

Published on Web 04/26/2007

Low-Temperature Formation of Nitrous Oxide from Dinitrogen, Mediated by Supported Tungsten Nanoclusters

Wataru Yamaguchi[†] and Junichi Murakami^{*,‡}

Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan, and Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba 305-8562, Japan

Received March 16, 2007; E-mail: j.murakami@aist.go.jp

It is now realized that metal clusters have unique catalytic properties that do not exist for bulk surfaces of corresponding metals. This is well illustrated by gold clusters: they catalyze various chemical reactions while the bulk gold is almost inert.1 In nature, nanoclusters, which usually contain a few atoms of transition-metal elements, can be found at the reaction centers of metalloenzymes. The enzymes catalyze difficult chemical reactions under mild conditions, for which the clusters are known to play key roles.² This leads us to expect that, if nanoclusters of a few transition-metal atoms are prepared and supported on a surface, they may also mediate chemical reactions under mild conditions. The present study explores such a possibility by focusing on a reaction of dinitrogen (N2) on tungsten nanoclusters (Wn) supported on a graphite surface. We show that the tungsten nanoclusters can activate and mediate reaction of almost inert N2 in molecular form to yield N₂O at a temperature as low as 140 K, which has never been observed on metal surfaces.

In the present study, size-selected, supported W_n (n = 2-6) clusters were prepared and exposed to N2, and adsorption/reaction of N2 on the clusters was investigated by X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) in ultrahigh vacuum. Figure 1a shows an XPS spectrum for the N 1s binding energy (BE) region, for exposure of W₅ supported on an Ar⁺ bombarded graphite (highly oriented pyrolytic graphite, HOPG) surface,³ to N₂ at 140 K. As seen in the figure, we observed a single peak located at \sim 400.0 eV, which was absent for a bare HOPG surface exposed to the gas and was assigned to a molecular adsorption of N2.4 The spectrum totally differs from that for molecular N2 adsorption on a bulk polycrystalline tungsten surface at the same temperature,⁴ which has a satellite line (unscreened state) in addition to the main line (screened state). The dual-peak structure originates from the interaction of the $2\pi^*$ antibonding orbital of N2 with the 5d orbital of W.5 The absence of the satellite line in the N₂ XPS spectrum on W₅ indicates that such an N₂-W interaction is absent or not feasible for the N2/W5 system. This suggests that N2 is adsorbed on W5 taking a highly tilted or a sideon geometry,6,7 which was also inferred from the fact that the adsorption state on W5 is a molecular precursor to the dissociation state of N2.4

To obtain insight into the nature of the adsorbed N₂, we performed density functional theory (DFT) calculations of the sideon adsorption states on an isolated W_n. The optimized geometry calculated for the side-on adsorption state on W₅ is shown in Figure 2b. In this configuration, the N–N bond is elongated to 1.27 Å (cf. the calculated value for free N₂ = 1.10 Å),⁸ and the vibrational frequency of the N–N stretching mode is greatly reduced to 1239

Figure 1. N 1s X-ray photoelectron spectra measured at 140 K. (a) For exposure of W_5 to N_2 . The peak at ~400.0 eV is assigned to a molecular adsorption state of N_2 , which is a precursor to dissociation (see ref 4). (b) For exposure to N_2 with ~10 ppm H₂O. The spectrum quite resembles the one obtained for exposure to N_2O shown in the inset in terms of the overall shape and the peak energy positions.

Figure 2. Optimized geometries for side-on N_2 adsorption on (a) W_4 , (b) W_5 , and (c) W_6 as determined by DFT calculations. Light gray and dark gray spheres denote W and N atoms, respectively. The values below each cluster are the length of the N–N bond and the frequency of the N–N stretching vibration.

 $\rm cm^{-1}$ (2445 $\rm cm^{-1}$ for free $N_2).^8$ This indicates that N_2 is activated in the adsorption state.

When water was mixed in the N₂ gas (~10 ppm), on the other hand, we observed a completely different XPS spectrum: two peaks with almost equal intensity at ~402.6 and ~406.6 eV showed up (Figure 1b). It turned out the XPS spectrum was quite similar to that of the N₂O molecule adsorbed on a W surface.⁹ That the species was indeed N₂O was evidenced by comparing the spectrum with an XPS spectrum obtained for N₂O, intentionally fed to W₅ (see the inset of Figure 1b). We further confirmed this by TDS using $^{15}N_2$. The TDS spectrum, shown at the second line from the top of Figure 3, is for exposure of W₅ to the wet $^{15}N_2$ at 140 K. In the TDS measurement, in addition to $^{15}N_2$, desorption of a species with a mass of m/e = 46 was observed with a distinct peak at 143 K, as seen in the figure. For the combination of $^{15}N_2$ and H₂¹⁶O, $^{15}N_2$ ¹⁶O is the only molecular species having the mass of 46 amu.

The observation that only the wet N_2 , not dry one, yields N_2O indicates that N_2O forms by the reaction of N_2 with H_2O .¹⁰ For nitrogen in N_2O , there are two possible sources, that is, the N_2 molecule itself or the N atom resulting from dissociation of N_2 . As

Figure 3. Thermal desorption of a species with a mass number of 46 from W_n exposed to wet ${}^{15}N_2$ at 140 K. For W_5 , a desorption peak is observed at 143 K. With the ingredients of ${}^{15}N_2$ and $H_2{}^{16}O$, ${}^{15}N_2{}^{16}O$ is the only possible product with the mass number of 46. For W_n (n = 2-6), the desorption peak was observed for $n \ge 4$.

mentioned above, a single peak located at ~400.0 eV in the XPS spectrum (Figure 1a) is due to a molecular adsorption state of N_2 .⁷ On the other hand, a peak at ~397.6 eV, a fingerprint for N atom adsorption,⁹ is absent in the XPS spectrum, indicating that N_2 does not dissociate on the nanocluster at 140 K. Since N_2O forms also at 140 K in the presence of water, it is not likely that the N atom is the source of nitrogen in the N_2O formation. We therefore conclude that N_2 in molecular form is involved in the N_2O formation.

The present observation of N₂O formation involving N₂ on W₅ suggests that the N₂ molecule, possibly taking the adsorption geometry shown in Figure 2, is indeed an activated species and responsible for the reaction. Then the question is if a N₂ activation and the reaction are unique for W₅ or is it feasible for W clusters with other sizes. To answer the question, we investigated the cluster size dependence of the N₂O formation/desorption also for W_n (n = 2-4, 6).³ It was found, as shown in Figure 3, that W₄ and W₆ give N₂O desorption peaks with substantial intensity,¹¹ but W₂ and W₃ do not. When these clusters were exposed to N₂O gas, on the other hand, we observed desorption of N₂O from all the cluster species. These observations indicate that the formation of the activated N₂ and the subsequent reaction are cluster size dependent: they are feasible for W₄, W₅, and W₆ but not for the smaller clusters W₂ and W₃.

To elucidate whether adsorption states similar to that for W_5 in Figure 2b are responsible for activating N_2 on W_4 or W_6 , N_2 adsorption geometries for W_4 and W_6 and also for W_2 and W_3 were examined by the DFT calculation. The result was that the side-on adsorption geometry, similar to the one for W_5 , is a stable one also for W_4 (Figure 2a) and W_6 (Figure 2c) but not for W_2 and W_3 . These results further suggest that N_2 is activated in the side-on adsorption geometry also on W_4 and W_6 and the adsorption state is responsible for the N_2O formation.

For N₂ adsorption on small gas-phase W_n, molecular adsorption is favored,^{12–14} and the molecular state seems to act as a precursor to dissociation.¹² It was also shown for anionic clusters (W_n⁻) that adsorption energies of N₂ for W₂⁻ and W₃⁻ are very small compared to those for larger species.¹⁴ These findings are in line with the size-dependent properties of supported W_n revealed in the present study.

For N_2 on tungsten surfaces, the most stable, dissociative adsorption and a weakly bound molecular adsorption with end-on

geometry at low temperature are commonly seen.⁵ Another type of molecular adsorption, which possibly has a side-on geometry, is also known for the (111) and the (100) surface.⁵ For the (100) surface, the N–N stretching vibrational frequency is as low as 1452 cm⁻¹,¹⁵ suggesting that the N₂ molecule is activated. The present study indicates that N₂O formation from such N₂ molecules on the bulk surfaces may be possible, although no experimental studies to explore the point have been reported.

In summary, we have shown that supported tungsten nanoclusters can mediate the formation of N₂O from N₂ at 140 K, in which N₂ without dissociation is involved in the reaction. The DFT calculation has shown that W_n (n = 4-6) activates N₂ in molecular form, and this should be the key that enables the nanoclusters to mediate such a low-temperature reaction.

Acknowledgment. This work was supported by the "Support of Young Researchers with a Term" program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Supporting Information Available: Details of deposition and fixation of nanoclusters on a graphite surface, TDS measurements, DFT calculation, and so on. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Hutchings, G. J. Catal. Today 2005, 100, 55–61. (b) Haruta, M. Gold Bull. 2004, 37, 27–36. (c) Meyer, R.; Lemire, C.; Shaikhutdinov, S. K.; Freund, H.-J. Gold Bull. 2004, 37, 72–124. (d) Yoon, B.; Häkkinen, H.; Landman, U.; Wörz, A. S.; Antonietti, J.-M.; Abbet, S.; Judai, K.; Heiz, U. Science 2005, 307, 403–407.
- (2) (a) Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry; University Science Books: Herndon, VA, 1997. (b) Bertini, I., Gray, H. B., Stiefel, E. I., Valentine, J. S., Eds. Biological Inorganic Chemistry: Structure and Reactivity; University Science Books: Herndon, VA, 2006. (c) Tolman, W. B., Ed. Activation of Small Molecules: Organometallic and Bioinorganic Perspectives; Wiley-VCH: Weinheim, Germany, 2006.
- (3) The estimated densities of supported W_n are ~5/n × 10¹⁴ cm⁻², and that of the defects for pinning the clusters is comparable to them.
 (4) Yamaguchi, W.; Murakami, J. *Chem. Phys. Lett.* **2003**, *378*, 521−525.
- (4) Yamaguchi, W.; Murakami, J. Chem. Phys. Lett. 2003, 578, 521–525.
 (5) Raval, R.; Harrison, M. A.; King, D. A. Nitrogen Adsorption on Metals. In Chemisorption Systems Part A: The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis; King D. A., Woodruff, D. P., Eds.; Elsevier: Amsterdam, 1990; Vol. 3, pp 39–129.
 (6) Grunze, M.; Golze, M.; Hirshwald, W.; Freund, H.-J.; Pulm, H.; Seip, Herbergeneous Catalysis
- (6) Grunze, M.; Golze, M.; Hirshwald, W.; Freund, H.-J.; Pulm, H.; Seip, U.; Tsai, M. C.; Ertl, G.; Küppers, J. Phys. Rev. Lett. 1984, 53, 850– 853.
- (7) Rao, C. N. R.; Rao, G. R. Surf. Sci. Rep. 1991, 13, 221-263.
- (8) The experimental values for the bond length and the vibrational frequency of a gas-phase N₂ are 1.09 Å and 2360 cm⁻¹, respectively. See: Herzberg, G. Spectra of Diatomic Molecules; Van Nostrand Reinhold: New York, 1950.
- (9) Fuggle, J. C.; Menzel, D. Surf. Sci. 1979, 79, 1-25.
- (10) The counterpart of the reaction is O from H₂O. At 140 K, XPS revealed there were chemisorbed and physisorbed H₂O on the cluster. By TDS using H₂¹⁸O, chemisorbed on W₅, we found ¹⁸O is not involved in N₂O. We thus conclude the physisorbed H₂O is the source for O in the N₂O formation. The enhancement of water reactivity by dissociation of the O–H bond in the hydrogen bonding in the physisorbed state has been pointed out recently. See: (a) Johnson, M. A.; Stefanovich, E. V.; Truong, T. N.; Günster, J.; Goodman, D. W. J. Phys. Chem. B 1999, 103, 3391–3398. (b) Kato, H. S.; Shiraki, S.; Nantoh, M.; Kawai, M. Surf. Sci. 2003, 544, L722–L728.
- (11) The difference in the N₂O intensities among W₄, W₅, and W₆ is possibly attributed to the difference in the number of deposited clusters.
- (12) Mitchell, S. A.; Rayner, D. M.; Bartlett, T.; Hackett, P. A. J. Chem. Phys. 1996, 104, 4012–4018.
- (13) Holmgren, L.; Andersson, M.; Rosén, A. J. Chem. Phys. 1998, 109, 3232– 3239.
- (14) Kim, Y. D.; Stolcic, D.; Fischer, M.; Ganteför, G. J. Chem. Phys. 2003, 119, 10307-10312.
- (15) Ho, W.; Willis, R. F.; Plummer, E. W. Surf. Sci. 1980, 95, 171.

JA071860J