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a b s t r a c t

We have developed an efficient synthesis of both enantiomers of a key azadiene for the preparation of 5-
aza analogues of angucyclinones through a hetero Diels–Alder reaction. These dienes were efficiently pre-
pared via a 4-step procedure from known and readily available chiral diketoesters.

� 2011 Elsevier Ltd. All rights reserved.
The angucyclines and angucyclinones are natural products hav-
ing an angularly condensed benz[a]anthraquinone skeleton which
is biosynthetically derived from a dekaketide chain. These com-
pounds, which are secreted by Actinomycetes, often exhibit an array
of biological activities including antitumor, antiviral, antifungal
and enzyme inhibitory effects. Among the subclass of angucycli-
nones, some members display a ring B fully aromatised and a ste-
reogenic centre at C3 in ring A. A representative example is
provided by (+)-ochromycinone 1 (Scheme 1). Some years ago,
we reported the synthesis of a series of angucyclinone 5-aza-ana-
logues 4 with the aim of creating novel chemical structures with
enhanced biological activities.1 These compounds, which exhibited
encouraging cytotoxicity against MCF-7 (breast) and KB (nasophar-
ynx) cancer cell lines were efficiently prepared following a strategy
based on a regioselective hetero Diels–Alder reaction featuring
push-pull dienes 3a or 3b and a substituted 2-bromo-[1,4]naph-
thoquinone 2 (Scheme 1).

In order to prepare chiral variously substituted 5-aza analogues
of angucyclinones 4 (R = Me) and also to best delineate the impor-
tance of the configuration of the methyl group at C3 on the cyto-
toxic properties of these compounds, we became interested in
the preparation of diene 3b in each of its chiral non-racemic form.
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: +33 251 125 402 (C.S.); tel.:

(S. Collet), andre.guingant@
Preparation of diene (S)-3b was considered first and we thought
that diene 5 could serve as a useful equivalent since, after accom-
plishment of the [4+2]cycloaddition-aromatisation sequence
(5 + 9, Scheme 3), the ester moiety (located b to the carbonyl at
C1) was expected to be easily removed. Our strategy to reach diene
5 is pictured in retrosynthetic Scheme 2. Thus, diene 5 would be
prepared by amidination of enaminoketone 6, itself derived from
diketone 7 whose preparation had already been reported by Myers
et al. in the course of their synthesis of (+)-dynemicin A.2

In the synthetic direction (Scheme 3), condensation of (�)-men-
thylacetoacetate with trans-ethyl crotonate (tert-BuOK, tert-BuOH,
reflux) afforded an approximately 1:1 mixture of trans diastereo-
mers 7 and 8, from which 7 could be isolated by selective crystal-
lisation from toluene.3 Exposure of diketone 7 to a slight excess of
ammonium acetate in toluene at reflux was remarkably regioselec-
tive, affording a single enaminone. A 2D HMBC experiment, and an
infra-red spectroscopic study revealing the absence of an intramo-
lecular hydrogen bond, both suggested that this enaminone was
best represented by formula 6 and this was later fully ascertained
by a single-crystal X-ray analysis (Fig. 1).4,5

Treatment of 6 with N,N-dimethylformamide dimethyl acetal
afforded diene 5 (75% yield) which was next condensed to 2-bro-
mo-quinone to afford the tetracyclic adduct 10 in 67% yield. At this
stage, attempts at saponification or hydrolysis of the (�)-menthy-
lester moiety in 10 followed by decarboxylation of the resulting b-
ketoacid to give the 5-aza-angucyclinone derivative 11 appeared
unexpectedly difficult. Indeed, we were not able to form 11 under
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several different acidic and basic conditions, all attempts invari-
ably leading to the formation of the fully aromatised compound
12 (Scheme 4).

The adverse behaviour exhibited by compound 10 led us to de-
vise a new synthetic scheme for the formation of compound 4 fea-
turing the direct use of diene (S)-3b, the synthesis of which was
envisaged as depicted in Scheme 5.

Accordingly (Scheme 6), exposure of diketone ester 7 to meth-
anol in the presence of a catalytic amount of camphorsulphonic
acid (CSA) led to the formation of a chromatographically separable
4:1 mixture of enol ethers 15a and 16a as already described.2 Since
compound 16a was reported to return an apparently thermody-
namic 4:1 mixture of 15a and 16a when resubjected to an acidic
methanolic solution, we anticipated that the use of isopropanol in-
stead of methanol would lead to enol ether products with an im-
proved selectivity due to increased OR/CO2R⁄ interactions in 16b
versus 16a. Indeed, exposure of diketone 7 to an acidic isopropanol
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solution afforded a 11:1 mixture of enol ethers 15b and 16b, which
furthermore were more easily separated by column chromatogra-
phy than the diastereomeric pair 15a:16a.

With 15a and 15b now in hand, we were in a position to effect
the key (�)-menthylester excision. As for b-ketoester 10 this trans-
formation proved difficult but we finally discovered that it could be
satisfactorily accomplished by heating 15a (15b) in DMF at 135 �C
for 80 h in the presence of DMAP (1 equiv) and H2O (12 equiv).6

Under these conditions, enol ethers 14a (14b) were isolated in
60% yield.7 The remaining steps towards 3b were completed as fol-
lows. Exposure of 14a to ammonia, (ca. 2 N solution in methanol)
in a sealed tube maintained at 70 �C for 2 days afforded enaminone
13 in almost quantitative yield.8,9 The same conditions, when
O
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applied to 14b, led to an incomplete transformation and enami-
none 13 was isolated in 65–78% yield. Finally, diene (S)-3b was
reached after the treatment of 13 with DMF-DMA in THF at 70 �C
for 4 h (89%).10 In a parallel manner, enantiomeric diene (R)-3b
was prepared from diketone ester 8 by an identical sequence of
reactions.

According to the general Scheme 1, dienes (S)- and (R)-3b were
condensed with 2-bromonaphthoquinones 17a and 17b in acetoni-
trile under moderate thermal activation to provide adducts 18a
[(S)-5-aza-ochromycinone] and 18b, respectively (Scheme 7).11

In conclusion, we have reported a 5-step preparation of the chi-
ral azadienes (S)- and (R)-3b for the synthesis of chiral 5-aza ana-
logues of angucyclinones displaying an aromatised B-ring.
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