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Rhodium(III)-Catalyzed [4++1] Annulation of Aromatic and Vinylic
Carboxylic Acids with Allenes: An Efficient Method Towards Vinyl-
Substituted Phthalides and 2-Furanones

Parthasarathy Gandeepan, Pachaiyappan Rajamalli, and Chien-Hong Cheng*[a]

Abstract: A highly regio- and stereoselective synthesis of
3,3-disubstituted phthalides from aryl carboxylic acids and
allenes using a rhodium(III) catalyst has been demonstrated.
The reaction features broad functional group tolerance and
provides a simple and straightforward route to the synthesis
of various 3-vinyl-substituted phthalides. Furthermore, the

catalytic reaction can also be applied to the synthesis of bio-
logically active 5-vinyl-substituted 2-furanones from a,b-un-
saturated carboxylic acids and allenes. The reactions proceed
through a carboxylate-assisted ortho-C¢H activation and
[4++1] annulation. The preliminary mechanistic studies sug-
gest that a C¢H cleavage is the rate-determining step.

Introduction

Transition-metal-catalyzed C¢H activation has evolved as
a promising strategy in organic synthesis and has been widely
employed in the synthesis of natural and unnatural com-
pounds.[1, 2] In particular, directing-group (DG)-assisted ortho-C¢
H cleavage followed by coupling with p components is popu-
lar in the synthesis of hetero- and carbocyclic synthesis.[3]

Among the p-coupling partners, alkyne and alkenes have been
heavily tested, but allenes are less explored.[4] Our continuing
interest in C¢H activation reactions[5] and allene chemistry has
prompted us to explore allenes as p components in C¢H acti-
vation reactions.[6] Herein we report a practical method for the
synthesis of 3,3-disubstituted phthalides from aryl carboxylic
acids and allenes. It is worth mentioning that many C¢H acti-
vation reactions are known involving carboxylic acids with dif-
ferent coupling partners, but allenes have never been
studied.[7]

Phthalide (3H-isobenzofuran-1-one) is an important structur-
al motif found in many natural and bioactive compounds
(Figure 1).[8] They have also proven to be potential building
blocks in organic synthesis.[9] Several strategies for their synthe-
sis using transition-metal catalysts involving addition and cou-
pling reactions have been developed.[8b, 10] However, these re-
actions require functionalized starting compounds and are
often limited by the availability of the starting compounds.
Therefore the development of a new C¢H activation route that
employs less functionalized starting compounds for the syn-
thesis of phthalide derivatives is highly sought after.[11]

Results and Discussion

Reaction optimization

The treatment of benzoic acid (1 a ; 0.60 mmol) and 2,3-buta-
dienylbenzene (2 a ; 0.90 mmol) in the presence of 2 mol %
[RhCl2Cp*]2 and AgOAc (1.260 mmol) in CH3CN (3 mL) at 60 8C
for 20 h gave (E)-3-methyl-3-styrylisobenzofuran-1(3H)-one
(3 aa) in an isolated yield of 88 % (Table 1, entry 11). This com-
pound was thoroughly characterized by 1H and 13C NMR spec-
troscopy and HRMS. The choice of solvent was crucial for the
success of the reaction (Table 1, entries 1–9). Among the sol-
vents tested, acetonitrile was the most suitable to give product
3 aa in high yield. Silver salts were found to be better oxidants
than the other inorganic and organic oxidants tested for this
reaction, with silver acetate being the most desirable for
phthalide formation among the silver oxidants tested (Table 1,
entries 11–16). Control experiments revealed that no product
was obtained in the absence of either the rhodium catalyst or
AgOAc (entries 20 and 21).

Figure 1. Phthalides containing natural and bioactive compounds.
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Scope of aryl carboxylic acids in the synthesis of phthalides

To realize the scope of the reaction, we examined the per-
formance of various substituted benzoic acids with 2 a under
the optimized reaction conditions and the results are shown in
Table 2. The reaction of p-toluic acid (1 b) and p-anisic acid (1 c)
gave the desired products 3 ba and 3 ca in yields of 91 and
86 %, respectively. Halo-substituted benzoic acids were well tol-
erated under the reaction conditions, giving the expected
phthalide products. Thus, p-fluoro-, p-chloro, p-bromo, and p-
iodo-substituted benzoic acids (1 d–g) gave the corresponding
desired products 3 da–3 ga in high yields. The bromo- and
iodo-substituted products 3 fa and 3 ga are appropriate for fur-
ther functionalization through cross coupling. The reaction
also worked well with benzoic acids bearing electron-with-
drawing groups; p-nitro- and p-cyano-substituted benzoic
acids (1 h and 1 i) gave the expected [4++1] cycloaddition prod-
ucts 3 ha and 3 ia in good yields. Sterically hindered ortho-sub-
stituted benzoic acids were also compatible under the reaction
conditions and yielded the expected phthalides. Thus, the re-
actions of 2-methyl- and 2-chloro-substituted benzoic acids (1 j
and 1 k) with 2 a afforded the products 3 ja and 3 ka in yields
of 92 and 74 %, respectively.

Next, we examined the reactions of a variety of meta-substi-
tuted benzoic acids (1 l–q) with 2 a. 3-Methyl-, 3-fluoro-, and 3-

iodo-substituted benzoic acids (1 l–n), selectively functionalized
at the less hindered ortho position, gave the desired phthalides
3 la–na in yields of 70–89 %. However, 3-methoxy-, 3-chloro-,
and 3-bromo-substituted benzoic acids gave mixtures of re-
gioisomeric products in high yields. A single regioisomeric
product 3 ra was obtained from the reaction of 1 r with 2 a,
but piperonylic acid (1 s) delivered two regioisomeric products
3 sa and 3 sa’ in a ratio of 3:1. The results obtained suggest
that the regioselectivity of the C¢H cleavage in meta-substitut-
ed benzoic acids is controlled by both electronic and steric ef-
fects.[12] Under the optimized reaction conditions, 1- and 2-
naphthoic acid (1 t and 1 u) also yielded the expected phtha-
lides 3 ta and 3 ua in yields of 90 and 79 %, respectively.

Table 1. Optimization of the reaction to give phthalide 3 aa.[a]

Entry Oxidant (amount [equiv]) Solvent T [8C] Yield [%][b]

1 Cu(OAc)2 (2.1) MeOH 60 12
2 Cu(OAc)2 (2.1) DCE 60 16
3 Cu(OAc)2 (2.1) 1,4-dioxane 60 6
4 Cu(OAc)2 (2.1) toluene 60 –
5 Cu(OAc)2 (2.1) DMF 60 –
6 Cu(OAc)2 (2.1) THF 60 –
7 Cu(OAc)2 (2.1) EtOAc 60 15
8 Cu(OAc)2 (2.1) CH3CN 60 40
9 Cu(OAc)2 (2.1) CH3NO2 60 31

10 Cu(OAc)2 (2.1) CH3CN 80 28
11 AgOAc (2.1) CH3CN 60 91 (88)[c]

12 AgOAc (2.1) CH3CN 50 68
13 AgOAc (2.1) CH3NO2 60 62
14 Ag2CO3 (1.1) CH3CN 60 75
15 Ag2O (1.1) CH3CN 60 36
16 AgOCOCF3 (2.1) CH3CN 60 30
17 K2S2O8 (3.0) CH3CN 60 11
18 BQ[d] (2.1) CH3CN 60 –
19 O2 (1 atm) CH3CN 60 –
20 AgOAc (2.1) CH3CN 60 –[e]

21 – CH3CN 60 –

[a] All reactions were carried out by using benzoic acid 1 a (0.60 mmol),
allene 2 a (0.90 mmol), [RhCl2Cp*]2 (0.012 mmol), and oxidant in solvent
(3 mL) at T for 20 h. [b] Yields were determined by the 1H NMR integra-
tion method using mesitylene as the internal standard. [c] The isolated
yield is given in parentheses. [d] BQ = 1,4-benzoquinone. [e] No
[RhCl2Cp*]2 was used.

Table 2. Scope of arenecarboxylic acids in the reactions leading to phtha-
lide formation.[a, b]

[a] All reactions were performed by using arenecarboxylic acid
1 (0.80 mmol), allene 2 a (1.20 mmol), [Cp*RhCl2]2 (0.016 mmol), and
AgOAc (1.680 mmol) in CH3CN (4.0 mL) at 60 8C for 20 h. [b] Isolated
yields. [c] The ratios of regioisomers are given in parentheses and were
determined by 1H NMR analysis.
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Scope of allenes in the synthesis of phthalides

Next, we investigated the scope of allenes in this RhIII-catalyzed
ortho-C¢H activation of aryl carboxylic acids. The reactions of
a variety of allenes were examined with 1 b and their results
are shown in Table 3. 3-Methylbenzylallene (2 b) gave phthalide

3 bb in a yield of 85 %. Similarly, 1-(buta-2,3-dien-1-yl)naphtha-
lene (2 c) reacted readily with 1 b to give 3 bc in a yield of
74 %. In addition to benzyl-substituted allenes, alkyl-containing
allenes (2 d–f) also underwent the catalytic reaction to afford
the desired [4++1] annulation products in good-to-excellent
yields (Table 3, products 3 bd–bf). Penta-3,4-dien-2-ylbenzene
(2 g) containing a methyl group at the benzylic position also
afforded the corresponding phthalide 3 bg in a yield of 83 %
under similar reaction conditions. The reaction of ester-substi-
tuted allene 2 h with 1 b provided the expected product 3 bh
in a yield of 93 %. tert-Butyl-substituted allene 2 i effectively un-
derwent reaction with 1 b to afford the product 3 bi in a yield
of 82 %. Similarly, hydroxy- and trimethylsilyl-substituted al-
lenes 2 j–2 k also reacted with 1 b to furnish the expected

products 3 bj and 3 bk, respectively, in moderate yields. Inter-
nal allenes were also reactive under the reaction conditions,
giving the desired phthalides in good yields. The reaction of
1,3-dibenzyl-substituted symmetrical allene 2 l with 1 b pro-
duced the phthalide product 3 bl in a yield of 88 %. However,
unsymmetrical internal allenes penta-2,3-dien-1-ylbenzene
(2 m) and ethyl hexa-3,4-dienoate (2 n) reacted with 1 b to give
the regioisomeric products 3 bm + 3 bm’ and 3 bn + 3 bn’, re-
spectively, in good yields with high regioselectivity.

RhIII-catalyzed [4++1] annulation of vinylic carboxylic acids
and allenes

The reactions of substituted acrylic acids with allenes catalyzed
by the RhIII complex were also investigated.[13] Thus, cinnamic
acid (4 a) was treated with 2 a under reaction conditions similar
to those shown in Tables 2 and 3 to give 2-furanone derivative
(E)-5-methyl-4-phenyl-5-styrylfuran-2(5H)-one (5 aa) in a yield of
28 %. Fortunately, the use of Ag2CO3 instead of AgOAc im-
proved the yield of 5 aa to 61 %. Finally, raising the tempera-
ture to 80 8C gave 5 aa in an isolated yield of 78 %. It is worth
mentioning that 2-furanone is an important heterocyclic
moiety found in many natural and biologically active mole-
cules and an intermediate in natural product synthesis.[14] Sev-
eral reports for the synthesis of this type of compounds by
cross-coupling and intramolecular cyclization are known,[15] but
the synthetic method described herein to obtain 5-vinyl-substi-
tuted 2-furanones in a single step from readily available simple
starting compounds is unique.

To probe the scope of the formation of 2-furanone deriva-
tives, we investigated the reactions of different cinnamic acids
with allenes (Table 4). Thus, the treatment of o-, m-, and p-
methylcinnamic acids with 2 a afforded the corresponding
[4++1] annulation products 5 ba–da in good yields. Owing to
the steric hindrance of the o-methyl substituent, the product
5 da was obtained in only a moderate yield. In addition, 4-me-
thoxycinnamic acid (5 e) smoothly reacted with 2 a to give 5 ea
in a yield of 81 %. Halogen-substituted cinnamic acids 4 f–h
provided the expected products 5 fa–ha, respectively, in yields
of 73–80 %. Furan-substituted acrylic acid 4 i was also effective-
ly transformed into lactone 5 ia in a yield of 82 %. Next, we
treated a-methylcinnamic acid (4 j) with 2 a under the reaction
conditions, and the expected product 5 ja was obtained in
a yield of 92 %. Both a- and b-alkyl-substituted acrylic acids
were compatible under the reaction conditions, yielding the
desired products 3 ka and 3 la in yields of 64 and 83 %, respec-
tively. Similarly, a,b-dialkyl-substituted acrylic acids 5 m–o un-
derwent [4++1] annulation with 2 a to give the corresponding
products 5 ma–oa in yields of 83–93 %. In a similar manner,
2,3-diphenylacrylic acid (4 p) also effectively coupled with 2 a
to furnish product 5 pa in a yield of 92 %. Furthermore, benzo-
thiophene-2-carboxylic acid (4 q) underwent the RhIII-catalyzed
[4++1] annulation reaction to give the expected product 5 qa in
a yield of 68 %.

Next we investigated the scope of allenes in the RhIII-cata-
lyzed vinylic C¢H activation and [4++1] annulation reactions.
Different aryl- and alkyl-substituted terminal allenes efficiently

Table 3. Scope of allenes in the reactions leading to phthalide formatio-
n.[a, b]

[a] All reactions were performed by using p-toluic acid (1 b ; 0.80 mmol),
allene 2 (1.20 mmol), [Cp*RhCl2]2 (0.016 mmol), and AgOAc (1.68 mmol) in
CH3CN (4.0 mL) at 60 8C for 20 h. [b] Isolated yields. [c] The ratios of re-
gioisomers are given in parentheses and were determined by 1H NMR
analysis.
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participated in the reaction with a-methylcinnamic acid (4 j) to
afford the corresponding 2-furanone derivatives in excellent
yields. Both symmetrical and unsymmetrical internal allenes
were compatible under the reaction conditions, affording the

corresponding [4++1] annulation products ; mixtures of regioi-
someric products were obtained with the unsymmetrical inter-
nal allenes (Table 4, products 5 jm and 5 jn). The identities of
compounds 5 ea, 5 ja, and 5 jc were further confirmed by
single-crystal X-ray structure analysis.[16]

Mechanistic studies

To understand the inherent nature of the present C¢H activa-
tion reaction, we determined the inter- and intramolecular ki-
netic isotope effects (KIEs) of the reaction of 1 a and 2 a. An in-
termolecular KIE (kH/kD) of 2.8 was determined for the reaction
of benzoic acid (1 a) and [D5]benzoic acid ([D5]-1 a) with 2 a
(Scheme 1). Furthermore, an intramolecular competition reac-
tion between [D1]benzoic acid ([D1]-1 a) and 2 a showed a kH/kD

of 4.5. The large KIEs values observed suggest that the C¢H
cleavage step is the rate-determining step.[17]

Based on the experimental results reported herein and exist-
ing literature data,[4, 13] a plausible catalytic cycle that describes
the mechanism of this reaction is presented in Scheme 2 with
1 a and 2 a as the reaction substrates. The catalytic cycle is
likely initiated by the removal of chloride from the RhIII dimer
to form an unsaturated RhIII complex. Next, the coordination of
the carboxylic acid group of 1 a to the RhIII center followed by
cyclometalation through ortho-C¢H cleavage leads to five-
membered rhodacycle I. The coordination of allene 2 a to I to
give intermediate II and subsequent insertion of the C¢Rh
bond into an allene double bond of II provides p-allylic rhoda-
cycle III. Intramolecular nucleophilic addition of the coordinat-
ed carboxylate oxygen to the p-allyl of III followed by protona-
tion gives intermediate IV. b-Hydride elimination of IV leaves
the final product 3 aa and RhI. The RhIII-active catalyst is regen-
erated from RhI by AgOAc oxidation.

Conclusion

We have developed a novel and efficient method for the syn-
thesis of 3,3-disubstituted phthalides from aryl carboxylic acids
and allenes. The reaction proceeds under mild reaction condi-
tions and has a broad substrate scope. The catalytic reaction

Table 4. Scope of the RhIII-catalyzed [4++1] annulation of vinylic carboxylic
acids and allenes.[a, b]

[a] All reactions were performed by using vinyl carboxylic acid 4
(0.80 mmol), allene 2 (1.20 mmol), [Cp*RhCl2]2 (0.016 mmol), and Ag2CO3

(0.88 mmol) in CH3CN (4.0 mL) at 80 8C for 20 h. [b] Isolated yields. [c] The
ratios of regioisomers are given in parentheses and were determined by
1H NMR analysis.

Scheme 1. Kinetic isotope experiments.
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occurs through RhIII-catalyzed carboxylic acid assisted ortho-C¢
H bond activation and annulation reactions. Kinetic isotope ex-
periments revealed that the rate-limiting step involves C¢H
cleavage. This RhIII-catalyzed C¢H activation and [4++1] annula-
tion reaction has been successfully extended to a,b-unsaturat-
ed carboxylic acids to give highly substituted 2-furanone. Fur-
ther extension of this reaction to asymmetric systems and de-
tailed mechanistic studies are now in progress.

Experimental Section

General information

Unless otherwise stated, all catalytic reactions were performed
under a nitrogen atmosphere on a dual-manifold Schlenk line and
in oven-dried glassware. All reagents were purchased commercially
and used without further purification. Reagent grade acetonitrile
(J. T. Baker) was distilled and dried over CaH2 prior to use. NMR
spectra (1H and 13C) were measured on a Varian MERCURY 400 MHz
spectrometer. High resolution (HR) mass data were measured with
a Thermo Finnigan MAT 95XL spectrometer. Infrared spectra were
recorded on a HORIBA FT-IR 720 using KBr plates.

Representative procedure for RhIII-catalyzed phthalide for-
mation from aromatic carboxylic acids and allenes

A sealed tube containing benzoic acid 1 a (100 mg, 0.80 mmol),
[Cp*RhCl2]2 (10 mg, 0.016 mmol), and AgOAc (279 mg, 1.680 mmol)
was evacuated and purged with nitrogen gas three times. Then
a solution of allene 2 a (156 mg, 1.20 mmol) in CH3CN (4.0 mL) was
added to the system by syringe under a nitrogen atmosphere and
the mixture was stirred at 60 8C for 20 h. At the end of the reaction,
the mixture was diluted with CH2Cl2 (10 mL) and filtered through
a short pad of Celite, which was washed with CH2Cl2 (3 Õ 20 mL).
The combined filtrates were concentrated under reduced pressure
and the crude mixture purified by silica gel column chromatogra-
phy using n-hexane/EtOAc (80:20) as eluent to afford the desired
pure product 3 aa in a yield of 88 % (176 mg).

(E)-3-Methyl-3-styrylisobenzofuran-1(3H)-one (3 aa): Pale-yellow
oily liquid (176 mg, 88 %); 1H NMR (400 MHz, CDCl3): d= 7.90 (d, J =
8.0 Hz, 1 H), 7.69 (t, J = 7.6 Hz, 1 H), 7.53 (t, J = 8.4 Hz, 1 H), 7.46 (d,
J = 7.6 Hz, 1 H), 7.36–7.26 (m, 5 H), 6.70 (d, J = 16.0 Hz, 1 H), 6.37 (d,

J = 16.0 Hz, 1 H), 1.85 ppm (s, 3 H); 13C NMR (100 MHz, CDCl3): d=
169.6 (ester carbonyl), 152.9 (C), 135.5 (C), 134.2 (CH), 130.2 (CH),
129.1 (CH), 128.6 (3 CH), 128.2 (CH), 126.6 (2 CH), 125.8 (CH), 125.1
(C), 121.6 (CH), 86.5 (C), 25.8 ppm (CH3) ; IR (KBr): ñ= 2923, 1758,
1280, 1126, 1033 and 694 cm¢1; HRMS (EI+): m/z calcd for C17H14O2 :
250.0994; found: 250.1001.

Representative procedure for RhIII-catalyzed 2-furanone for-
mation from vinyl carboxylic acids and allenes

A sealed tube containing cinnamic acid 4 a (118 mg, 0.80 mmol),
[Cp*RhCl2]2 (10 mg, 0.016 mmol), and Ag2CO3 (243 mg,
0.880 mmol) was evacuated and purged with nitrogen gas three
times. Then a solution of allene 2 a (156 mg, 1.20 mmol) in CH3CN
(4.0 mL) was added to the system by syringe under a nitrogen at-
mosphere and the mixture was stirred at 80 8C for 20 h. At the end
of the reaction, the mixture was diluted with CH2Cl2 (10 mL) and fil-
tered through a short pad of Celite, which was washed with CH2Cl2

(3 Õ 20 mL). The combined filtrates were concentrated under re-
duced pressure and the crude mixture purified by silica gel column
chromatography using n-hexane/EtOAc (80:20) as eluent to afford
the desired pure product 5 aa in a yield of 78 % (172 mg).

(E)-5-Methyl-4-phenyl-5-styrylfuran-2(5H)-one (5 aa): Pale-yellow
oily liquid (172 mg, 78 %); 1H NMR (400 MHz, CDCl3): d= 7.60 (d, J =
6.4 Hz, 2 H), 7.46–7.29 (m, 8 H), 6.80 (d, J = 16.0 Hz, 1 H), 6.35 (s, 1 H),
6.34 (d, J = 16.0 Hz, 1 H), 1.85 ppm (s, 3 H); 13C NMR (100 MHz,
CDCl3): d= 171.5 (ester carbonyl), 170.1 (C), 135.5 (C), 132.9 (CH),
131.0 (CH), 129.9 (C), 129.0 (2 CH), 128.7 (2 CH), 128.6 (CH), 127.8
(2 CH), 127.5 (CH), 126.8 (2 CH), 114.5 (CH), 87.9 (C), 23.7 ppm
(CH3) ; IR (KBr): ñ= 2923, 1751, 1612, 1450, 1241, 964, 771,
694 cm¢1; HRMS (EI+): m/z calcd for C19H16O2 : 276.1150; found:
276.1152.
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