

Bioorganic & Medicinal Chemistry Letters 12 (2002) 1993-1996

Novel Cyclourethane-Derived HIV Protease Inhibitors: A Ring-Closing Olefin Metathesis Based Strategy

Arun K. Ghosh,^{a,*} Lisa M. Swanson,^a Chunfeng Liu,^a Khaja Azhar Hussain,^a Hanna Cho,^a D. Eric Walters,^b Louis Holland^c and Jim Buthod^c

^aDepartment of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA ^bDepartment of Biological Chemistry, Finch University of Health Sciences/The Chicago Medical School, North Chicago, IL 60064, USA ^cIIT Research Institute, Life Science Department, Chicago, IL 60616, USA

Received 11 January 2002; accepted 16 April 2002

Abstract—A series of novel macrocyclic urethanes incorporating a (R)-hydroxyethylamine isostere was designed and synthesized. Ring size and substituent effects have been investigated. Cyclourethanes containing 14- to 16-membered rings exhibited low nanomolar inhibitory potencies against HIV-1 protease. © 2002 Elsevier Science Ltd. All rights reserved.

The current treatment regimen for AIDS consists of HIV protease and reverse transcriptase inhibitors.¹ In the context of design and synthesis of protease inhibitors, a number of structurally diverse acyclic urethane derived inhibitors with improved pharmacological properties have been reported.² Unlike acyclic urethanes, the biological importance of cyclourethanes has been hitherto unexplored. We recently reported a series of very potent nonpeptide HIV protease inhibitors incorporating structure-based designed novel, high affinity P₂-ligands and (R)-(hydroxyethylamino)sulfonamide isosteres.³ Of particular note, inhibitor 1 (UIC-PI also known as TMC-126)⁴ incorporating bis-tetrahydrofuran as the P₂ligand has shown remarkable enzyme inhibitory and antiviral potencies ($K_i = 15 \pm 1 \text{ pM}$, n = 4 and $ID_{50} =$ 1.4 ± 0.25 nM, n=5) compared to inhibitor 2, which contains the hydroxyethylamine isostere of saquinavir $(K_i = 2 \text{ nM} \text{ and } \text{ID}_{50} = 50 \text{ nM}).^{5,6}$ In an effort to introduce further structural diversity as well as to explore the biological potential of cyclourethanes, we have designed macrocyclic urethanes as $P_1'-P_2'$ -ligands for these inhibitors. Preliminary modeling studies of various cyclourethanes based upon the X-ray structure of saquinavirbound⁷ HIV protease reveal that 14- to 16-membered cyclourethane carbonyls could effectively hydrogen bond with the critical tight-bound water molecule as well as fill in the $S_1'-S_2'$ binding sites. Herein, we report

our preliminary results of these investigations. Cyclourethanes are generally more potent than their acyclic counterparts and a number of cyclourethanes exhibited low nanomolar inhibitory potencies against HIV-1 protease. Various cyclourethanes were conveniently prepared by N,N'-disuccinimidyl carbonate (DSC) promoted alkoxycarbonylation of amines followed by efficient ring-closing metathesis of the resulting dienes utilizing Grubbs' catalyst.⁸

The general synthesis of various acyclic urethanes containing (R)-hydroxyethylamine isosteres is illustrated in Scheme 1. Enantiomerically pure azido epoxide 3 has been prepared in multigram quantities as described previously.⁹ Regioselective opening of epoxide 3 with allylamine and 3-butenylamine in isopropanol at reflux provided amino alcohols 4 and 5 (80 and 85%, respectively). For preliminary investigation, we have prepared unsubstituted and substituted cyclourethanes derived from commercially available 9-decene-1-ol 6 and corresponding derivative 7. Alcohol 7 was prepared by Swern oxidation of 6 followed by reaction of the resulting aldehyde with phenyl magnesium bromide (85%, two steps). Alcohols 6 and 7 were converted to the respective mixed carbonates 8 and 9 by using N, N'-disuccinimidyl carbonate in the presence of triethylamine. Reaction of these carbonates with amines 4 and 5 furnished the corresponding azido urethanes which, upon reduction with triphenylphosphine in aqueous THF, provided respective amines 10 and 11 (70-74%, two steps).¹⁰ Amine 11 contains a 1:1 mixture of diastereomers at the

^{*}Corresponding author. Tel.: +1-312-996-9672; fax: +1-312-996-2183; e-mail: arunghos@uic.edu

Figure 1.

Scheme 1. (a) $H_2N(CH_2)_nCH=CH_2$, *i*PrOH, 65°C; (b) Swern oxidation, -60°C; (c) PhMgBr, THF, 0°C; (d) *N*,*N*'-disuccinimidylcarbonate, Et₃N, acetonitrile, 23°C; (e) Et₃N, CH₂Cl₂, 23°C; (f) Ph₃P, THF/H₂O (10:1), 23°C.

phenyl bearing center as racemic alcohol 7 was employed for urethane formation.

Preparations of the acyclic and corresponding cyclic macrourethanes derived from amines 10 and 11 are shown in Scheme 2. Alkoxycarbonylation of these amines with known optically active bis-tetrahydro-furanyl carbonate 12 afforded acyclic inhibitors 13 and 14 (1:1 mixture of diastereomers).

Exposure of acyclic urethanes 13 and 14 to commercial Grubbs' catalyst (10 mol%) in the presence of titanium isopropoxide (30 mol%) in CH₂Cl₂ (0.003 M solution) for 20 h at 23 °C afforded cyclourethanes 15 and 16 (1:1 *cis/trans* by ¹H NMR) after silica gel chromatography (69–78%).¹¹ Unsaturated cyclourethane 15 containing a 14-membered ring was obtained mainly as a single *cis*-isomer. Catalytic hydrogenation of the unsaturated cyclourethanes furnished saturated cyclic inhibitors 17 and 18. Other inhibitors in Table 1 were prepared by analogous procedures.

The inhibitory potencies of various acyclic and cyclic urethanes in Table 1 were measured by the assay protocol of Toth and Marshall.¹² As can be seen, the acyclic inhibitors have shown very little inhibition. In contrast, the corresponding cyclic urethanes have shown significant activity

Scheme 2. (a) Et_3N , CH_2Cl_2 , $23 \,^{\circ}C$; (b) $Cl_2(PCy_3)_2=CHPh$ (10 mol%), $Ti(O'Pr)_4$ (30 mol%), CH_2Cl_2 (0.002 M solution), $23 \,^{\circ}C$; (c) H_2 , 10% Pd/C, MeOH.

against HIV protease. The saturated cyclourethanes are generally more potent than their corresponding unsaturated counterparts. Furthermore, ring size and substituents on the ring have pronounced effects on the inhibitory potencies. Both the 14- and 15-membered unsubstituted rings exhibited K_i values of 80 nM (17) and 14 nM (24), respectively. All alcohol 7-derived 14- to 16membered cyclourethanes have shown significant reduction in their respective K_i values. Since 15-membered cyclourethanes were the most potent, we have investigated the substituent effects of the corresponding α -alkyl cyclourethanes. The saturated α -methyl derivative is less potent than unsubstituted derivative 24. Since the P_1 '-isobutyl substitutent is optimum for inhibitors containing (R)-hydroxymethylsulfonamide isosteres, we have examined the substituent effect of the β -methyl cyclourethanes. For initial screening, a mixture of diastereomers (1:1) at the methyl bearing center of the cyclourethanes was evaluated in the HIV protease inhibition assay. Unsaturated (1:1 *cis/trans*) mixture **32** displayed a K_i value of 11 nM. The corresponding 15-membered saturated cyclourethanes 33, containing a mixture of diastereomers

Table 1. Structure and inhibitory potencies of various acyclic and cyclic inhibitors^a

^aIn-house prepared saquinavir⁶ displayed $K_i = 0.12 \pm 0.01$ nM (n = 3) in this assay.

at the methyl center (K_i value of 6.1 nM), are significantly more potent than unsubstituted 15-membered cyclourethane **24**. Subsequently, stereodefined syntheses of both diastereomers of **33** were carried out from known 2-(R)and 2-(S)-methyl-4-penten-1-ol.¹³ The diastereomer-containing S-methyl configuration ($K_i = 8.9$ nM) is nearly 3fold more potent than the *R*-isomer ($K_i = 25.8$ nM). Inhibitor **33** prevented the spread of HIV-1 in MT₄ human Tlymphoid cells infected with IIIB isolate at a concentration of 2.5 μ M (ID₅₀).¹⁴

In summary, incorporation of cyclourethane functionality at $P_1'-P_2'$ resulted in a novel series of structurally diverse protease inhibitors. Interestingly, cyclourethanes in general are considerably more potent than their acyclic counterparts. A substituent at the α -position on the ring appears detrimental to potency. Saturated 15membered cyclourethane **33** is thus by far the most potent in this series with a K_i value of 6.1 nM. Chemical modifications of these inhibitors and further design are currently underway.

Acknowledgements

Financial support of this work by the National Institutes of Health (GM 53386) is gratefully acknowledged.

References and Notes

1. (a) Flexner, C. N. Engl. J. Med. **1998**, 338, 1281. (b) Cihlar, T.; Bischofberger, N. Annu. Rep. Med. Chem. **2000**, 35, 177.

 (a) Ghosh, A. K.; Shin, D. W.; Swanson, L.; Krishnan, K.; Cho, H.; Hussain, K. A.; Walters, D. E.; Holland, L.; Buthod, J. *Il Farmaco* 2001, *56*, 29. (b) Kim, E. E.; Baker, C. T.; Dwyer, M. D.; Murcko, M. A.; Rao, B. G.; Tung, R. D.; Navia, M. A. *J. Am. Chem. Soc.* 1995, *117*, 1181. (c) Ghosh, A. K.; Thompson, W. J.; McKee, S. P.; Duong, T. T.; Lyle, T. A.; Chen, J. C.; Darke, P. L.; Zugay, J. A.; Emini, E. A.; Schleif, W. A.; Huff, J. R.; Anderson, P. S. *J. Med. Chem.* 1993, *36*, 292, and references cited therein.

3. Ghosh, A. K.; Kincaid, J. F.; Cho, W.; Walters, D. E.; Krishnan, K.; Hussain, K. A.; Koo, Y.; Cho, H.; Rudall, C.;

Holland, L.; Buthod, J. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 687, and references cited therein.

4. Yoshimura, K.; Kato, R.; Kavlick, M. F.; Nguyen, A.; Maroun, V.; Maeda, K.; Hussain, K. A.; Ghosh, A. K.; Gulnik, S. V.; Erickson, J. W.; Mitsuya, H. J. Virol. **2002**, *76*, 1349.

5. Ghosh, A. K.; Kincaid, J. F.; Walters, D. E.; Chen, Y.; Chaudhuri, N. C.; Thompson, W. J.; Culberson, C.; Fitzgerald, P. M. D.; Lee, H. Y.; McKee, S. P.; Munson, P. M.; Duong, T. T.; Darke, P. L.; Zugay, J. A.; Schleif, W. A.; Axel, M. G.; Lin, J.; Huff, J. R. J. Med. Chem. **1996**, *39*, 3278.

6. Roberts, N. A.; Martin, J. A.; Kinchington, D.; Broadhurst, A. V.; Craig, J. C.; Duncan, I. B.; Galpin, S. A.; Handa, B. K.; Kay, J.; Krohn, A.; Lambert, R. W.; Merrett, J. H.; Mills, J. S.; Parkes, K. E. B.; Redshaw, S.; Ritchie, A. J.; Taylor, D. L.; Thomas, G. J.; Machin, P. J. *Science* **1990**, *248*, 358, and references cited therein.

7. (a) Munshi, S.; Chen, Z.; Yan, Y.; Li, Y.; Olsen, D. B.; Scock, H. B.; Galvin, B. B.; Dorsey, B.; Kuo, L. Acta Crystallogr. **2000**, *D56*, 381. (b) Dohnalek, J.; Hasek, J.; Duskova, J.; Petrokova, H.; Hradilek, M.; Soucek, M.; Konvalinka, J.; Jiri, B.; Sedlack, J.; Fabry, M. Acta Crystallogr. **2001**, *D57*, 472.

8. Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413.

- 9. Ghosh, A. K.; Thompson, W. J.; Holloway, M. K.; McKee,
- S. P.; Duong, T. T.; Lee, H. Y.; Munson, P. M.; Smith, A. M.;

Wai, J. M.; Darke, P. L.; Zugay, J. A.; Emini, E. A.; Schleif, W. A.; Huff, J. R.; Anderson, P. S. J. Med. Chem. **1993**, *36*, 2300.

(a) Ghosh, A. K.; Duong, T. T.; McKee, S. P. *Tetrahedron Lett.* **1991**, *32*, 4251. (b) Ghosh, A. K.; Duong, T. T.; McKee, S. P.; Thompson, W. J. *Tetrahedron Lett.* **1992**, *33*, 2781.

11. Ghosh, A. K.; Hussain, K. A. Tetrahedron Lett. 1998, 39, 1881.

12. Toth, M. V.; Marshall, G. R. Int. J. Pep. Prot. Res. 1990, 36, 544.

13. The corresponding amine was prepared by mesylation of alcohol, reaction of mesylate with NaH and di-tert-butyl iminodicarboxylate in DMf at $0 \,^{\circ}$ C to give $80 \,^{\circ}$ C followed by BOC deprotection with CF₃CO₂H in CH₂Cl₂ at 23 $^{\circ}$ C. For preparation of optically active alcohol, see: Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. **1982**, 104, 1737.

14. In-house prepared saquinavir exhibited ID_{50} value of 18 nM. For Ro 31 8959, Craig and coworkers have reported IC_{90} values of 6–30 nM in cell culture assay.¹⁵ However, the assay protocol differs widely in that syneytia formation rather than p^{24} production was monitored as endpoint, and cell types other than MT₄ were employed.

15. Craig, J. C.; Duncan, I. B.; Hockley, D.; Grief, C.; Roberts, N. A.; Mills, J. S. *Antiviral Res.* **1991**, *16*, 295, and references cited therein.