **2**, the

^{*} Corresponding author. Tel./fax: +81 22 717 8783; e-mail address: skuwahar@biochem.tohoku.ac.jp (S. Kuwahara).

^{0040-4020/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2011.01.005

C12,13-*syn* epimer of **1**, could be synthesized from the common intermediate **4** by means of a *syn*-selective reduction according to the Felkin–Anh transition state model. The α -alkoxy ketone intermediate **4** would be traced back to phosphonate **5** and aldehyde **6** by dissecting the double bond conjugated to the ketone function. The PMBO-bearing chiral center of **5** was considered to be installed by the Evans asymmetric alkylation of known oxazolidinone derivative **7**, and the α -acetoxy aldehyde **6** would be prepared by the oxidative cleavage of the double bond of known allylic alcohol **8**.

Scheme 1. Retrosynthetic analysis of 1 and 2.

According to our synthetic plan, the starting material 7^8 was subjected to the Evans asymmetric alkylation with (*Z*)-1-iodo-2-pentene 9^9 to give **10** in 89% yield (Scheme 2).¹⁰ Hydrolytic removal

Scheme 2. Preparation of phosphonate intermediate 5

of the oxazolidinone moiety of **10** with alkaline hydrogen peroxide afforded carboxyallic acid **11**, which was then converted into the corresponding Weinreb amide **12** in 78% overall yield from **10**. Treatment of **12** with the carbanion prepared from dimethyl methylphosphonate and *n*-BuLi gave keto phosphonate **5** in 94% yield.¹¹ In order to transform **10** into **5** in a single step, we also attempted the direct treatment of **10** with the phosphonate carbanion in THF. This reaction, however, resulted in the formation of a mixture containing the desired product **5** (35% isolated yield) and amide **13** (24% isolated yield) stemming from the undesired nucleophilic attack of the carbanion at the ring carbonyl.¹²

The preparation of the other building block **6** was achieved in two steps consisting of the acetylation of the known chiral allylic alcohol **8** and ozonolysis of the resulting acetate **14** (Scheme 3); compound **8** in turn was obtained in 80% yield with >98% enantiomeric excess by the Sharpless kinetic resolution of the corresponding racemate according to our previous procedure.^{7j} The Horner–Wadsworth–Emmons (HWE) olefination between **5** and **6** proceeded smoothly to give **4** in 96% yield after chromatographic removal of a minute amount of its *Z*-siomer contained in the crude reaction product.

Scheme 3. Preparation of key intermediate 4.

With the key intermediate **4** in hand, we went on to the final stage of the synthesis of 1 and 2 (Scheme 4). Oxidative removal of the PMB group of 4 with DDQ gave hydroxy ketone 15, which was then subjected to reduction with Zn(BH₄)₂.¹³ As was predicted from many precedents, this chelation-controlled reduction proceeded highly diastereoselectively to afford 12,13-anti diol 16 in 88% yield after chromatographic purification. Finally, hydrolysis of the two ester groups with aq LiOH furnished malyngic acid 1 as a white solid, the spectral and physical properties of which showed good agreement with those of the natural product.¹ To synthesize the other target molecule, fulgidic acid (2), the PMB-protected ketone 4 was reduced with K-Selectride in THF to give a 16:1 diastereomeric mixture of 12,13-syn diol **17** and its C12-epimer.¹⁴ Reduction of **4** with L-Selectride/THF,¹⁵ NaBH₄/CeCl₃/MeOH,¹⁶ and NaBH₄/MeOH also gave the Felkin–Anh product 17 preferentially in yields of 75%, 94%, and 98%, respectively, but the diastereoselectivities of these conditions were lower (9:1, 5.7:1, 2.3:1, respectively) than that of

Scheme 4. Stereodivergent conversion of 4 into 1 and 2.

the K-Selectride conditions. Deprotection of the PMB group of **17** with TFA in CH_2Cl_2 in the presence of anisole followed by chromatographic removal of a small amount of **16** originating from 12-*epi*-**17** afforded 12-*epi*-**16**,¹⁷ which was then hydrolyzed to give fulgidic acid **2** as a white solid. The ¹H and ¹³C NMR data of **2** were identical with those of natural fulgidic acid.¹⁸

3. Conclusion

An enantioselective total synthesis of malygic acid (1) was achieved in 26% overall yield from known oxazolidinone derivative **7** via eight steps. The new synthetic route utilized the Evans asymmetric alkylation as the chirality-inducing step and established the 12,13-*anti* stereochemistry of **1** by chelation-controlled $Zn(BH_4)_2$ reduction of α -hydroxy ketone intermediate **15** prepared from its PMB-protected form **4**. Fulgidic acid (**2**), the C12-epimer of **1**, was also synthesized from **7** in 25% overall yield via eight steps involving *syn*-selective K-Selectride reduction of the common intermediate **4** as the pivotal transformation.

4. Experimental

4.1. General

IR spectra were recorded by a Jasco FT/IR-4100 spectrometer using an ATR (ZnSe) attachment. NMR spectra were recorded with TMS as an internal standard in CDCl₃ by a Varian MR-400 spectrometer (400 MHz for ¹H and 100 MHz for ¹³C) unless otherwise stated. Optical rotation values were measured with a Jasco DIP-371 polarimeter, and the mass spectra were obtained with Jeol JMS-700 spectrometer operated in the EI or FAB mode. Melting points were determined with a Yanaco MP-J3 apparatus and are uncorrected. Column chromatography was conducted with Merck silica gel 60 (7–230 mesh) or Kanto Kagaku silica gel 60 N (spherical neutral, particle size 100–210 μ m). Solvents for reactions were distilled prior to use: THF from Na and benzophenone; CH₂Cl₂ and CH₃CN from CaH₂.

4.1.1. (*Z*)-1-*Iodo-2-pentene* (**9**). To a stirred solution of (*Z*)-2-penten-1-ol (0.500 mL, 4.95 mmol) and Nal (1.50 g, 10.0 mmol) in CH₃CN (15 mL) was added BF₃·OEt₂ (1.30 mL, 10.3 mmol) at 0 °C under N₂. The mixture was stirred at room temperature for 1.25 h and quenched with satd aq NaHCO₃ and Na₂S₂O₃. The mixture was extracted with pentane and the extract was successively washed with water (×2) and brine, dried (MgSO₄), and concentrated in vacuo to give **9** (694 mg, 71%). IR: ν_{max} 3016 (m), 1640 (w), 1146 (s), 742 (m); ¹H NMR: δ 1.03 (3H, t, *J*=7.6 Hz), 2.07–2.16 (2H, m), 3.92 (2H, d, *J*=8.8 Hz), 5.48 (1H, dt, *J*=10.6, 7.4 Hz), 5.68–5.77 (1H, m); ¹³C NMR: δ 0.5, 13.0, 20.1, 126.0, 136.4; HRMS (EI): *m/z* calcd for C₅H₉I, 195.9749; found, 195.9751 (M⁺). This compound was chemically and isomerically pure enough to enable its direct use in the next step without chromatographic purification.

4.1.2. (R)-4-Benzyl-3-[(S)-2-(4-methoxybenzyloxy)-4-heptenoyl]-2oxazolidinone (**10**). To a stirred solution of NaHMDS (1.07 M in THF, 1.65 mL, 1.77 mmol) in THF (10 mL) was added dropwise a solution of **7** (420 mg, 1.18 mmol) in THF (5 mL) at -78 °C under N₂. After 1 h, a solution of **9** (688 mg, 3.51 mmol) in THF (5 mL) was added, and the resulting mixture was stirred at the same temperature for 3 h. The mixture was quenched with satd aq NH₄Cl and extracted with hexane/EtOAc (1:1). The extract was washed with brine, dried (MgSO₄), and concentrated in vacuo. The residue was purified by SiO₂ column chromatography (hexane/EtOAc) to give **10** (447 mg, 89%). [α]_D²⁵ -80.5 (*c* 1.10, CHCl₃); IR: ν_{max} 1775 (vs), 1705 (s), 1612 (w), 1513 (m), 1245 (s); ¹H NMR: δ 0.95 (3H, t, J=7.6 Hz), 2.03–2.11 (2H, m), 2.50–2.64 (2H, m), 2.70 (1H, dd, J=13.3, 9.7 Hz), 3.23 (1H, dd, *J*=13.3, 3.3 Hz), 3.79 (3H, s), 4.12–4.17 (2H, m), 4.48 (1H, d, *J*=11.2 Hz), 4.53 (1H, d, *J*=11.2 Hz), 4.56–4.62 (1H, m), 5.12 (1H, dd, *J*=7.1, 5.0 Hz), 5.43–5.56 (2H, m), 6.84–6.88 (2H, m), 7.18–7.21 (2H, m), 7.27–7.35 (5H, m); ¹³C NMR: δ 14.1, 20.7, 30.8, 37.9, 55.0, 55.3, 66.7, 72.4, 76.5, 113.6 (2C), 122.8, 127.4, 128.9 (2C), 129.4 (2C), 129.7, 130.0 (2C), 134.8, 135.0, 153.0, 159.3, 172.7; HRMS (FAB): *m/z* calcd for C₂₅H₂₉NO₅Na, 446.1944; found, 446.1944 ([M+Na]⁺).

4.1.3. (2S,4Z)-N-Methoxy-2-(4-methoxybenzyloxy)-N-methyl-4-heptenamide (12). To a stirred solution of 10 (1.02 g, 2.41 mmol) in THF/ H₂O (3:1, 48 mL) were added dropwise 30% aq H₂O₂ (930 mg, 8.20 mmol) and LiOH · H₂O (200 mg, 4.77 mmol) at 0 °C. After 1.5 h, the mixture was quenched with 1.5 M aq Na₂SO₃ and gradually warmed to room temperature over 1.5 h. The mixture was concentrated in vacuo, and the residue was diluted with EtOAc and extracted with satd ag NaHCO₃. The aqueous solution was acidified with 2 M aq HCl to pH ca. 2, and extracted with CH₂Cl₂. The extract was washed with brine, dried (MgSO₄), and concentrated in vacuo to give 11 (548 mg). To a stirred solution of 11 (539 mg, 2.04 mmol) in CH₂Cl₂ (10 mL) were added MeNH(OMe)·HCl (300 mg, 3.08 mmol), DMAP (429 mg, 3.51 mmol), and DCC (724 mg, 3.51 mmol) at 0 °C under N₂. The mixture was gradually warmed to room temperature over 3 h and filtered through a pad of Celite. The filtrate was successively washed with satd aq NH₄Cl, satd aq NaHCO₃ and brine, dried (MgSO₄), and concentrated in vacuo. The residue was purified by SiO₂ column chromatography (hexane/EtOAc) to give 12 (570 mg, 78% from **10**). $[\alpha]_D^{27}$ +46.8 (*c* 1.10, CHCl₃); IR: ν_{max} 1670 (s), 1612 (m), $1513(s), 1246(s); {}^{1}H NMR; \delta 0.93(3H, t, I=7.6 Hz), 1.99-2.08(2H, m),$ 2.43-2.55 (2H, m), 3.20 (3H, s), 3.58 (3H, s), 3.80 (3H, s), 4.28 (1H, br t, J=5.7 Hz), 4.35 (1H, d, J=11.5 Hz), 4.62 (1H, d, J=11.5 Hz), 5.37-5.53 (2H, m), 6.84–6.88 (2H, m), 7.26–7.30 (2H, m); ¹³C NMR: δ 14.1, 20.5, 30.1, 32.3, 55.2, 61.3, 71.0, 75.0, 113.6 (2C), 123.6, 129.5 (2C), 129.9, 134.2, 159.2, 172.9; HRMS (FAB): *m*/*z* calcd for C₁₇H₂₆NO₄, 308.1862; found, 308.1865 ([M+H]⁺).

4.1.4. Dimethy [(S)-3-(4-methoxybenzyloxy)-2-oxo-5-octenyl]phosphonate (5). To a stirred solution of MeP(O)(OMe)₂ (0.903 mL, 8.33 mmol) in THF (50 mL) was added dropwise a solution of n-BuLi (1.59 M in hexane, 5.00 mL, 7.59 mmol) at -78 °C under N₂. After 1 h, a solution of 12 (513 mg, 1.67 mmol) in THF (10 mL) was added, and the resulting mixture was stirred for 5 h. The mixture was quenched with satd aq NH₄Cl and extracted with EtOAc. The extract was washed with brine, dried (MgSO₄), and concentrated in vacuo. The residue was purified by SiO₂ column chromatography (hexane/ EtOAc) to give **5** (580 mg, 94%). $[\alpha]_D^{25}$ –17.3 (*c* 1.13, CHCl₃); IR: ν_{max} 1718 (w), 1612 (w), 1514 (m), 1247 (s), 1025 (vs); ¹H NMR: δ 0.95 (3H, t, J=7.6 Hz), 1.99–2.08 (2H, m), 2.40–2.53 (2H, m), 3.16 (1H, dd, *J*=21.9, 14.6 Hz), 3.32 (1H, dd, *J*=21.7, 14.6 Hz), 3.76 (3H, d, *J*=5.7 Hz), 3.79 (3H, d, *J*=5.5 Hz), 3.81 (3H, s), 4.46 (1H, d, *J*=11.2 Hz), 4.57 (1H, d, J=11.2 Hz), 5.29-5.37 (1H, m), 5.47-5.54 (1H, m), 6.86-6.90 (2H, m), 7.26–7.30 (2H, m); ¹³C NMR: δ 14.0, 20.6, 29.3, 36.2 (d, *J*=133.1 Hz), 52.9 (d, *J*=5.3 Hz), 53.0 (d, *J*=5.3 Hz), 55.2, 72.2, 84.0 (d, J=2.9 Hz), 113.8 (2C), 122.6, 129.4, 129.6 (2C), 134.9, 159.4, 203.9 (d, J=6.9 Hz); HRMS (FAB): m/z calcd for C₁₈H₂₈O₆P, 371.1623; found, 371.1625 ([M+H]⁺).

4.1.5. *Methyl* (*S*)-9-*acetoxy-10-undecenoate* (**14**). To a stirred solution of **8** (112 mg, 0.523 mmol) in pyridine (0.26 mL) was added Ac₂O (0.15 mL, 1.59 mmol) at room temperature. After 6.5 h, the mixture was quenched with satd aq NaHCO₃, stirred for 35 min, and then extracted with ether. The extract was successively washed with cold 1 M HCl (×2), satd aq NaHCO₃, water and brine, dried (MgSO₄), and concentrated in vacuo. The residue was purified by SiO₂ column chromatography (hexane/EtOAc) to give **14** (124 mg, 93%). [α]²⁵_D -7.25 (*c* 1.02, CHCl₃); IR: ν _{max} 1736 (vs), 1650 (w), 1235 (s); ¹H NMR: δ 1.25–1.34 (8H, m), 1.56–1.66 (4H, m), 2.06 (3H, s),

2.30 (2H, t, *J*=7.7 Hz), 3.67 (3H, s), 5.13–5.25 (3H, m), 5.77 (1H, ddd, *J*=17.3, 10.5, 6.3 Hz); ¹³C NMR: δ 21.2, 24.8, 24.9, 28.97, 29.04, 29.1, 34.0, 34.1, 51.4, 74.8, 116.5, 136.6, 170.3, 174.2; HRMS (FAB): *m/z* calcd for C₁₄H₂₅O₄, 257.1753; found, 257.1758 ([M+H]⁺).

4.1.6. *Methyl* (*S*)-9-*acetoxy-10-oxodecanoate* (**6**). Ozone was bubbled into a stirred solution of **14** (124 mg, 0.484 mmol) in CH₂Cl₂ (6 mL) at -78 °C until the disappearance of **14** was observed by TLC monitoring. Me₂S (excess) was then added, and the mixture was gradually warmed to room temperature. The mixture was concentrated in vacuo, and the residue was purified by SiO₂ column chromatography (hexane/EtOAc) to give **6** (107 mg, 86%). [α]_D²⁵ -23.5 (*c* 1.15, CHCl₃); IR: ν_{max} 2725 (w), 1734 (s), 1230 (m); ¹H NMR: δ 1.28–1.36 (6H, m), 1.36–1.45 (2H, m), 1.57–1.66 (2H, m), 1.67–1.87 (2H, m), 2.18 (3H, s), 2.30 (2H, t, *J*=7.5 Hz), 3.67 (3H, s), 4.98 (1H, br dd, *J*=8.3, 4.8H), 9.51 (1H, d, *J*=0.8 Hz); ¹³C NMR: δ 20.6, 24.8, 28.5 (2C), 28.9 (2C), 29.0, 34.0, 51.4, 78.2, 170.6, 174.2, 198.3; HRMS (FAB): *m/z* calcd for C₁₃H₂₃O₅, 259.1545; found, 259.1550 ([M+H]⁺).

4.1.7. Methyl (9S,13S)-9-acetoxy-13-(4-methoxybenzyloxy)-12-oxo-10,15-octadecadienoate (4). A mixture of 5 (821 mg, 2.22 mmol) and LiBr·H₂O (465 mg, 4.43 mmol) in THF (27 mL) was stirred at room temperature for 30 min under N₂. To the mixture was added dropwise Et₃N (0.37 mL, 2.65 mmol) and the mixture was stirred for 1 h. A solution of 6 (601 mg, 2.33 mmol) in THF (22 mL) was then added, and the resulting mixture was stirred overnight at room temperature. The mixture was quenched with satd aq NH₄Cl, concentrated in vacuo, diluted with water, and then extracted with ether. The extract was successively washed with water and brine. dried (MgSO₄), and concentrated in vacuo. The residue was purified by SiO₂ column chromatography (hexane/EtOAc) to give **4** (1.07 g, 96%) as a single geometrical isomer. $[\alpha]_D^{25}$ –33.2 (*c* 1.16, CHCl₃); IR: $\nu_{\rm max}$ 1737 (s), 1698 (m), 1514 (m), 1232 (s); ¹H NMR: δ 0.92 (3H, t, J=7.5 Hz), 1.26–1.36 (8H, m), 1.56–1.69 (4H, m), 1.93–2.05 (2H, m), 2.10 (3H, s), 2.30 (2H, t, J=7.6 Hz), 2.44 (2H, t, J=6.9 Hz), 3.66 (3H, s), 3.81 (3H, s), 3.92 (1H, t, J=6.6 Hz), 4.36 (1H, d, J=11.2 Hz), 4.49 (1H, d, J=11.2 Hz), 5.28–5.36 (1H, m), 5.38–5.44 (1H, m), 5.44–5.52 (1H, m), 6.61 (1H, dd, J=15.7, 1.5 Hz), 6.84–6.91 (3H, m), 7.22–7.27 (2H, m); ¹³C NMR: δ 14.0, 20.6, 21.0, 24.8, 24.9, 28.96, 29.01, 29.1, 30.2, 33.8, 34.0, 51.4, 55.2, 72.0, 72.8, 83.8, 113.8 (2C), 122.6, 124.0, 129.4, 129.7 (2C), 134.7, 144.9, 159.4, 170.0, 174.2, 200.7; HRMS (EI): m/z calcd for C₂₉H₄₂O₇Na, 525.2829; found, 525.2830 ([M+Na]⁺).

4.1.8. Methyl (9S,10E,13S,15Z)-9-acetoxy-13-hydroxy-12-oxo-10,15octadecadienoate (15). To a stirred mixture of 4 (206 mg, 0.410 mmol) and water (0.4 mL) in CH₂Cl₂ (4.1 mL) was added DDQ (280 mg, 1.23 mmol) at 0 °C. The mixture was warmed to room temperature and stirred overnight. The mixture was diluted with water and extracted with CH₂Cl₂. The extract was successively washed with water and brine, dried (MgSO₄), and concentrated in vacuo. The residue was purified by SiO₂ column chromatography (hexane/EtOAc) to give **15** (151 mg, 96%). $[\alpha]_D^{25}$ +4.5 (*c* 1.02, CHCl₃); IR: *v*_{max} 3481 (w), 1737 (s), 1697 (m), 1635 (m), 1231 (s); ¹H NMR: δ 0.95 (3H, t, J=7.5 Hz), 1.26-1.37 (8H, m), 1.57-1.70 (4H, m), 1.98-2.07 (2H, m), 2.11 (3H, s), 2.30 (2H, t, J=7.6 Hz), 2.37-2.45 (1H, m), 2.54–2.62 (1H, m), 3.48 (1H, br s, OH), 3.67 (3H, s), 4.43 (1H, t, J=5.5 Hz), 5.28-5.36 (1H, m), 5.39-5.45 (1H, m), 5.50-5.58 (1H, m), 6.36 (1H, dd, *J*=15.6, 1.4 Hz), 6.90 (1H, dd, *J*=15.6, 5.3 Hz); ¹³C NMR: δ 14.1, 20.7, 20.9, 24.77, 24.84, 28.9, 28.95, 29.01, 31.8, 33.7, 33.9, 51.4, 72.5, 75.3, 122.0, 123.9, 135.4, 145.7, 170.0, 174.2, 199.9; HRMS (FAB): *m*/*z* calcd for C₂₁H₃₅O₆, 383.2433; found, 383.2435 ([M+H]⁺).

4.1.9. Methyl (9S,10E,12R,13S,15Z)-9-acetoxy-12,13-dihydroxy-10,15-octadecadienoate (**16**). To a stirred solution of $ZnCl_2$ (71.2 mg, 0.522 mmol) in THF (1 mL) was added NaBH₄ (40.0 mg, 1.06 mmol) at 0 °C under Ar. The mixture was stirred overnight at room

temperature, and then re-cooled to 0 °C. To the mixture was added dropwise a solution of 15 (50.0 mg, 0.131 mmol) in THF (5 mL). After 30 min, the mixture was quenched with satd aq NH₄Cl and extracted with CH₂Cl₂. The extract was washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by SiO₂ column chromatography (hexane/EtOAc) to give 16 (44.1 mg, 88%). [α]_D²⁵ –20.1 (*c* 1.17, CHCl₃); IR: *ν*_{max} 3468 (m), 1736 (s), 1237 (s), 1020 (m); ¹H NMR: δ 0.97 (3H, t, *J*=7.6 Hz), 1.24–1.34 (8H, m), 1.52-1.69 (4H, m), 2.01-2.10 (2H, m), 2.05 (3H, s), 2.11-2.19 (1H, m), 2.21–2.29 (1H, m), 2.30 (2H, t, J=7.5 Hz), 2.48 (1H, br s, OH), 3.67 (3H, s), 3.66-3.72 (1H, m), 4.16 (1H, dd, J=5.5, 3.9 Hz), 5.22 (1H, q, J=6.5 Hz), 5.33-5.41 (1H, m), 5.52-5.59 (1H, m), 5.70 (1H, dd, J=15.8, 6.5 Hz), 5.78 (1H, dd, J=15.8, 6.0 Hz); ¹³C NMR: δ 14.2, 20.7, 21.3, 24.8, 25.0, 28.9, 29.00, 29.04, 29.8, 34.0, 34.3, 51.4, 73.8, 74.3 (2C), 124.1, 130.5, 131.5, 135.1, 170.5, 174.3; HRMS (FAB): m/z calcd for C₂₁H₃₇O₆, 385.2590; found, 385.2595 ([M+H]⁺).

4.1.10. (9S,10E,12R,13S,15Z)-9,12,13-Trihydroxy-10,15-octadecadienoate (1). A mixture of 16 (36.0 mg, 0.0936 mmol), water (0.05 mL), and LiOH · H₂O (43.6 mg, 1.04 mmol) in THF (0.15 mL) was stirred for 3 h at room temperature and for an additional 1 h at 40 °C. The mixture was concentrated in vacuo, diluted with water, and then extracted with ether. The ag solution was acidified with 0.9 M citric acid to pH 3 and extracted with CH₂Cl₂. The extract was washed with brine, dried (MgSO₄), and concentrated in vacuo. The residue was purified by SiO₂ column chromatography (CH₂Cl₂/MeOH) to give **1** (15.2 mg, 49%) as a white solid. Mp: 48.7–49.8 °C (lit.¹ mp 48.5–51 °C); $[\alpha]_D^{22}$ +7.4 (c 0.730, MeOH) [lit.¹ $[\alpha]_D^{24.5}$ +7.5 (c 1.2, MeOH), lit.^{5a} [a]_D +7.7 (MeOH)]; IR: v_{max} 3316 (m), 1696 (s), 1434 (m), 1073 (s); ¹H NMR (CD₃CN): δ 0.94 (3H, t, *J*=7.5 Hz), 1.24–1.34 (8H, m), 1.39-1.48 (2H, m), 1.50-1.59 (2H, m), 2.03 (2H, quint, *I*=7.3 Hz), 2.03–2.12 (1H, m), 2.14–2.22 (1H, m), 2.25 (2H, t, J=7.5 Hz), 3.50 (1H, dt, J=8.4, 4.3 Hz), 3.91–3.95 (1H, m), 3.98–4.03 (1H, m), 5.39 (1H, dtt, *J*=10.8, 6.8, 1.4 Hz), 5.46 (1H, dtt, *J*=10.8, 6.8, 1.4 Hz), 5.59–5.68 (2H, m); ¹³C NMR (CD₃OD): δ 14.6, 21.7, 26.1, 26.5, 30.2, 30.4, 30.5, 31.7, 35.0, 38.3, 73.3, 75.96, 76.02, 126.35, 130.6, 134.4, 136.8, 177.8; HRMS (FAB): *m*/*z* calcd for C₁₈H₃₂O₅Na, 351.2148; found, 351.2151 ([M+Na]⁺).

4.1.11. (9S,10E,12S,13S,15Z)-9-Acetoxy-12-hydroxy-13-(4-methoxybenzyloxy)-10,15-octadecadienoate (17). To a stirred solution of 4 (106 mg, 0.211 mmol) in THF (2.1 mL) was added K-Selectride (1 M in THF, 0.220 mL, 0.220 mmol) at -78 °C under N₂. After 80 min, the mixture was quenched with satd aq NH₄Cl and extracted with CH₂Cl₂. The extract was washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by SiO₂ column chromatography (hexane/EtOAc) to give 17 (94.2 mg, 89%) as a 16:1 diastereomeric mixture. $[\alpha]_D^{20}$ –3.4 (*c* 2.57, CHCl₃); IR: v_{max} 3508 (w), 1735 (s), 1613 (w), 1514 (m), 1240 (s); ¹H NMR: δ 0.97 (3H, t, J=7.6 Hz), 1.24–1.33 (8H, m), 1.55–1.65 (4H, m), 2.00–2.08 (2H, m), 2.04 (3H, s), 2.24–2.32 (1H, m), 2.29 (2H, t, J=7.5 Hz), 2.36–2.44 (1H, m), 2.54 (1H, d, *J*=4.5 Hz, OH), 3.32–3.37 (1H, m), 3.66 (3H, s), 3.81 (3H, s), 4.01–4.07 (1H, m), 4.42 (1H, d, J=11.0 Hz), 4.62 (1H, d, J=11.0 Hz), 5.21-5.27 (1H, m), 5.36-5.52 (2H, m), 5.66-5.75 (2H, m), 6.86–6.90 (2H, m), 7.23–7.27 (2H, m); ¹³C NMR: δ 14.1, 20.7, 21.2, 24.8, 25.0, 28.0, 28.99, 29.04, 29.1, 34.0, 34.3, 51.4, 55.2, 72.1, 72.9, 74.1, 81.5, 113.8 (2C), 123.7, 129.5 (2C), 130.1, 130.9, 132.3, 134.1, 159.3, 170.3, 174.2; HRMS (FAB): *m*/*z* calcd for C₂₉H₄₄O₇Na, 527.2985; found, 527.2985 ([M+Na]⁺).

4.1.12. Methyl (9S,10E,12S,13S,15Z)-9-acetoxy-12,13-dihydroxy-10,15octadecadienoate (12-epi-**16**). To a stirred solution of **17** (25.8 mg, 0.0511 mmol) and anisole (54 μ L, 0.50 mmol) in CH₂Cl₂ (4.7 mL) was added a solution of TFA (36 μ L, 0.47 mmol) in CH₂Cl₂ (0.4 mL) at 0 °C. After being stirred at room temperature for 30 h, the mixture was quenched with satd aq NH₄Cl and extracted with CH₂Cl₂. The extract was washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by SiO₂ column chromatography (hexane/EtOAc) to give 12-*epi*-**16** (13.7 mg, 70%) as a 16:1 diastereomeric mixture. This could be further purified by SiO₂ column chromatography to afford diastereomerically pure 12-*epi*-**16**. $[\alpha]_D^{25}$ -36 (*c* 0.48, CHCl₃); IR: ν_{max} 3444 (w), 1736 (s), 1237 (s), 1019 (m); ¹H NMR: δ 0.97 (3H, t, *J*=7.5 Hz), 1.24–1.34 (8H, m), 1.55–1.66 (4H, m), 1.69 (1H, s, OH), 2.01–2.11 (2H, m), 2.05 (3H, s), 2.20–2.32 (2H, m), 2.30 (3H, t, *J*=7.6 Hz), 2.45 (1H, s, OH), 3.47–3.54 (1H, m), 3.67 (3H, s), 3.95–4.02 (1H, m), 5.20–5.26 (1H, m), 5.35–5.44 (1H, m), 5.53–5.61 (1H, m), 5.68–5.77 (2H, m); ¹³C NMR: δ 14.2, 20.7, 21.3, 24.8, 24.9, 28.9, 28.99, 29.03, 30.8, 34.0, 34.2, 51.5, 73.97, 74.04, 74.5, 123.7, 131.4, 131.9, 135.2, 170.4, 174.3; HRMS (FAB): *m/z* calcd for C₂₁H₃₇O₆, 385.2590; found, 385.2591 ([M+H]⁺).

4.1.13. (9S,10E,12S,13S,15Z)-9,12,13-Trihydroxy-10,15-octadecadienoate (2). A mixture of 12-epi-16 (53.5 mg, 0.139 mmol), water (0.07 mL), and LiOH·H₂O (35.0 mg, 0.834 mmol) in THF (0.21 mL) was stirred for 2.5 h at room temperature and for an additional 1.5 h at 40 °C. The mixture was acidified with 1 M aq citric acid and extracted with CH₂Cl₂. The extract was washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by SiO₂ column chromatography (CH₂Cl₂/MeOH) to give 2 (29.3 mg, 64%) as a white solid. Mp 71.5–72.3 °C; $[\alpha]_D^{23}$ –12 (*c* 0.705, CHCl₃) [lit.¹⁸ $[\alpha]_D^{25}$ -7.1 (c 1.0, CHCl₃)]; IR: ν_{max} 3536 (w), 3322 (m), 3013 (w), 1694 (s); ¹H NMR (CD₃OD): δ 0.97 (3H, t, *J*=7.6 Hz), 1.29–1.38 (8H, m), 1.46–1.55 (2H, m), 1.55–1.64 (2H, m), 2.02–2.16 (3H, m), 2.28 (3H, t, J=7.5 Hz), 2.35 (1H, dt, J=14.6, 4.9 Hz), 3.43-3.48 (1H, m), 3.96 (1H, t, *I*=4.9 Hz), 4.05 (1H, q, *I*=5.1 Hz), 5.41–5.50 (2H, m), 5.67–5.77 (2H, m); ¹³C NMR (CD₃OD): δ 14.6, 21.7, 26.1, 26.5, 30.2, 30.4, 30.6, 31.5, 35.1, 38.3, 73.0, 75.8, 75.9, 126.4, 131.1, 134.3, 136.5, 177.9; HRMS (FAB): m/z calcd for C₁₈H₃₁O₅, 327.2172; found, 327.2169 ([M-H]⁻).

Acknowledgements

This work was financially supported, in part, by a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 22380064).

Supplementary data

¹H and ¹³C NMR spectra of compounds **9**, **10**, **12**, **5**, **14**, **6**, **4**, **15**, **16**, **1**, **17**, 12-*epi*-**16**, and **2** can be found. Supplementary data associated

with this article can be found in the online version, at doi:10.1016/ j.tet.2011.01.005. These data include MOL files and InChiKeys of the most important compounds described in this article.

References and notes

- 1. Cardellina, J. H., II; Moore, R. E. Tetrahedron 1980, 36, 993-996.
- 2. Herz, W.; Kulanthaivel, P. Phytochemistry 1985, 24, 89-91.
- (a) Kato, T.; Yamaguchi, Y.; Abe, N.; Uyehara, T.; Namai, T.; Kodama, M.; Shiobara, Y. *Tetrahedron Lett.* **1985**, *26*, 2357–2360; (b) Kato, T.; Yamaguchi, Y.; Hirukawa, T.; Hoshino, N. *Agric. Biol. Chem.* **1991**, *55*, 1349–1357.
- 4. (a) Nagai, T.; Kiyohara, H.; Munakata, K.; Shirahata, T.; Sunazuka, T.; Harigaya, Y.; Yamada, H. Int. Immunopharmacol. **2002**, *2*, 1183–1193; (b) Sunazuka, T.; Shirahata, T.; Yoshida, K.; Yamamoto, D.; Harigaya, Y.; Nagai, T.; Kiyohara, H.; Yamada, H.; Kuwajima, I.; Omura, S. Tetrahedron Lett. **2002**, *43*, 1265–1268; (c) Nagai, T.; Shimizu, Y.; Shirahata, T.; Sunazuka, T.; Kiyohara, H.; Omura, S.; Yamada, H. Int. Immunopharmacol. **2010**, *10*, 655–661.
- For synthetic studies on 1, see: (a) Gurjar, M. K.; Reddy, A. S. *Tetrahedron Lett.* 1990, 31, 1783–1784; (b) Sharma, G. V. M.; Rao, S. M. *Tetrahedron Lett.* 1992, 33, 2365–2368.
- For synthetic studies on 2, see: (a) Ref. 3; (b) Suemune, H.; Harabe, T.; Sakai, K. Chem. Pharm. Bull. 1988, 36, 3632–3637; (c) Gossé-Kobo, B.; Mosset, P.; Grée, R. Tetrahedron Lett. 1989, 30, 4235–4236; (d) Ref. 5b; (e) Sharma, P. K. Chem. Lett. 1994, 1825–1826.
- For synthetic studies on 3, see: (a) Ref. 6b; (b) Quinton, P.; Le Gall, T. Tetrahedron Lett. 1991, 32, 4909–4912; (c) Ref. 4b; (d) Shirahata, T.; Sunazuka, T.; Yoshida, K.; Yamamoto, D.; Harigaya, Y.; Nagai, T.; Kiyohara, H.; Yamada, H.; Kuwajima, I.; Omura, S. Bioorg. Med. Chem. Lett. 2003, 13, 937–941; (e) Shirahata, T.; Sunazuka, T.; Yoshida, K.; Yamamoto, D.; Harigaya, Y.; Nagai, T.; Kiyohara, H.; Yamada, H.; Omura, S. Tetrahedron 2006, 62, 9483–9496; (f) Sabitha, G.; Reddy, E. V.; Bhikshapathi, M.; Yadav, J. S. Tetrahedron Lett. 2007, 48, 313–315; (g) Naidu, S. V.; Kumar, P. Tetrahedron 2007, 63, 7624–7633; (i) Prasad, K. R; Swain, B. Tetrahedron: Asymmetry 2008, 19, 1134–1138; (j) Miura, A.; Ku wahara, S. Tetrahedron 2009, 65, 3364–3368; (k) Sharma, A.; Mahato, S.; Chattopadhyay, S. Tetrahedron Lett. 2009, 50, 4986–4988; (l) Sabitha, G.; Bhikshapathi, M.; Reddy, E. V.; Yadav, J. S. Helv. Chim. Acta. 2009, 92, 2052–2057.
- Askin, D.; Reamer, R. A.; Joe, D.; Volante, R. P.; Shinkai, I. Tetrahedron Lett. 1989, 30, 6121–6124.
- (a) Singh, J.; Kaur, J.; Nayyar, S.; Bhandari, M.; Kad, G. L. Indian J. Chem. 2001, 40B, 386–390; (b) Grieco, P. A.; Abood, N. J. Org. Chem. 1989, 54, 6008–6010.
- 10. Crimmins, M. T.; Emmitte, K. A.; Katz, J. D. Org. Lett. 2000, 2, 2165–2167.
- Dufour, M.-N.; Jouin, P.; Poncet, J.; Pantaloni, A.; Castro, B. J. Chem. Soc., Perkin Trans. 1 1986, 1895–1899.
- 12. Schmidt, B.; Wildemann, H. J. Chem. Soc., Perkin Trans. 1 2002, 1050–1060.
- (a) Nakata, T.; Tanaka, T.; Oishi, T. *Tetrahedron Lett.* **1983**, *24*, 2653–2656; (b) Narasimhan, S.; Madhavan, S.; Prasad, K. G. J. Org. Chem. **1995**, *60*, 5314–5315.
- 14. Takahashi, T.; Miyazawa, M.; Tsuji, J. Tetrahedron Lett. 1985, 26, 5139–5142.
- Aïssa, C.; Riveiros, R.; Ragot, J.; Fürstner, A. J. Am. Chem. Soc. 2003, 125, 15512–15520.
- Ichikawa, Y.; Egawa, H.; Ito, T.; Isobe, M.; Nakano, K.; Kotsuki, H. Org. Lett. 2006, 8, 5737–5740.
- 17. Enomoto, M.; Kuwahara, S. Angew. Chem., Int. Ed. 2009, 48, 1144-1148.
- Qiu, Y. K.; Zhao, Y. Y.; Dou, D. Q.; Xu, B. X.; Liu, K. Arch. Pharm. Res. 2007, 30, 665–669.