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a b s t r a c t

Because prior studies have shown inconsistency between structure–activity relationships for podophyl-
lotoxin derivatives as topoisomerase II inhibitors and cytotoxic agents, eight novel podophyllotoxin ana-
logs were synthesized to further explore the effects of structural variations on both A and D rings on
activity. The new compounds contain a 4,5-dimethoxy substituted A ring and opened D-ring variants
and were prepared by appropriate functional and stereochemical operations at the methylenedioxy
group, C7, C8, and C80. Four compounds (15, 18, 21 and 22) demonstrated noticeable inhibitory activity
against A549, DU145, KB and KBvin tumor cells, and the most active compound 18 showed IC50 values
less than 10 lg/mL.

� 2012 Elsevier Ltd. All rights reserved.
The natural lignan podophyllotoxin (1) has been the focus of
extensive chemical modification and biological investigation in re-
cent decades. In particular, the discovery of the semi-synthetic
anticancer drugs etoposide and teniposide has stimulated
prolonged research interest in this structural phenotype.
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Two alternative molecular mechanisms are generally involved
in the antineoplastic activity of podophyllotoxin analogs: prevent-
ing the assembly of tubulin into microtubules and inhibiting the
catalytic activity of DNA topoisomerase II (Topo II). As the primary
mechanism for therapeutically useful podophyllotoxin analogs,
Topo II inhibition has been the major focus for previous struc-
ture-activity relationship (SAR) studies, and intact A/D rings are
ll rights reserved.
believed to be essential for Topo II inhibition.1 However, podophyl-
lotoxin derivatives 2 and 3, which lack the trans-lactone D ring,
showed significant cytotoxicity against various tumor cell lines.2,3

Furthermore, although the A-ring modified derivatives 4 and 5
were only weak inhibitors of Topo II catalytic activity, they
inhibited KB cell growth at sub-micromolar concentrations.4 These
results implied conflicting SAR for Topo II inhibition and
cytotoxicity, and supported further SAR exploration on various
molecular areas of the structural phenotype, particularly the A
and D rings.

Accordingly, we synthesized a series of novel podophyllotoxin
analogs with structural variations on both A and D rings (15–22).
These new analogs feature 4,5-dimethoxy substitution as well as
structural alterations at C7, C8, and C80. To investigate the effects
of C80 stereochemistry on cytotoxicity, D-ring variants with
opposite chirality at C80 were deliberately incorporated. We report
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herein the synthesis,5 structural characterization, and preliminary
biological evaluation of these novel podophyllotoxin analogs.

The key intermediate 8 was synthesized from 40-demethylepip-
odophyllotoxin (DMEP, 6) in two steps with a protocol modified
from the literature method (Scheme 1).6

As illustrated in Scheme 2, five analogs 15–19 with a-configu-
ration at C80 were prepared from 8. Oxidization with pyridinium
dichromate (PDC) and subsequent acid-catalyzed methanolysis
gave the D-ring opened variant 10. Stereoselective reduction of
the 7-carboxyl in 10 afforded compound 11. The stereoselectivity
in the reduction of 10 should be attributed to the asymmetric
environment of the Re and Si faces of the 7-carbonyl. The bulky
aromatic group and carboxylate substitution preclude hydrogen
addition from the rear face (i.e., the Re face), therefore, reduction
from the front face (i.e., the Si face) would be dominant. Under
Swern conditions, oxidation and dehydration of 11 occurred
simultaneously to yield the unsaturated aldehyde 12.2,7 Com-
pound 12 was reacted with the appropriate acetophenones in
the presence of p-toluenesulfonic acid (p-TsOH) as catalyst to
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Scheme 1. Reagents conditions: (a): (i) BCl3/CH2Cl2, 0 oC, 6 h; (ii) acetone–water–CaCO
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Scheme 2. Reagents and conditions: (a): PDC/CH2Cl2, rt, 2 h, 51%; (b): H2SO4/CH3OH, refl
to �70 oC, 74%; (e): corresponding acetophenones, p-TsOH, DCM, reflux, 2–5 d.
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Scheme 3. Reagents and conditions: (a): pyrrolidine, reflux, 2 h; (b): (COCl)2, DMSO, E
reflux, 2–5 d, 20–50%.
provide analogs 15–19. The trans-D9,10 stereochemistry in com-
pounds 15–19 was confirmed by the measured J9,10 values (around
15.0 Hz).

Another three analogs 20–22 with b-configuration at C80 were
also prepared from 8 (Scheme 3). Aminolysis of 8 under reflux with
pyrrolidine as both reactant and solvent provided the dihydroxya-
mide 13 in good yield. Swern oxidation of 13 afforded the alde-
hyde–amide 14, and subsequent aldol condensation of 14 with
the corresponding acetophenones produced compounds 20–22.
The C80b-configuration in analogs 20–22 was achieved with a basic
reaction milieu and supported by the 1H NMR data. It has been well
recognized that C80 epimerization occurs readily under even mildly
basic conditions. In fact, C80 epimerization was previously ob-
served in the presence of 0.1 M piperidine.8 Furthermore, the
chemical shifts of H-70 in 20–22 were upfield from those in
15–19 (�4.34 vs �4.56), which is consistent with the previous
observation for etoposide and its C80b-isomer.9

Analogs 15–22 were evaluated for their inhibitory activity
against the growth of tumor cell lines with an SRB assay. Four
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Table 1
Inhibitory activity of selected analogs against A549, DU145, KB and KBvin tumor cell
lines

Compound IC50 (lg/mL)

A549 DU145 KB KBvin

15 16.8 ± 1.32 20.3 ± 0.61 16.0 ± 1.66 23.0 ± 0.35
18 6.79 ± 0.76 5.84 ± 0.91 5.90 ± 1.13 5.17 ± 0.96
21 12.0 ± 0.92 12.8 ± 2.15 12.28 ± 1.84 12.29 ± 2.36
22 24.6 ± 2.02 15.46 ± 1.19 16.6 ± 3.87 16.9 ± 0.71
GL-331* 0.113 ± 0.014 0.800 ± 0.056 0.819 ± 0.162 2.10 ± 0.378

* GL-331 is a podophyllotoxin analog that previously reached clinical trials.1
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compounds (15, 18, 21, and 22) demonstrated noticeable inhibi-
tory activity against A549, DU145, KB and KBvin tumor cells, and
the most active compound 18 exhibited IC50 values less than
10 lg/mL (Table 1).

In summary, a series of novel podophyllotoxin analogs featuring
4,5-dimethoxy substitution and an opened D ring were synthe-
sized and evaluated for cytotoxic activity. In contrast to previous
SAR deduced from Topo II inhibition, which requires intact A and
D rings for retention of activity, analogs with modified A and D
rings, such as 18, exhibited evident in vitro anticancer activity.
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