

Bioorganic & Medicinal Chemistry 10 (2002) 3787-3805

BIOORGANIC & MEDICINAL CHEMISTRY

Highly Potent Inhibitors of TNF- α Production. Part II: Metabolic Stabilization of a Newly Found Chemical Lead and Conformational Analysis of an Active Diastereoisomer

Toshiaki Matsui,^{a,*} Takashi Kondo,^b Yoshitaka Nishita,^a Satoshi Itadani,^b Hiroshi Tsuruta,^b Setsuko Fujita,^b Nagashige Omawari,^c Masaru Sakai,^b Shuichi Nakazawa,^c Akihito Ogata,^b Hideaki Mori,^a Wataru Kamoshima,^b Kouichiro Terai,^b Hiroyuki Ohno,^b Takaaki Obata,^b Hisao Nakai^b and Masaaki Toda^b

^aFukui Research Institute, Ono Pharmaceutical Co., Ltd., Technoport, Yamagishi, Mikuni, Sakai, Fukui 913-8638, Japan ^bMinase Research Institute, Ono Pharmaceutical Co., Ltd., Shimamoto, Mishima, Osaka 618-8585, Japan ^cHeadquarter, Ono Pharmaceutical Co., Ltd., Doshoumachi, Chuou, Osaka 541-8526, Japan

Received 25 June 2002; accepted 5 August 2002

Abstract—Design and synthesis of metabolically stabilized inhibitors of TNF- α production, which could be new drug candidates, are reported. Conformational analysis of an active diastereoisomer was performed based on biological evaluations of the conformationally fixed indane derivatives **17** and **18**. Structure–activity relationships (SARs) based on biological evaluations of the optically active derivatives are also discussed. Full details including chemistry are reported. \bigcirc 2002 Elsevier Science Ltd. All rights reserved.

Introduction

TNF- α plays a central role in the initiation and maintenance of many inflammatory and autoimmune diseases such as rheumatoid arthritis (RA), multiple sclerosis, sepsis, ulcerative colitis, congestive heart failure, inflammatory bowel disease and Crohn's disease.^{1a,b} In the preceding paper,^{2a-c} we reported on the discovery of a new chemical lead followed by its optimization. Since the final goal of our project is to identify and develop an inhibitor of TNF- α production which is a clinically useful drug candidate, we next focused our attention on the metabolic stabilization of the newly discovered chemical leads without loss of their highly potent activity because one of the crucial drawbacks of them as a drug candidate was found to be the rapid metabolic hydrolysis of their phosphate moiety as found in our in vitro study (Fig. 1 and Scheme 1). Reported in this publication are the full details of the discovery

Figure 1. Design of the metabolically stabilized molecules.

0968-0896/02/\$ - see front matter \odot 2002 Elsevier Science Ltd. All rights reserved. P11: S0968-0896(02)00380-2

^{*}Corresponding author. Tel.: +81-756-82-6161; fax: +81-756-82-8420; e-mail: to.matsui@ono.co.jp

 $21 \ (\mathrm{ID}_{50} \ 5.6 \ mg/kg, iv in \ rats)$: mixture of four isomers $5, \ 6, \ 7$ and 10

Scheme 1. Metabolic hydrolysis of the phosphates 12 and 21.

Scheme 2. Synthesis of compounds 2, 5, 10 and 11. Reagents and conditions; (a) see ref 3a,b (b) n-C₇H₁₅COCl, NaHCO₃aq, dioxane; Method A (c, e, f): (c) (i) n-BuLi, THF; (ii) (BnO)₂P(O)Cl; Method B (d–f): (d) (i) $Pr_2NP(OBn)_2$, tetrazole, CH₃CN; (ii) m-CPBA, CH₂Cl₂; (e) H₂, Pd–C, MeOH; (f) NaOHaq, EtOH; (g) (Boc)₂O, 1 N-NaOH, dioxane; Method C (h–k, f): (h) (Cl₃CCH₂O)₂P(O)Cl, DMAP, Py; (i) 4 N-HCl, dioxane; (j) n-C₇H₁₅COCl, Py, CH₂Cl₂; (k) Zn, Py, AcOH; (l) L-lysine, EtOH, H₂O.

Scheme 3. Synthesis of compounds 8 and 6. Reagents and conditions: (a) $(Boc)_2O$, 1 N-NaOH, dioxane; (b) PhCOOH, DEAD, Ph₃P, THF; (c) NaOMe, MeOH; Method C (d–h): (d) $(Cl_3CCH_2O)_2P(O)Cl$, DMAP, Py; (e) 4 N-HCl, dioxane; (f) *n*-C₇H₁₅COCl, Py, CH₂Cl₂; (g) Zn, Py, AcOH; (h) NaOHaq, EtOH.

Scheme 4. Synthesis of compounds 9 and 7. Reagents and conditions: (a) PhCOOH, DEAD, Ph₃P, THF; (b) NaOHaq, THF, MeOH; (c) 4 N-HCl, dioxane; (d) n-C₇H₁₅COCl, NaHCO₃aq, THF; Method B (e–g): (e) (i) i-Pr₂NP(OBn)₂, tetrazole, CH₃CN; (ii) m-CPBA, CH₂Cl₂; (f) H₂, Pd–C, MeOH; (g) NaOHaq, EtOH.

Scheme 5. Synthesis of compounds 3 and 4. Reagents and conditions; (a) n-C₇H₁₅COCl, NaHCO₃aq, THF; (b) *i*-PrI, K₂CO₃, acetone; (c) n-C₆H₁₃OCOCl, NaHCO₃aq, THF; Method A (d, f, g): (d) (i) n-BuLi, THF; (ii) (BnO)₂P(O)Cl; Method B (e–g): (e) (i) *i*-Pr₂NP(OBn)₂, tetrazole, CH₃CN; (ii) m-CPBA, CH₂Cl₂; (f) H₂, Pd-C, MeOH; (g) NaOHaq, EtOH; (h) tris(hydroxymethyl)aminomethane, EtOH, H₂O.

Scheme 6. Synthesis of compound 13. Reagents and conditions: (a) $(Boc)_2O$, $CHCl_3$; (b) MeI, K_2CO_3 , DMF; (c) MeMgBr, THF; (d) 4 N-HCl/dioxane; (e) $n-C_7H_{15}COCl$, NaHCO₃aq, dioxane; Method B (f–i): (f) *i*-Pr₂NP(OBn)₂, tetrazole, CH₃CN; (g) *m*-CPBA, CH₂Cl₂; (h) H₂, Pd–C, MeOH; (i) NaOHaq, EtOH.

Scheme 7. Synthesis of compound 14. Reagents and conditions: (a) TMSCN, TMSOTF, CH_2Cl_2 ; (b) PhMgI, Et_2O ; (c) NaBH₄, MeOH; (d) $(Boc)_2O$; Method C (e–h): (e) $(Cl_3CCH_2O)_2P(O)Cl$, DMAP, LiI, Py; (f) 4 N-HCl/dioxane; (g) *n*-C₇H₁₅COCl, Py, CH₂Cl₂; (h) Zn, Py, AcOH.

Scheme 8. Synthesis of compound 15. Reagents and conditions: (a) NaN_3 , NH_4Cl , dioxane, H_2O ; (b) H_2 , Pd-C, 6 N-HCl, EtOH; (c) *n*-C₇H₁₅COCl, NaHCO₃aq, THF; (d) TBDPSCl, imidazole, DMF; Method B (e–i): (e) *i*-Pr₂NP(OBn)₂, tetrazole, CH₃CN; (f) *m*-CBPA, CH₂Cl₂; (g) H₂, Pd-C, MeOH; (h) TBAF, THF; (i) NaOHaq, EtOH.

Scheme 9. Synthesis of compound 16. Reagents and conditions: (a) *n*-C₇H₁₅COCl, NaHCO₃aq, dioxane; Method D (b–e): (b) *i*-Pr₂NP(OCH₂CH₂CN)₂, tetrazole, CH₃CN, CH₂Cl₂; (c) *m*-CPBA, CH₂Cl₂; (d) 50%Me₂NHaq, EtOH; (e) NaOHaq, EtOH.

Scheme 10. Synthesis of compounds 17 and 18. Reagents and conditions: (a) $n-C_7H_{15}COCl$, NaHCO₃aq, dioxane; (b) (Cl₃CCH₂O)₂P(O)Cl, DMAP, Py; (c) Zn, AcOH, Py; (d) NaOHaq, EtOH; Method E (e-d): (e) (BnO)₂P(O)OH, DEAD, Ph₃P, THF; (f) H₂, Pd–C, MeOH.

Scheme 11. Synthesis of compound 19. Reagents and conditions: (a) EtOCOCl, NaHCO₃aq, dioxane; (b) LiALH₄, THF; (c) 4 N-HCl, dioxane; (d) n-C₇H₁₅COCl, NaHCO₃aq, dioxane; Method A (e–g): (e) (i) n-BuLi, THF; (ii) (BnO) ₂P(O)Cl; (f) H₂, Pd–C, MeOH; (g) NaOHaq, EtOH.

process for the metabolically stabilized derivatives as well as conformational analysis of an active diastereoisomer which was based on the SARs from the conformationally fixed indane derivatives that possessed spatially fixed functional groups.

Chemistry

Synthesis of all the compounds listed in the Tables 2–4 are described in Schemes 2–11. As outlined in Scheme 2, compounds **5** and **10** were prepared from **22a**, while

3791

2 and 11 were prepared from 22b. Styrene derivatives 22a, b were converted to 23a, b according to the reported procedure.^{3a,b} N-Acylation of **23a**, **b** afforded 24a, b, which were converted to 25a, b, respectively according to the following successive procedures: (1) phosphorylation; $^{4a-c}$ and (2) deprotection by hydrogenolysis. Compounds 25a, b were converted to their corresponding disodium salts 5 and 2, respectively according to the usual procedure. Compounds 26a, b were also prepared from 22a, b according to the reported procedure.^{3a,b} Compound 26a could be converted to 10 via 29 and 30 according to the following successive procedures: (1) N-tert-butoxycarbonylation; (2) phosphorylation;^{5,6} (3) acidic deprotection; (4) *N*-acylation; (5) reductive deprotection; 5,6 and 6) treatment with NaOH aq. Compound 26b was transformed to 11 via 27 and 28 according to the same procedures as described above. The L-lysine salt of 25b was produced as the crystalline compound 25b-Lys. As described in Scheme 3, compound 31 and 33 were prepared from 23a and 26a, respectively according to the following successive reactions: (1) N-tert-butoxycarbonylation; (2) Mitsunobu reaction;⁷ and (3) alkaline hydrolysis. Compounds 8 and 6 were prepared from 31 and 33, respectively according to the same procedures as described for the preparation of 10 from 29 via 30. As described in Scheme 4, compounds 9 and 7 were prepared from 36 and 38 respectively according to the same procedures as described for the preparation of 2 from 24b. Compounds 36 and 38 were prepared from 35 and 37, respectively according to the following successive reactions: (1) Mitsunobu reaction;⁷ (2) alkaline hydrolysis; (3) acidic deprotection; and (4) N-acylation. As described in Scheme 5, compounds 3 and 4 were also prepared from 23c and 23b, respectively according to essentially the same procedures as described for the preparation of 5 and 2 from 23a and 23b, respectively. The diammonium salt of 40b was produced as the crystalline bis[tris(hydroxymethyl)aminomethane] salt (40b TRIS). Synthesis of compound 13 is described in Scheme 6. Protection of the amino group of 41^8 followed by O-alkylation provided 42, dimethylation of which with methyl magnesium bromide afforded 43. Deprotection followed by N-acylation provided 44, which was transformed to 13 by the above-described method. Synthesis of 14 is described in Scheme 7. Cyclobutanone 45 was converted to 46 by the conventional method.⁹ Compound 46 was converted to 47 by the following successive reactions: (1) treatment with phenyl magnesium iodide followed by sodium borohydride reduction;¹⁰ and (2) protection of the amino group with tert-butoxycarbonyl group. Compound 47 was converted to 14 via 48 according to the usual procedures.^{5,6} Synthesis of the hydroxymethyl derivative 15 is outlined in Scheme 8. A ring opening reaction of the epoxide 49 with sodium azide afforded 50, catalytic hydrogenation of which gave the aminoalcohol 51. N-Acylation of 51 followed by the selective monosilylation of the diol 52 provided 53, which was converted to 54 by the usual procedure. Catalytic hydrogenation of 54 followed by the treatment with TBAF provided 55, which was converted to 15 by the usual method. As described in Scheme 9, compound 16

was prepared from the aminoalcohol 56 via 57. N-Acylation of 56 gave 57, which was converted to the disodium salt 16 according to the usual procedure. Synthesis of conformationally fixed isomers 17 and 18 is outlined in Scheme 10. N-Acylation of the aminoalcohol 58 with octanoyl chloride afforded 59, bis(2-trichloroethoxy)phosphorylation^{5,6} of which provided **60**. Reductive deprotection^{5,6} of **60** followed by the treatment with sodium hydroxide afforded 17. Dibenzyl phosphorylation of the hydroxy group of 59 with a S_N^2 inversion gave 61,¹¹ deprotection of which afforded 62. The free acid form 62 was converted to 18 by the usual method. The N-methyl derivative 19 was prepared as described in Scheme 11. Compound 64 was prepared from (2R)-2-amino-2-phenylethanol 63 by the following successive reactions: (1) N-ethoxycarbonylation; (2) reduction with $LiAlH_4$; (3) treatment with acid; and (4) N-acylation with octanoyl chloride. Compound 19 was prepared from 64 according to the usual procedure.

Results and Discussion

To identify an inhibitor of TNF- α production which could be a clinically useful drug candidate, the design and synthesis of metabolically stable derivatives was carried out and their ability to inhibit TNF- α production was evaluated biologically. Plasma TNF- α production and the potency of the test compounds were evaluated according to the same procedures as described in the preceding papers.^{2a-c} A pharmacological evaluation of the optimized derivatives **2–4** in the animal disease models was also carried out.

Conformational analysis of the optically active diastereoisomers 2 and 9 was performed based on the information obtained from the SARs of the conformationally fixed indane derivatives 17 and 18.

According to our in vitro experimental data regarding the metabolism of the test compounds, the newly discovered inhibitor 12 was very sensitive to metabolic hydrolysis with tissue homogenates as described in Scheme 1 and Table 1. The formed metabolite 20 did not show any inhibitory activity as shown in Table 4. The metabolic inactivation of 12 with tissue homogenates from the small intestine and liver was very fast as described in Table 1 while with the plasma it was relatively slow. As such, it was thought that the metabolic stabilization of the chemical lead 1 could be accomplished by blocking the rapid hydrolysis of the phosphate moiety in 1. In fact, 1-methyl-2-octanoylamino-2-phenylethyl disodium phosphate 21 consisting of four isomers 5, 6, 8 and 10 was found to be stable after its treatment with tissue homogenates as described in Scheme 1 and Table 1.

Based on the above-described results, the design and synthesis of the metabolically stabilized inhibitors was started with the introduction of a methyl group into the optically active backbone. As shown in Table 2, two classes of four isomers 5, 6, 8 and 10 as well as 2, 7, 9 and 11 were synthesized and biologically evaluated individually. According to our intact data, the meta-

Table 1. Results of the in vitro metabolism of 12 and 21^d

	Remaining% after incubation (30 min) ^a			
Tissue homogenates	12	21		
Mouse liver	N.D. ^b	93		
Mouse small intestine	N.D. ^b	97		
Mouse plasma	89	95		
Rat liver	N.D. ^b	95		
Rat small intestine	N.T. ^c	97		
Rat plasma	74	91		

^aIn vitro stability of compounds **12** and **21** was analyzed by HPLC after treatment with tissue homogenates. To a solution of the test compound in PBS (–) (15 μ g/100 μ L) 1% of tissue homogenate was added. The mixture was incubated at 37 °C for 30 min, and the reaction quenched with MeOH (2 mL). [*iso*-Butyl paraben (10 μ g/mL) was used as an internal standard for **12**. *iso*-Amyl paraben (10 μ g/mL) was used as an internal standard for **21**]. After centrifugation at 3000 rpm for 10 min, the organic layer was evaporated. A solution of the residue in CH₃CN/H₂O (1/1, 200 μ L) was analyzed by HPLC [column: Inertsil ODS-3, 4.6×150 mm (GL Science Inc.); detection: UV at 210 nm; Eluent: A = 20 mM KH₂PO₄ (pH2) / B = CH₃CN, (gradient)^d; Flow rate: 1.0 mL/min; 25 °C; Sample: 50 μ L was injected].

gradiant for analyzing 21

^bND: Not Detected.

°NT : Not Tested.

^dGradient for analyzing 12

Gradient for ana	1921115 12.	gradiant for analyz	
time (min)	\mathbf{A}/\mathbf{B}	Time (min)	A/B
0	60/40	0	60/40
20.0	60/40	10	60/40
20.5	20/80	10.1	50/50
35.5	20/80	25.0	50/50
36.0	60/40	25.1	60/40
46.0	60/40	35.0	60/40

Table 2. Biological evaluation of the metabolically stabilized derivatives

$NaO - P - O 1 $ $R_1 R_2 $ $R_5 $ $R_6 $ $R_7 R_4 $						
Compd	R ₁	R ₂	R ₃	R_4	R ₅	Inhibition of TNF- α production ID ₅₀ (mg/kg, iv) rats
5	Me	Н	-NHCO-n-C7H15	Н	Н	4.5
2	Me	Н	-NHCO-n-C ₇ H ₁₅	Н	OMe	0.03
6	Me	Н	Н	-NHCO-n-C7H15	Н	(17) ^c
7	Me	Н	Н	-NHCO-n-C ₇ H ₁₅	OMe	3.7
8	Н	Me	-NHCO-n-C7H15	Н	Н	(23) ^c
9	Н	Me	-NHCO-n-C7H15	Н	OMe	$(-13)^{b}$
10	Н	Me	Н	$-NHCO-n-C_7H_{15}$	Н	(5) ^c
11	Н	Me	Н	$-NHCO-n-C_7H_{15}$	OMe	(38) ^b
3	Me	Н	-NHCO-n-C7H15	Н	O ⁱ Pr	0.05
4	Me	Н	-NHCOO-n-C ₆ H ₁₃	Н	OMe	0.02

^aSee Experimental.

^bInhibition (%) at 10 mg/kg, iv.

^cInhibition (%) at 30 mg/kg, iv.

bolically stabilized compound **5** exhibited more potent activity than **12** although their ID_{50} values in rats appeared to be close to each other (**5**: 4.5 mg/kg, iv; **12**: 3.0 mg/kg, iv). For example, intravenous administration of **5** (3 mg/kg) demonstrated a more than 50% inhibition of TNF- α production (58%) while that of **12** (3 mg/kg) demonstrated less than 50% inhibition (43%). Also in their evaluation in mice, **5** exhibited a more potent ID_{50} value (0.4 mg/kg, iv) than **12** (0.8 mg/kg, iv). Thus, metabolic stabilization of **5** was found to be effective at increasing its activity.

This successful results of the metabolic stabilization was thought to be beneficial for the discovery of the highly potent inhibitors **2–4** described in Table 5.

As shown in Table 2, the (S)-configuration of the newly introduced methyl group and (R)-configuration of the N-acyl moiety were needed for potent inhibitory activity as illustrated in compounds 5, 2 and 7. Introduction of a *meta*-methoxy group into the phenyl moiety of 5 afforded 2 with a marked increase in activity. The same tendency was observed upon the chemical modification of 6
 Table 3. Attempted study to search for a substitute for the (1S)methyl group

			Ũ	
Compd	R ₁	R_2	R ₃	Inhibition of TNF- α production ^a ID ₅₀ (mg/kg, iv) rats
12	Н	Н	Н	3.0
5	Me	Н	Η	4.5
13 (dl)	Me	Me	OMe	(12) ^b
14 (dl)	-CH ₂ -CH ₂ -	CH ₂ —	Н	9.5°
15	CH ₂ OH	Н	Н	(42) ^b
16	\rightarrow	Н	Н	(3) ^b

^aSee Experimental.

^bInhibition (%) at 10 mg/kg, iv.

^cTested in mice.

to 7 while 6 exhibited relatively weak inhibitory activity. A marked reduction of inhibitory activity was observed in all the (R)-methyl derivatives 8–11. Therefore, the configuration of the methyl group was thought to have a dominant effect on the ability to inhibit TNF- α production. The configuration of the N-acyl moiety also plays an important role, although it dose not seem to be as critical as that of the methyl group (\mathbf{R}_1) , as illustrated in 5 and 7. Introduction of a meta-methoxy group also increased the inhibitory activity as observed upon the chemical modification of 5 to 2 and 6 to 7. Replacement of the *meta*-methoxy group of 2 with a *meta*-isopropyloxy group provided 3 which retained the highly potent activity. Replacement of the N-octanoyl moiety of 2 with a N-hexyloxycarbonyl moiety afforded 4 also with strong activity to inhibit the TNF- α production. Thus, the (1S,2R)-configuration was found to be a structural requirement for the potent inhibitory activity in this series of compounds.

As shown in Table 3, further chemical modification was continued to identify another substituent which was acceptable instead of the (1S)-methyl group. The synthesized compounds 13-16 were evaluated biologically and their potentials compared with the chemical leads 12 and 5. Introduction of another methyl group at the geminal position of 2 afforded 13 with a marked reduction in activity presumably because of the bulkiness of the newly constructed 2,2-dimethyl moiety, while the less hindered 2,2-trimethylene derivative 14, which was biologically evaluated as a *dl*-mixture, had an ID₅₀ value of 9.5 mg/kg, iv in mice. Replacement of the methyl group of 12 with a hydroxymethyl group provided 15 with a decrease in activity. Introduction of a phenyl moiety to 5 instead of a methyl group afforded 16 with a marked reduction in activity. Thus, it was concluded that (1S)-methyl is the optimized partial structure.

To elucidate the three dimensional active conformation, compounds **17–19**, in which free rotations are restricted and/or blocked, were synthesized as the optically active forms and evaluated biologically as described in Table 4. Interestingly, the *trans*-isomer **18** was much more potent than the *cis*-isomer **17**. The *trans*-isomer **18** was estimated to occupy a three dimensional structure close to the real active conformer. This SAR strongly suggested an active conformation of the optimized compounds **2–4**.

As illustrated in Fig. 2, the more active compound 2 is able to occupy the favored conformation more easily than the less active compound 9 because of a less hindered intramolecular repulsion between the methyl group and the *ortho*-hydrogen of the phenyl moiety. The *N*-methyl derivative **19** retained quite a good activity as shown in Table 4. The *N*-methyl group did not appear to prevent **19** from occupying the favored conformation.

As shown in Fig. 3, increased production of the plasma TNF- α after the intravenous administration of LPS (30 µg/kg) was significantly suppressed by administration of compounds 2–4 in a dose-dependent manner. The ID₅₀ values of 2–4 are 0.03, 0.05 and 0.02, respectively.

The efficacy in disease models $^{12a-e}$ and safety of 2-4 were evaluated.

Table 4. Analysis of the structural requirements for the inhibitory activity

^aSee Experimental.

^bInhibition (%) at 10 mg/kg, iv.

°Inhibition (%) at 10 mg/kg, iv in mice.

Figure 2. Proposed active conformation based on the more active *trans*-isomer 18.

Figure 3. Effect of compound **2**, **3**, and **4** on LPS-induced TNF- α production in rats. Test compound was administered intravenously just before an intravenous injection of LPS. After 90 min of LPS injection, heparinized blood was obtained. Plasma TNF- α concentration was determined by ELISA. The data were expressed as the mean ± SEM (n = 5; ***, significantly different from LPS control, P < 0.001, ANOVA-Dunnett's *t*-test).

Table 5.	Biological	evaluation	of 2-	-4
----------	------------	------------	-------	----

Compd	LPS-induced shock model in mice $(n = 18 \text{ or } 20)^{a}$ MED ^e mg/kg, iv (survival rate)	D-(+)-Galactosamine/LPS-induced hepatitis model in rats $(n = 18)^{b}$ MED ^c mg/kg, iv (survival rate)	Safety in rats (n=3) MLD ^d mg/kg, iv (mortality rate)
2	0.1 (10/18)	0.3 (7/18)	>100 (0/3)
3	0.3 (10/18)	0.3 (8/18)	100 (1/3)
4	0.1 (14/20)	0.1 (6/18)	>100 (0/3)

^aSee Experimental.

^bSee Experimental.

^cMED (minimum effective dose): survival rates are described in parentheses.

^dMLD (minimum lethal dose): at least one of the tested animals died at this dose. Mortality rates are described in parentheses.

time after LPS injection (hour)

Figure 4. Effect of compound 4 on LPS-induced shock model in mice. BALB/c mice were injected intravenously with compound 4 and then immediately given an intraperitoneal injection of LPS (20 mg/kg). The survival rate of the mice was evaluated after 96 h (n=5-20; *, significantly different from LPS control, P < 0.01; N.S., not significant, Mantel–Cox test).

Figure 5. Effect of compound 4 on D-(+)-galactosamine/LPS-induced hepatitis model in rats. SD rats were injected intravenously with compound 4 and then immediately given an intraperitoneal injection of D-(+)-galactosamine/LPS (1 g/7.5 mg/kg). The survival rate was evaluated after 96 h (n=18/group; *, significantly different from D-(+)-galactosamine/LPS control, P < 0.01; N.S., not significant, Mantel–Cox test).

Table 6.	Oral	activity	of	the	representative	compounds
----------	------	----------	----	-----	----------------	-----------

Compd	Inhi]	Inhibition of TNF- α production ID ₅₀ (mg/kg, rats, $n=5$)					
	iv	ро					
		Fed	Fasted				
12	3.0	> 300	104				
2	0.03	53	16				
3	0.05	63	9				
4	0.02	20	4				

As described in Table 5, the minimum effective doses (MEDs) of compounds 2–4 in the LPS-induced shock model of mice were 0.1, 0.3 and 0.1 mg/kg, iv, respectively. The minimum effective doses (MEDs) of compounds 2–4 in the D-(+)-galactosamine/LPS-induced hepatitis model of rats were 0.3, 0.3 and 0.1 mg/kg, iv, respectively. Among the tested, compound 4 was the most hopeful one. As shown in Figs 4 and 5, compound 4 demonstrated an efficacy equivalent to predonisolone (10 mg/kg, iv), which was used as the positive control, at the dose of 0.3 mg/kg, iv, significantly¹³ in both of the above described disease models.

With respect to the safety concern, the minimum lethal dose (MLD) of **3** in rats was 100 mg/kg, iv, while the MLDs of **2** and **4** were more than 100 mg/kg, iv, respectively. All three compounds, **2–4**, demonstrated a sufficient margin of safety for pharmacological evaluation.

The representative compounds 12 and 2–4 were also evaluated for their oral activity. As shown in Table 6, much higher dosages than expected were needed to reproduce the same extent of ID_{50} values as those obtained after their intravenous administration. These results were ascribed to their presumed poor oral absorption. Three to seven-fold ID_{50} values were obtained in fed rats compared to fasted rats. Their site of action was also estimated to be in the liver and spleen according to the experimental results reported in the preceding paper.^{2c}

Conclusion

In summary, through the design and synthesis of metabolically stabilized inhibitors of TNF- α production, we have discovered the drug candidates 2–4 for use in the treatment of diseases caused by the overexpression of TNF- α . These three compounds demonstrated efficacy in animal models of disease and are expected to be clinically useful although no specialized uses are yet intended.

Experimental

General directions

Analytical samples were homogeneous as confirmed by TLC, and the spectroscopic results obtained were consistent with the assigned structures. All ¹H NMR

spectra were taken on a Varian Gemini-200, VXR-200s or Mercury 300 spectrometer. MS spectra were obtained on a Hitachi M1200H, JMS-DX303HF or PerSeptive Voyager Elite spectrometer. The matrix assisted laser desorption ionization-time of flight high-resolution mass spectra (MALDI-TOF, HRMS) were obtained on a PerSeptive Voyager Elite spectrometer. IR spectra were measured on a Perkin-Elmer FT-IR 1760X or Jasco FT/IR-430 spectrometer. Elemental analyses for carbon, hydrogen and nitrogen were carried out by the Analytical Section of ONO Pharmaceutical Co., Ltd. on a Perkin-Elmer PE2400 SeriesII CHNS/O analyzer. Melting points were uncorrected. Optical rotations were measured on a Jasco DIP-1000 polarimeter. Column chromatography was carried out on silica gel (Merck silica gel 60 (0.063-0.200 mm) or Fuji Silysia FL60D). Thin layer chromatography was performed on silica gel (Merck TLC plate, silica gel 60 F_{254}). The following abbreviations for solvents and reagents are used: THF, tetrahydrofuran; EtOAc, ethyl acetate; MeOH, methanol; EtOH, ethanol; DMF, dimethylformamide; CH₂Cl₂, dichloromethane; CHCl₃, chloroform; EDC·HCl, 1-[3-(dimethylamino)-propyl]-3-ethylcarbodiimide hydrochloride; HOBt·H₂O, *N*-hydroxybenzotriazole hydrate; *m*-CPBA, *meta*-chloroperbenzoic acid; DEAD, diethyl azodicarboxylate; TBDPSCl, tert-butylchlorodiphenylsilane; DBU, 1,8-diazabicyclo[5.4.0]undec-7-ene; TBAF, tetrabutylammonium fluoride; DMAP, N,N-dimethylpyridin-4-amine

N-[(1R,2S)-2-Hydroxy-1-(3-methoxyphenyl)propyl]octa**namide** (24b). (1*R*,2*S*)-1-Amino-1-(3-methoxyphenyl) propan-2-ol hydrochloride 23b was prepared from 1-methoxy-3-[(1E)-prop-1-enyl]benzene 22b by following the known procedure:^{3a,b} **23b**: white solid; TLC $R_f = 0.47$ (CHCl₃/MeOH/H₂O, 10/5/1); MS (MALDI-TOF, Pos.) m/z 182 (M+H)⁺; ¹H NMR (300 MHz, $CDCl_3$) δ 8.53 (brs, 3H), 7.23 (t, J = 8.1 Hz, 1H), 7.06 (s, 1H), 6.97 (d, J = 7.8 Hz, 1H), 6.83 (dd, J = 8.4, 2.4 Hz, 1H), 4.85–4.60 (br, 1H), 4.46–4.32 (m, 2H), 3.70 (s, 3H), 0.99 (d, J=6.0 Hz, 3H). To a stirred mixture of 23b (20.0 g, 92.0 mmol) and NaHCO₃ (23.2 g, 275.9 mmol) in THF (92 mL)-H₂O (92 mL) was added dropwise octanoyl chloride (15.9 mL, 92.9 mmol) at 0°C and stirring was continued at that temperature for 7 h. The reaction mixture was poured into H₂O and extracted with EtOAc. The organic layer was successively washed with H₂O and brine before being dried over MgSO₄. Removal of the solvent by evaporation afforded a white solid, which was washed with *n*-hexane and dried under reduced pressure to obtain 24b as a white powder (24.7 g, 87%): TLC $R_f = 0.32$ (EtOAc/toluene, 2/1); MS (APCI, Pos. 20eV) m/z 308 (M+H)⁺, 290; IR (KBr) 3308, 2927, 1645, 1604, 1543, 1261 cm⁻¹; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.27 \text{ (t, } J = 7.8 \text{ Hz}, 1\text{H}), 6.89-6.82$ (m, 3H), 6.33 (brd, J = 7.8 Hz, 1H), 4.90 (dd, J = 7.8, 3.9 Hz, 1H), 4.11–4.03 (m, 1H), 3.80 (s, 3H), 2.24–2.19 (m, 2H), 1.90 (brs, 1H), 1.68-1.57 (m, 2H), 1.31-1.24 (m, 8H), 1.09 (d, J = 6.3 Hz, 3H), 0.89–0.85 (m, 3H).

N-[(1*R*,2*S*)-2-Hydroxy-1-phenylpropyl]octanamide (24a). (1*R*,2*S*)-1-Amino-1-phenylpropan-2-ol hydrochloride 23a was prepared from (1*E*)-prop-1-enylbenzene 22a according to the known procedure.^{3a,b} The title compound **24a** was prepared from **23a** according to essentially the same procedure as described for the preparation of **24b** from **23b**: white powder; TLC $R_f = 0.40$ (*n*-hexane/EtOAc, 1/2); MS (MALDI, Pos.) *m*/ *z* 300 (M+Na)⁺, 278 (M+H)⁺; IR (KBr) 3305, 1644, 1549, 1454, 1123 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.40–7.23 (m, 5H), 6.28 (d, *J*=8.0 Hz, 1H), 4.95 (dd, *J*=8.0, 3.6 Hz, 1H), 4.09 (m, 1H), 2.23 (t, *J*=6.6 Hz, 2H), 1.95 (d, *J*=7.5 Hz, 1H), 1.63 (m, 2H), 1.27 (m, 8H), 1.09 (d, *J*=6.3 Hz, 3H), 0.87 (t, *J*=6.6 Hz, 3H).

Hexyl (1R,2S)-2-hydroxy-1-(3-methoxyphenyl)propylcarbamate (39b). To a stirred mixture of 23b (14.5 g, 66.7 mmol) and NaHCO₃ (16.8 g, 200 mmol) in THF/ H₂O (70 mL/70 mL) was added hexyl chloridocarbonate (11.0 mL, 67.3 mmol) at 0 °C. Stirring was continued at that temperature for 30 min and at room temperature for 30 min. The reaction mixture was poured into ice-water and extracted with EtOAc. After the organic layer was successively washed with H₂O and brine, it was dried over MgSO₄. Removal of the solvent by evaporation gave a solid which was washed with nhexane to afford **39b** as a white solid (19.7 g, 96% yield): TLC $R_f = 0.28$ (*n*-hexane/EtOAc, 1/1); MS (MALDI-TOF, Pos.) m/z 310 (M+H)+; ¹H NMR (300 MHz, CDCl₃) δ 7.32–7.22 (m, 1H), 6.92–6.81 (m, 3H), 5.50 (brd, J=6.9 Hz, 1H), 4.67–4.56 (br, 1H), 4.13–3.95 (m, 3H), 3.81 (s, 3H), 1.80–1.47 (m, 2H), 1.42–1.20 (m, 6H), 1.11 (d, J=6.3 Hz, 3H), 0.88 (t, J=6.9 Hz, 3H).

N-[(1R,2S)-2-Hydroxy-1-(3-isopropoxyphenyl)propyl]octanamide (39c). 3-[(1R,2S)-1-Amino-2-hydroxypropyl]phenol hydrochloride 23c was prepared from 1-(benzyloxy)-3-[(1E)-prop-1-envl]benzene by following the known procedure.^{3a,b} 23c: TLC $R_f = 0.45$ (CHCl₃/ MeOH/H₂O, 65/35/8); ¹H NMR (300 MHz, CDCl₃) δ 7.23 (t, J=8.4 Hz, 1H), 6.92–6.88 (m, 2H), 6.84–6.81 (m, 1H), 4.20–4.12 (m, 2H), 1.04 (d, J=6.0 Hz, 3H). N-[(1R,2S)-2-hydroxy-1-(3-hydroxyphenyl)propyl]octanamide was prepared from 23c according to essentially the same procedure as described for the preparation of 24b from 23b. Purification was performed by column chromatography on silica gel (Merck 7734, n-hexane/ EtOAc, 1/1) to give N-[(1R,2S)-2-Hydroxy-1-(3-hydroxyphenyl)propyl]octanamide as a colorless viscous oil (80% yield): TLC $R_f = 0.43$ (EtOAc/toluene, 2/1); ¹H NMR (300 MHz, $CDCl_3$) δ 8.05 (brs, 1H), 7.14 (t, J = 7.5 Hz, 1H), 6.78–6.70 (m, 3H), 6.65 (d, J = 8.1 Hz, 1H), 4.81 (dd, J=8.1, 4.2 Hz, 1H), 4.08–3.98 (m, 1H), 2.85 (brs, 1H), 2.20-2.15 (m, 2H), 1.65-1.52 (m, 2H), 1.30-1.20 (m, 8H), 1.06 (d, J=6.6 Hz, 3H), 0.90-0.80(m, 3H). To a stirred mixture of N-[(1R,2S)-2-hydroxy-1-(3-hydroxyphenyl)propyl]octanamide (5.28 g, 18.0 mmol) and K_2CO_3 (6.22 g, 45.0 mmol) in acetone (40 mL) was added 2-iodopropane (2.70 mL, 27.0 mmol). Stirring was continued under reflux for 12 h. The reaction mixture was poured into ice-water and extracted with Et₂O. The organic layer was successively washed with H_2O and brine before being dried over Na_2SO_4 . Removal of the solvent by evaporation gave a residue which was purified by column chromatography on silica gel (Merck 7734, n-hexane/EtOAc, 1/2) to give 39c as a

3797

colorless oil (4.82 g, 80% yield): TLC R_f =0.56 (EtOAc/ toluene, 2/1); MS (APCI, Pos. 20eV) *m/z* 336 (M+H)⁺; IR (KBr) 3307, 2928, 1641, 1544, 1258, 1118 cm⁻¹; ¹H NMR; (300 MHz, CDCl₃) δ 7.24 (dd, *J*=8.7, 7.8 Hz, 1H), 6.85–6.80 (m, 3H), 6.29 (d, *J*=7.8 Hz, 1H), 4.90 (dd, *J*=7.8, 3.9 Hz, 1H), 4.58–4.50 (m, 1H), 4.12–4.01 (m, 1H), 2.24–2.19 (m, 2H), 2.13 (brd, *J*=6.6 Hz, 1H), 1.68–1.58 (m, 2H), 1.33 (d, *J*=6.0 Hz, 3H), 1.33 (d, *J*=6.0 Hz, 3H), 1.32–1.23 (m, 8H), 1.10 (d, *J*=6.3 Hz, 3H), 0.89–0.85 (m, 3H).

General method A

(1S,2R)-2-(3-Isopropyloxyphenyl)-1-methyl-2-(octanoylamino)ethyl disodium phosphate (3). To a stirred solution of 39c (4.0 g, 11.9 mmol) in THF (100 mL) was added dropwise *n*-butyllithium in *n*-hexane (1.53 M, 21.0 mL, 32.1 mmol) at -78 °C under an argon atmosphere. Dibenzylphosphorochloridate in THF^{4a} (1 M, 35.7 mL, 35.7 mmol) was added to the resulting mixture at that temperature and stirring was continued for 10 min at -20 °C. The reaction was quenched with 1M NaOH and the resulting mixture was warmed to room temperature with stirring. After the reaction mixture was diluted with EtOAc, the organic layer was successively washed with saturated NaHCO₃ aq and brine, it was dried over MgSO₄. Removal of the solvent by evaporation gave a residue which was purified by column chromatography on silica gel (Merck 7734, n-hexane/EtOAc, 4/1) to afford dibenzyl (1S,2R)-2-(3-isopropyloxyphenyl)-1-methyl-2-(octanoylamino)ethyl phosphate as a colorless oil (4.54 g, 64% yield): TLC $R_f = 0.58$ (EtOAc/toluene, 1/1). A mixture of dibenzyl (1S, 2R)-2-(3isopropyloxyphenyl) - 1 - methyl - 2 - (octanoylamino)ethyl phosphate (4.54 g) and 10% Pd-C (400 mg) in MeOH was stirred at room temperature under an atmospheric pressure of hydrogen for 1 h. Removal of the catalyst by filtration through a pad of Celite followed by evaporation gave an oily residue which was dissolved in saturated NaHCO₃ aq and extracted with EtOAc. The aqueous layer was acidified by 1 M HCl and then extracted with EtOAc. The organic layer was successively washed with H₂O and brine before being dried over MgSO₄. Removal of the solvent by evaporation gave 40c as a white amorphous powder (2.56 g, 81%). To a stirred solution of 40c (2.24 g, 5.4 mmol) in EtOH (50 mL) was added 1 M NaOH (10.8 mL, 10.8 mmol) at room temperature. Removal of the solvent by evaporation followed by the dissolution of the residue in EtOH was repeated several times to remove the H₂O azeotropically. The addition of Et₂O followed by evaporation afforded 3 as a white amorphous powder: TLC $R_f = 0.33$ (CHCl₃/MeOH/H₂O, 65/35/8); IR (KBr) 3423, 1637, 1089, 984 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.12 (t, J = 7.8 Hz, 1H), 6.99 (brd, J = 7.8 Hz, 1H), 6.96 (brs, 1H), 6.73–6.69 (m, 1H), 4.64–4.54 (m, 3H), 2.35– 2.19 (m, 2H), 1.61-1.49 (m, 2H), 1.29 (d, J=6.0 Hz, 3H), 1.26 (d, J=6.0 Hz, 3H), 1.30–1.20 (m, 8H), 1.06 (d, J=6.3 Hz, 3H), 0.89-0.84 (m, 3H); optical rotation $[\alpha]_{D}^{24}$ -53.3 (c 1.05, MeOH); MS (FAB, Pos.) m/z 460 $(M+H)^+$, 438, 416; HRMS (MALDI-TOF, Pos.) calcd for $C_{20}H_{32}NO_6P \cdot 2Na + H^+$: 460.1841; found: 460.1805.

(1*S*,2*R*)-1-Methyl-2-octanoylamino-2-phenylethyl disodium phosphate (5). The title compound 5 was prepared from 24a according to the general method A: TLC R_f =0.24 (CHCl₃/MeOH/H₂O, 65/25/4); IR (KBr) 3336, 1637, 1535, 1454, 1385, 1089 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.42 (brd, *J*=6.6 Hz, 2H), 7.25–7.14 (m, 3H), 4.62–4.57 (m, 2H), 2.33–2.18 (m, 2H), 1.60–1.50 (m, 2H), 1.35–1.15 (m, 8H), 1.03 (d, *J*=6.6 Hz, 3H), 0.86 (brt, *J*=6.6 Hz, 3H); optical rotation [α]²⁵_D–64.5 (*c* 0.96, MeOH); MS (FAB, Pos.) *m*/*z* 424 (M + Na)⁺, 402 (M + H)⁺; HRMS (MALDI-TOF, Pos.) calcd for the free acid form C₁₇H₂₈NO₅P+Na⁺: 380.1603; found: 380.1599.

General method B

(1S,2R)-1-Methyl-2-(3-methoxyphenyl)-2-(octanoylamino)ethyl disodium phosphate (2). To a stirred mixture of **24b** (25.5 g, 83 mmol) and tetrazole (11.64 g, 166 mmol) in CH₃CN (330 mL) was added dibenzyl diisopropylphosphoramidite (33.5 mL, 99.7 mmol) at room temperature and stirring was continued at that temperature for 3 h. The reaction mixture was poured into saturated NaHCO₃ aq and the resultant precipitates were removed by filtration. The filtrate was then diluted with EtOAc and washed with brine before being dried over Na₂SO₄. Removal of the solvent by evaporation gave dibenzyl (1S,2R)-1-methyl-2-(3-methoxyphenyl)-2-(octanoylamino)ethyl phosphite which was used for the next reaction without further purification (52.0 g, >100%, pale yellow oil): TLC $R_f = 0.60$ (*n*-hexane/ EtOAc, 1/2). To a stirred solution of dibenzyl (1S, 2R)-1 -methyl-2-(3-methoxyphenyl)-2-(octanoylamino)ethyl phosphite (52.0 g) in CH_2Cl_2 (415 mL) was added m-CPBA (77%, 20.5 g, 91.4 mmol) at 0 °C and stirring was continued at that temperature for 1 h. The reaction mixture was treated with saturated Na₂S₂O₃ aq and extracted with CH₂Cl₂. The organic layer was successively washed with H₂O, saturated NaHCO₃ aq and brine before being dried over Na₂SO₄. The *m*-chlorobenzoic acid was removed by passing the mixture through a pad of Al_2O_3 (100 g). Removal of the solvent by evaporation gave dibenzyl (1S,2R)-1-methyl-2-(3phosphate methoxyphenyl)-2-(octanoylamino)ethyl which was used for the next reaction without further purification (50.6 g, >100%, colorless oil): TLC $R_f = 0.35$ (*n*-hexane/EtOAc, 1/2). A mixture of dibenzyl (1S,2R)-1-methyl-2-(3-methoxyphenyl)-2-(octanoylamino) ethyl phosphate (50.6 g) and 10% Pd-C (50% wet, 10 g) in MeOH (850 mL) was vigorously stirred at room temperature under an atmospheric pressure of hydrogen for 5.5 h. Removal of the catalyst by filtration through a pad of Celite followed by evaporation afforded an oily residue which was dissolved in saturated NaHCO₃ aq and extracted with EtOAc. The aqueous layer was acidified by 1 M HCl and extracted with EtOAc. The organic layer was washed with brine and dried over Na₂SO₄. Removal of the solvent by evaporation gave 25b (23.5 g, 73% in 3 steps, beige amorphous powder): TLC $R_f = 0.28$ (CHCl₃/MeOH/H₂O, 65/35/8); ¹H NMR $(300 \text{ MHz}, \text{CD}_3\text{OD}) \delta 7.22 \text{ (t, } J = 8.1 \text{ Hz}, 1\text{H}), 6.96-6.90$ (m, 2H), 6.84-6.81 (m, 1H), 5.01 (d, J=4.2 Hz, 1H), 4.71–4.60 (m, 1H), 3.78 (s, 3H), 2.26 (t, J=7.2 Hz, 2H),

1.65–1.55 (m, 2H), 1.30–1.25 (m, 8H), 1.21 (d, J=6.3Hz, 3H), 0.90–0.85 (m, 3H). To a stirred solution of 25b (2.13 g, 5.5 mmol) in EtOH (50 mL) was added 1 M NaOH (11 mL, 11 mmol) at 0°C. Removal of the solvent by evaporation followed by the dissolution of the residue in EtOH was repeated several times to remove the H₂O azeotropically. Then addition of Et₂O followed by evaporation afforded 2 as a white amorphous powder (5.18 g, 98%): TLC $R_f = 0.28$ (CHCl₃/MeOH/H₂O, 65/35/8); IR (KBr) 3389, 1638, 1534, 1087, 984 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.14 (t, J=8.4 Hz, 1H), 7.01–6.99 (m, 2H), 6.74 (ddd, J = 8.4, 2.7, 1.2 Hz, 1H), 4.65-4.53 (m, 2H), 3.78 (s, 3H), 2.35-2.19 (m, 2H), 1.61-.49 (m, 2H), 1.30-1.20 (m, 8H), 1.05 (d, J=6.3 Hz, 3H), 0.88–0.84 (m, 3H); optical rotation $[\alpha]_D^{24}$ –63.3 (c 1.02, MeOH); MS (FAB, Pos.) m/z 432 (M+H)⁺, 454, (MALDI-TOF, Pos.) calcd 410; HRMS for $C_{18}H_{28}NO_6P \cdot 2Na + H^+$: 432.1528; found: 432.1524.

L-Lysine salt of compound 2 (25.Lys). Compound 2 was one of the best inhibitors for TNF- α production, so an alternative salt was prepared. To a stirred solution of **25b** (15.6 g, 40.2 mml) in EtOH/H₂O (20/1, 130 mL) was added L-lysine (5.94 g, 40.6 mmol). Stirring was continued under reflux until the reaction mixture changed from a suspension to a clear solution. After cooling to room temperature, the resultant precipitates were collected by filtration and dried under reduced pressure to give 25. Lys as a white powder (17.7 g, 82%): TLC $R_f = 0.22$ (CHCl₃/MeOH/H₂O, 10/5/1); MS (FAB, Pos.) m/z 534 (M+H)⁺, 426, 410, 388, 290, 147; IR (KBr) 3296, 2927, 2856, 1643, 1602, 1545, 1467, 1416, 1379, 1346, 1258, 1165, 1124, 1049 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.18 (t, J=8.1 Hz, 1H), 6.99–6.92 (m, 2H), 6.82-6.76 (m, 1H), 4.84 (d, J=3.3 Hz, 1H), 4.64-4.51(m, 1H), 3.78 (s, 3H), 3.56 (t, J = 6.0 Hz, 1H), 2.92 (t, J=7.5 Hz, 2H), 2.34–2.17 (m, 2H), 1.95–1.75 (m, 2H), 1.75-1.41 (m, 6H), 1.38-1.17 (m, 8H), 1.12 (d, J=6.6Hz, 3H), 0.87 (t, J = 6.9 Hz, 3H); mp 194.5–196. 5 °C; optical rotation $[\alpha]_D^{26}$ –45.99 (*c* 1.0, MeOH); Anal calcd for C₁₈H₃₀NO₆P·C₆H₁₄N₂: C, 54.02; H, 8.31; N, 7.87; Found: C, 54.04; H, 8.37; N, 7.79.

(1*S*,2*R*)-1-Methyl-2-[(hexyloxycarbonyl)amino]-2-(3methoxyphenyl) ethyl disodium phosphate (4). The title compound 4 was prepared from 39b according to the general method B: TLC R_f =0.30 (CHCl₃/MeOH/H₂O, 65/35/4); IR (KBr) 3239, 2932, 1699, 1602, 1491, 1456, 1436, 1343, 1255, 1105 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.12 (*t*, *J*=8 Hz, 1H), 7.04–6.94 (m, 2H), 6.78–6.72 (m, 1H), 4.66–4.52 (m, 1H), 4.49 (m) and 4.38 (brs) total 1H, 3.93 (t, *J*=6.6 Hz, 2H), 3.78 (s, 3H), 1.64–1.48 (m, 2H), 1.40–1.20 (m, 6H), 1.05 (d, *J*=6.6 Hz, 3H), 0.88 (m, 3H); optical rotation [α]_D²⁶ –48.83 (*c* 1.2, MeOH); mp > 300 °C (decomposed); MS (FAB, Pos.) *m/z* 434 (M+H)⁺, 412, 390; HRMS (MALDI-TOF, Pos.) calcd for C₁₇H₂₆NO₇P·2Na+H⁺: 434.1321; found: 434.1363.

Bis[tris(hydroxymethyl)aminomethane] salt of compound 40b (40b·TRIS). Compound 4 was one of the best inhibitors for TNF- α production, so an alternative salt was prepared. A mixture of 40b (21.8 g, 56.2 mmol) and

Tris(hydroxymethyl)aminomethane (13.6 g, 112 mmol) in EtOH/H₂O (20/1, 200 mL) was heated under reflux until the reaction mixture changed from a suspension to a clear solution. After cooling to room temperature, the resultant precipitates were collected by filtration and dried under reduced pressure to give 40b-TRIS as a white powder (24.7 g, 70% yield): TLC $R_f = 0.20$ $(CHCl_3/MeOH/H_2O, 65/25/4);$ MS (FAB, Pos.) m/z511, 412, 390, 122; IR (KBr) 2931, 1691, 1611, 1541, 1491, 1466, 1077 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.18 (t, J = 8.0 Hz, 1H), 6.69 (s) and 6.95 (d, J = 8.0 Hz) total 2H, 6.80–6.75 (m, 1H), 4.66–4.52 (m, 2H), 3.96 (t, J = 6.6 Hz, 2H), 3.78 (s, 3H), 3.58 (s, 12H), 1.64–1.50 (m, 2H), 1.42–1.24 (m, 6H), 1.08 (d, J=6.3 Hz, 3H), 0.94–0.84 (m, 3H); optical rotation $[\alpha]_D^{26}$ –32.16 (c 1.0, MeOH); mp 130-133 °C; Anal calcd for C₁₇H₂₈NO₇ P·2C₄H₁₁NO₃·H₂O: C, 46.22; H, 8.07; N, 6.47; Found: C, 46.41; H, 8.19; N, 6.49.

tert-Butyl (1*S*,2*S*)-2-hydroxy-1-phenylpropylcarbamate (33). (1S,2R)-1-Amino-1-phenylpropan-2-ol hydrochloride 26a was prepared from (1E)-prop-1-enylbenzene 22a according to the known procedure:^{3a,b} 26a: white powder; TLC $R_f = 0.50$ (EtOAc/AcOH/H₂O 3/1/1); MS (APCI, Pos, 20eV) m/z 152, 135, 106; ¹H NMR (200 MHz, CDCl₃+CD₃OD) δ 7.50–7.30 (m, 5H), 4.43– 4.28 (m, 1H), 4.21 (d, J=3.6 Hz, 1H), 1.04 (d, J=6.6Hz, 3H). To a stirred solution of 26a (1.26 g, 6.72 mmol) in dioxane (35 mL) were added 2 M NaOH (6.8 mL, 13.4 mmol) and di-tert-butyl dicarbonate (1.76 g, 8.06 mmol) at 0 °C and stirring was continued at that temperature for 3 h. The reaction mixture was diluted with EtOAc. After the organic layer was successively washed with H₂O and brine, it was dried over Na₂SO₄. Removal of the solvent by evaporation gave a residue which was solidified with *n*-hexane to afford *tert*-butyl (1S,2R)-2-hydroxy-1-phenylpropylcarbamate **29** as a white powder (92% yield): TLC $R_f = 0.53$ (*n*-hexane/ EtOAc, 1/1); ¹H NMR (300 MHz, ČDCl₃) δ 7.40-7.25 (m, 5H), 5.45–5.30 (br, 1H), 4.70–4.52 (br, 1H), 4.15– 4.00 (m, 1H), 1.90–1.70 (br, 1H), 1.41 (s, 9H), 1.09 (d, J = 6.3 Hz, 3H). To a stirred mixture of **29** (1.54 g, 6.12 mmol), PPh₃ (1.60 g, 6.12 mmol) and benzoic acid (747 mg, 6.12 mmol) in THF (60 mL) was added DEAD (2.3 M in toluene, 2.7 mL, 6.12 mmol) at 0°C and stirring was continued at that temperature for 2 h. Removal of the solvent by evaporation gave a residue which was purified by column chromatography on silica gel (Merck 7734, *n*-hexane/EtOAc, 3/1) to afford an oil, which was solidified by *n*-hexane to obtain (1S, 2S)-2-[(tert-butyloxycarbonyl)amino]-1-methyl-2-phenylethyl benzoate as a white powder (83% yield): TLC $R_f = 0.58$ (*n*-hexane/EtOAc, 3/1); ¹H NMR (200 MHz, $CDCl_3$) δ 8.08-7.98 (m, 2H), 7.62-7.20 (m, 8H), 5.50-5.35 (m, 1H), 5.20 (d, J = 9.2 Hz, 1H), 4.98–4.80 (m, 1H), 1.40– 1.20 (m, 12H). To a stirred solution of (1S,2S)-2-[(tertbutyloxycarbonyl)amino]-1-methyl-2-phenylethyl benzoate (1.74 g, 4.9 mmol) in MeOH (50 mL) was added NaOMe (53 mg, 0.98 mmol) at room temperature and stirring was continued at that temperature for 20 h. Removal of the solvent by evaporation gave a residue which was purified by column chromatography on silica gel (Merck 7734, n-hexane/EtOAc, 3/1-1/1) and recrystallization from EtOAc/*n*-hexane to afford **33** as a white crystal (1.09 g, 88% yield): TLC R_f =0.33 (*n*-hexane/EtOAc, 2/1); ¹H NMR (300 MHz, CDCl₃) δ 7.40–7.25 (m, 5H), 5.32 (d, *J*=8.1 Hz, 1H), 4.62–4.50 (m, 1H), 4.10–3.95 (m, 1H), 2.10–1.95 (br, 1H), 1.43 (s, 9H), 1.23 (d, *J*=6.3 Hz, 3H).

General method C

(1*S*,2*S*)-1-Methyl-2-octanoylamino-2-phenylethyl disodium phosphate (6). To a stirred mixture of 33 (873 mg, 3.48 mmol) and DMAP (636 mg, 5.22 mmol) in pyridine (10 mL) was added bis(2,2,2-trichloroethyl) chloridophosphate (1.98 g, 5.22 mmol) at 0°C. Stirring was continued at room temperature for 18 h. The reaction mixture was diluted with EtOAc. The organic layer was successively washed with 1 M HCl, H₂O and brine before being dried over Na₂SO₄. Removal of the solvent by evaporation gave 34 as a colorless oil (3.15 g, quant) which was used for the next reaction without further purification: TLC $R_f = 0.50$ (*n*-hexane/EtOAc, 2/1). A solution of 34 (3.15 g, 3.48 mmol) in 4M HCl/dioxane (20 mL) was stirred at room temperature for 2 h. Removal of the solvent by evaporation gave a residue which was solidified by Et_2O to afford (1S,2S)-2-amino-1-methyl-2-phenylethyl bis(2,2,2-trichloroethyl) phosphate hydrochloride as a white powder (1.73 g, 94%) yield): TLC $R_f = 0.50$ (CHCl₃/MeOH); ¹H NMR (200 MHz, CDCl₃+CD₃OD) δ 7.62-7.50 (m, 2H), 7.50-7.38 (m, 3H), 5.25-5.05 (m, 1H), 4.82-4.55 (m, 4H), 4.40 (d, J = 8.8 Hz, 1H), 1.40 (d, J = 6.2 Hz, 3H). To a stirred suspension of (1S,2S)-2-amino-1-methyl-2-phenylethyl bis(2,2,2-trichloroethyl) phosphate hydrochloride (1.72 g, 3.24 mmol) in CH₂Cl₂ (16 mL) were added octanoyl chloride (631 mg, 3.89 mmol) and pyridine (1.31 mL, 16.2 mmol) at 0°C. Stirring was continued at room temperature for 45 min. Removal of the solvent by evaporation gave (1S,2S)-1-methyl-2-phenyl-2-(octanoylamino)ethyl bis(2,2,2-trichloroethyl) phosphate which was used for the next reaction without further purification. To a stirred solution of (1S,2S)-1-methyl-2phenyl-2-(octanoylamino)ethyl bis(2,2,2-trichloroethyl) phosphate (1.96 g, 3.24 mmol) in pyridine (15 mL)/ AcOH (3 mL) was added Zn powder (1.90 g, 29.2 mmol) at 0 °C. Stirring was continued at room temperature for 2 h. Removal of the Zn powder by filtration through a pad of Celite followed by evaporation afforded an oily residue which was dissolved in 5M NaOH and extracted with EtOAc. The aqueous layer was acidified by 2M HCl and extracted with EtOAc. The organic layer was successively washed with H2O and brine before being dried over Na₂SO₄. Removal of the solvent by evaporation gave a residue, which was purified by column chromatography on silica gel (Merck 7734, CHCl₃/MeOH/NH₄OH, 65/25/2-CHCl₃/MeOH/ H_2O , 65/25/4) to afford a solid. The solid was dissolved in 2M HCl/EtOAc. After the organic layer was successively washed with H₂O and brine, it was dried over Na₂SO₄. Removal of the solvent by evaporation gave a residue, which was solidified by *n*-hexane to obtain (1*S*,2*S*)-1-methyl-2-octanoylamino-2-phenylethyl dihydrogen phosphate as a white powder (697 mg, 60% yield from 34). The title compound 6 was prepared from (1*S*,2*S*)-1-methyl-2-octanoylamino-2-phenylethyl dihydrogen phosphate according to the same procedure as described for the preparation of **2** from **25b**: white powder; TLC R_f =0.43 (CHCl₃/MeOH/H₂O, 65/35/8); IR (KBr) 3399, 2928, 2857, 2359, 1637, 1549, 1496, 1455, 1378, 1301, 1204, 1090 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.40–7.30 (m, 2H), 7.30–7.15 (m, 3H), 4.41–4.25 (m, 2H), 2.38–2.15 (m, 2H), 1.63–1.45 (m, 2H), 1.38–1.12 (m, 8H), 1.06 (d, *J*=6.0 Hz, 3H), 0.87 (t, *J*=6.8 Hz, 3H); optical rotation [α]_D²⁵ +17.3 (*c* 1.0, MeOH); MS (FAB, Pos.) *m*/*z* 424 (M+Na)⁺, 402 (M+H)⁺, 380; HRMS (MALDI-TOF, Pos.) calcd for C₁₇H₂₆NO₅P·2Na + H⁺: 402.1422; found: 402.1437.

(1*R*,2*R*)-1-Methyl-2-octanoylamino-2-phenylethyl disodium phosphate (8). The title compound 8 was prepared from 23a according to the general method C; TLC R_f =0.24 (CHCl₃/MeOH/H₂O, 65/25/4); IR (KBr) 3408, 1636, 1455, 1091, 985 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.35 (brd, *J*=7.2 Hz, 2H), 7.26 (brt, *J*=7.2 Hz, 2H), 7.18 (m, 1H), 4.40–4.24 (m, 2H), 2.38–2.10 (m, 2H), 1.55 (m, 2H), 1.35–1.10 (m, 8H), 1.05 (d, *J*=5.7 Hz, 3H), 0.87 (t, *J*=6.6 Hz, 3H); optical rotation [α]_D²⁴ –14.9 (*c* 1.0, MeOH); MS (FAB, Pos.) *m/z* 424 (M + Na)⁺, 402 (M + H)⁺, 380; HRMS (MALDI-TOF, Pos.) calcd for C₁₇H₂₆NO₅P·2Na + H⁺: 402.1422; found: 402.1428.

(1*R*,2*S*)-1-Methyl-2-octanoylamino-2-phenylethyl disodium phosphate (10). The title compound 10 was prepared from 29 according to the general method C; offwhite powder; TLC R_f =0.23 (CHCl₃/MeOH/H₂O, 65/ 25/4); IR (KBr) 3346, 1639, 1538, 1454, 1093 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.44 (d, *J*=6.9 Hz, 2H), 7.28–7.12 (m, 3H), 4.61 (m, 2H), 2.35–2.18 (m, 2H), 1.55 (m, 2H), 1.25 (m, 8H), 1.04 (d, *J*=6.3 Hz, 3H), 0.87 (t, *J*=6.3 Hz, 3H); optical rotation [α]_D²⁵ + 60.9 (*c* 1.25, MeOH); MS (FAB, Pos.) *m*/*z* 402 (M+H)⁺, 380, 358; HRMS (MALDI-TOF, Pos.) calcd for C₁₇H₂₆NO₅P·2-Na+H⁺: 402.1422; found: 402.1416.

N-I(1S,2S)-2-Hydroxy-1-(3-methoxyphenyl)propylloctanamide (38). tert-Butyl (1S,2R)-2-hydroxy-1-(3-methoxyphenyl)propylcarbamate 37 was prepared from 26b according to the same procedure as described for the preparation of tert-butyl (1S,2R)-2-hydroxy-1-phenylpropylcarbamate from 26a. (1S,2R)-2-[(tert-Butyloxycarbonyl)amino]-1-methyl-2-(3-methoxyphenyl)ethyl benzoate was prepared from 37 according to the same procedure as described for the preparation of (1S, 2S)-2-[(tert-butyloxycarbonyl)amino]-1-methyl-2-phenylethyl benzoate from tert-butyl (1S,2R)-2-hydroxy-1-phenylpropylcarbamate (96% yield). To a stirred solution of (1S,2R)-2-[(tert-butyloxycarbonyl)amino]-1-methyl-2-(3-methoxyphenyl)ethyl benzoate (3.48 g, 9.5 mmol) in THF (50 mL)/MeOH (20 mL) was added 1 M NaOH (20 mL, 20 mmol) at room temperature and stirring was continued at that temperature for 20 h. Removal of the solvent by evaporation gave a reside, which was extracted with EtOAc. The organic layer was successively washed with 1 M NaOH and brine before being dried over MgSO₄. Removal of the solvent by evaporation afforded a residue which was purified by column chromatography on silica gel (Merck 7734, n-hexane/EtOAc, 2/1) to obtain tert-butyl (1S,2S)-2-hydroxy-1-(3-methoxyphenyl)propylcarbamate (1.36 g, 51% yield): TLC $R_f = 0.52$ (*n*-hexane/EtOAc, 1/1); ¹H NMR (300 MHz, CD₃OD) δ 7.28 (dd, J=9.0, 7.2 Hz, 1H), 6.87–6.79 (m, 3H), 5.30 (brs, 1H), 4.53 (brs, 1H), 4.03 (brs, 1H), 3.80 (s, 3H), 1.43 (brs, 9H), 1.22 (d, J = 6.3 Hz, 3H). A solution of tert-butyl (1S,2S)-2-hydroxy-1-(3-methoxyphenyl)propylcarbamate (1.34 g, 6.72 mmol) in 4 M HCl/dioxane (20 mL) was stirred at 0 °C for 2 h. Removal of the solvent by evaporation followed by the dissolution of the residue in toluene was repeated several times to give (1S,2S)-1-amino-1-(3-methoxyphenyl)propan-2-ol hydrochloride as an oil. To a stirred mixture of (1*S*,2*S*)-1-amino-1-(3-methoxyphenyl)propan-2-ol hydrochloride in THF (50 mL) and 0.5M NaHCO₃ (50 mL) was added octanoyl chloride (1.1 g, 6.79 mmol) in dioxane (5 mL) at 0 °C and stirring was continued at that temperature for 4 h. The reaction mixture was diluted with EtOAc. The organic layer was successively washed with 1M HCl and brine before being dried over MgSO₄. Removal of the solvent by evaporation afforded a residue, which was purified by column chromatography on silica gel (Merck 7734, *n*-hexane/EtOAc, 2/1-1/1) to afford **38** (1.53 g, 100%) yield): TLC $R_f = 0.22$ (*n*-hexane/EtOAc, 1/1); ¹H NMR $(200 \text{ MHz}, \text{ CD}_3\text{OD}) \delta 7.26 \text{ (dd, } J = 8.4, 8.4 \text{ Hz}, 1\text{H}),$ 6.87-6.78 (m, 3H), 6.29 (brd, J=8.4 Hz, 1H), 4.87 (dd, J=8.4, 4.0 Hz, 1H), 4.09 (m, 1H), 3.80 (s, 3H), 2.26 (brt, J=8.2 Hz, 2H), 1.70–1.60 (m, 2H), 1.40–1.25 (m, 8H), 1.20 (d, J=6.6 Hz, 3H), 0.87 (brt, J=6.6 Hz, 3H).

(1*S*,2*S*)-1-Methyl-2-(3-methoxyphenyl)-2-(octanoylamino)ethyl disodium phosphate (7). The title compound 7 was prepared from compound **38** according to the General Method B: 94% yield; TLC R_f = 0.22 (CHCl₃/MeOH/ H₂O, 65/35/4); IR (KBr) 3412, 2929, 1638, 1457, 1266, 1092, 984, 801 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) δ 7.16 (dd, *J*=8.0, 8.0 Hz, 1H), 6.92 (m, 2H), 6.74 (ddd, *J*=8.0, 2.4, 1.2 Hz, 1H), 4.35–4.29 (m, 2H), 3.76 (s, 3H), 2.38–2.12 (m, 2H), 1.53 (m, 2H), 1.30–1.20 (m, 8H), 1.05 (d, *J*=6.0 Hz, 3H), 0.86 (brt, *J*=6.6 Hz, 3H); optical rotation [α]²⁵_D +17.0 (*c* 1.0, MeOH); MS (FAB, Pos.) *m*/*z* 454 (M+Na)⁺, 432 (M+H)⁺; HRMS (MALDI-TOF, Pos.) calcd for C₁₈H₂₈NO₆P·2Na+H⁺: 432.1528; found: 432.1524.

(1*R*,2*R*)-1-Methyl-2-(3-methoxyphenyl)-2-(octanoylamino)ethyl disodium phosphate (9). The title compound 9 was prepared from 36 according to the general method B: white powder; TLC R_f =0.28 (CHCl₃/MeOH/H₂O, 65/25/4); IR (KBr) 3328, 2929, 1638, 1457, 1265, 1091, 801 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) δ 7.16 (dd, J=8.0, 8.0 Hz, 1H), 6.92 (m, 2H), 6.74 (ddd, J=8.0, 2.4, 1.2 Hz, 1H), 4.35–4.29 (m, 2H), 3.76 (s, 3H), 2.38–2.12 (m, 2H), 1.53 (m, 2H), 1.30–1.20 (m, 8H), 1.05 (d, J=6.0 Hz, 3H), 0.86 (brt, J=6.6 Hz, 3H); optical rotation [α]_D²⁵ –16.6 (*c* 1.0, MeOH); MS (FAB, Pos.) *m*/*z* 454 (M+Na)⁺, 432 (M+H)⁺; HRMS (MALDI-TOF, Pos.) calcd for C₁₈H₂₈NO₆P·2Na + H⁺: 432.1528; found: 432.1568.

(1*R*,2*S*)-1-Methyl-2-(3-methoxyphenyl)-2-(octanoylamino)ethyl disodium phosphate (11). The title compound 11 was prepared from 27 according to the General Method B: white powder; TLC $R_f = 0.20$ (CHCl₃/MeOH/H₂O, 65/25/4); IR (KBr) 3333, 2928, 1638, 1535, 1256, 1088, 984 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.13 (dd, J = 8.1, 8.1 Hz, 1H), 7.01–6.99 (m, 2H), 6.73 (ddd, J = 8.1, 2.4, 1.2 Hz, 1H), 4.63–4.57 (m, 2H), 3.77 (s, 3H), 2.36–2.18 (m, 2H), 1.55 (m, 2H), 1.35–1.20 (m, 8H), 1.05 (d, J = 6.3 Hz, 3H), 0.86 (brt, J = 6.6 Hz, 3H); optical rotation [α] $_{D}^{25}$ + 65.4 (*c* 1.0, MeOH); MS (FAB, Pos.) m/z 432 (M+H)⁺; HRMS (MALDI-TOF, Pos.) calcd for C₁₈H₂₈NO₆P·2Na+H⁺: 432.1528; found: 432.1505.

Methyl [(tert-butoxycarbonyl)amino](3-methoxyphenyl)acetate (42). Methyl amino(3-hydroxyphenyl)acetate 41 was prepared from 3-(benzyloxy)benzaldehyde according to the same procedure as described in the preceding paper.^{2c,8} To a stirred solution of **41** (5.0 g, 27.6 mmol) in CHCl₃ (150 mL) was added dropwise a solution of di-tert-butyl dicarbonate (5.96 g, 27.3 mmol) in CHCl₃ (20 mL) at room temperature and stirring was continued at that temperature for 5 h. The reaction was quenched with NH₄OH and extracted with CHCl₃. The organic layer was successively washed with saturated NaHCO₃, H₂O and brine before being dried over Na_2SO_4 . Removal of the solvent by evaporation gave methyl [(tert-butoxycarbonyl)amino](3-hydroxyphenyl)acetate which was used for the next reaction without further purification: TLC $R_f = 0.39$ (*n*-hexane/EtOAc, 1/1). To a stirred mixture of methyl [(tert-butoxycarbonyl)amino](3-hydroxyphenyl)acetate (27.6 mmol) and K₂CO₃ (11.5 g, 82.9 mmol) in DMF (54 mL) was added iodomethane (5.16 mL, 82.9 mol) at room temperature and stirring was continued at that temperature for 2 h. The reaction mixture was treated with H₂O and then extracted with EtOAc. After the organic layer was successively washed with 1 M HCl, H₂O and brine, it was dried over Na₂SO₄. Removal of the solvent by evaporation gave 42 (7.91 g, 97% yield in 2 steps): TLC $R_f = 0.63$ (*n*-hexane/EtOAc, 1/1); ¹H NMR (200 MHz, CDCl₃) δ 7.31–7.22 (m, 1H), 6.95–6.82 (m, 3H), 5.52– 5.48 (m, 1H), 5.28 (d, J = 7.0 Hz, 1H), 3.79 (s, 3H), 3.71 (s, 3H), 1.42 (s, 9H).

tert-Butyl 2-hydroxy-1-(3-methoxyphenyl)-2-methylpropylcarbamate (43). To a stirred solution of 42 (4.07 g, 13.8 mmol) in THF (64 mL) was added dropwise methylmagnesium bromide (0.84 M in Et₂O 63.9 mL, 53.4 mmol) at 0 °C. Stirring was continued at room temperature for 2 h. The reaction was quenched with 1 M HCl and extracted with EtOAc, and the organic layer was washed with brine before being dried over Na₂SO₄. Removal of the solvent by evaporation gave 43: TLC R_f =0.50 (*n*-hexane/EtOAc, 1/1); ¹H NMR (300 MHz, CDCl₃) δ 7.27–7.22 (m, 1H), 7.11–6.79 (m, 3H), 5.50 (d, *J*=6.9 Hz, 1H), 4.48 (d, *J*=6.9 Hz, 1H), 3.83 (s, 3H), 1.40 (s, 9H), 1.32 (s, 3H), 1.06 (s, 3H).

N-[2-hydroxy-1-(3-methoxyphenyl)-2-methylpropyl]octanamide (44). The title compound 44 was prepared from 43 according to essentially the same procedures as described for the preparation of 38 from *tert*-butyl (1*S*,2*S*)-2-hydroxy-1-(3-methoxyphenyl)propylcarbamate: TLC R_f =0.48 (*n*-hexane/EtOAc, 1/2); ¹H NMR (300 MHz, CDCl₃) δ 7.24 (t, *J*=7.2 Hz, 1H), 6.88–6.79 (m, 3H), 6.43 (d, J=8.7 Hz, 1H), 3.79 (s, 3H), 2.24–2.19 (m, 2H), 1.68–1.58 (m, 2H), 1.30–1.07 (m, 8H), 0.86 (t, J=6.6 Hz, 3H).

1,1-Dimethyl-2-(3-methoxyphenyl)-2-(octanoylamino)ethyl disodium phosphate (13). The title compound **13** was prepared from **44** according to the general method B: TLC R_f =0.31 (CHCl₃/MeOH/H₂O, 65/25/4); IR (KBr) 3321, 2928, 1621, 1538, 1490, 1455, 1388, 1368, 1243, 1088 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.13 (t, J=7.8 Hz, 1H), 7.09–7.05 (m, 2H), 6.73–6.69 (m, 1H), 4.49 (d, J=1.5 Hz, 1H), 3.78 (s, 3H), 2.27 (t, J=7.2 Hz, 2H), 1.66 (s, 3H), 1.62–1.53 (m, 2H), 1.32–1.23 (m, 8H), 1.16 (s, 3H), 0.86 (t, J=6.3 Hz, 3H); MS (FAB, Pos.) m/z446 (M+H)⁺; HRMS (MALDI-TOF, Pos.) calcd for C₁₉H₃₀NO₆P·2Na+H⁺: 446.1684; found: 446.1651.

tert-Butyl (1-hydroxycyclobutyl)(phenyl)methylcarbamate (47). To a stirred mixture of cyclobutanone (5.0 g, 71) mmol) and trimethylsilyl cyanide (7.03 g, 71 mmol) in CH₂Cl₂ (100 mL) was added dropwise a solution of trimethylsilyl trifluoromethanesulfonate (1.27 mL, 7.1 mmol) in CH₂Cl₂ (50 mL) at -78 °C and stirring was continued at that temperature for 2.5 h. The reaction was quenched with a few drops of pyridine. The resulting mixture was poured into saturated NaHCO₃ aq and extracted with CH₂Cl₂. The organic layer was successively washed with H₂O and brine before being dried over MgSO₄. Removal of the solvent by evaporation gave 46 as a colorless oil (7.08 g, 59% yield): ¹H NMR (300 MHz, CDCl₃) δ 3.09 (t, J=8.1 Hz, 2H), 2.63–2.58 (m, 1H), 2.40–2.23 (m, 1H), 2.03–1.80 (m, 2H), 0.22 (s, 6H), 0.15 (s, 3H). To a stirred solution of PhMgI in Et₂O (2M, 23.1 mL, 46.1 mmol) was added dropwise a solution of 46 (7.08 g, 41.9 mmol) in Et₂O (50 mL) at 0°C. Stirring was continued at room temperature for 2 days. To this resulting mixture a solution of NaBH₄ (1.71 g, 45.3 mmol) in MeOH (50 mL) was added at 0 °C and stirring was continued at room temperature for 4.5 h. Next H₂O (25 mL) and 1 M HCl (100 mL) were added to the stirred reaction mixture. Stirring was continued at room temperature for 1 h. After removal of the organic layer, the aqueous layer was adjusted to pH 9 by 1 M NaOH and extracted with CHCl₃. The organic layer was dried over K_2CO_3 . Removal of the solvent by evaporation gave 1-[amino(phenyl)methyl]cyclobutanol which was used for the next reaction without further purification. The title compound 47 was prepared from 1-[amino(phenyl)methyl]cyclobutanol according to essentially the same procedure as described for the preparation of methyl [(tert-butoxycarbonyl)amino](3hydroxyphenyl)acetate from 41: 13% yield in 3 steps; off-white solid; TLC $R_f = 0.37$ (*n*-hexane/EtOAc, 3/1), MS (APCI, Pos. 40eV) m/z 278 (M+H)⁺, 178, 161; ¹H NMR (300 MHz, CDCl₃) δ 7.40–7.20 (m, 5H), 5.51 (br, 1H), 4.76 (d, J = 8.4 Hz, 1H), 2.40–2.23 (m, 1H), 2.20– 2.00 (m, 2H), 1.93–1.63 (m, 3H), 1.43 (s, 9H).

1-(Phenylmethyl)-1-(octanoylamino)cyclobutyl dihydrogen phosphate (14). The title compound 14 was prepared from 47 according to the general method C: TLC $R_f = 0.44$ (CHCl₃/MeOH/H₂O, 65/25/4); IR (KBr) 3252, 2930, 2858, 1557, 1456, 1010 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.45–7.38 (m, 2H), 7.35–7.20 (m, 3H), 5.15 (d, J=2.4 Hz, 1H), 2.88 (q, J=12 Hz, 1H), 2.45 (q, J=12 Hz, 1H), 2.32–2.14 (m) and 2.27 (t, J=6 Hz) total 4H, 1.94–1.80 (m, 1H), 1.78–1.52 (m, 3H), 1.40–1.16 (m, 8H), 0.88 (t, J=6.6 Hz, 3H); MS (FAB, Pos.) m/z 406 (M+Na)⁺, 384 (M+H)⁺; HRMS (MALDI-TOF, Pos.) calcd for C₁₉H₃₀NO₅P+Na⁺: 406.1759; found: 406.1731.

(2R,3R)-3-Amino-3-phenylpropane-1,2-diol hydrochloride (51). A mixture of [(2S,3S)-3-phenyloxiran-2-yl]methanol 49 (5.6 g, 37.3 mmol), NaN₃ (4.86 g, 74.6 mmol) and NH_4Cl (991 mg, 17.8 mmol) in dioxane (50 mL)/ H_2O (5 mL) was heated at 80 °C for 2 days with stirring. After cooling, the reaction mixture was diluted with EtOAc. The organic layer was successively washed with H₂O and brine before being dried over Na₂SO₄. Removal of the solvent by evaporation gave a residue which was purified by column chromatography on silica gel (Merck 7734, *n*-hexane/EtOAc, 3/1-1/1) to afford **50** as a colorless oil (4.28 g, 59% yield): TLC $R_f = 0.38$ (nhexane/EtOAc, 1/1; ¹H NMR (300 MHz, CDCl₃) δ 7.50–7.35 (m, 5H), 4.65 (d, J = 6.9 Hz, 1H), 3.60 (m, 1H), 3.80–3.65 (m, 2H), 2.19 (br, 1H), 1.97 (br, 1H). A mixture of 50 (4.28 g, 22 mmol) and 10% Pd-C (430 mg) in EtOH (60 mL)/6 M HCl (3.7 mL) was stirred at room temperature under an atmospheric pressure of hydrogen for 14 h. Removal of the catalyst by filtration through a pad of Celite followed by evaporation afforded 51 as a white solid: ¹H NMR (300 MHz, CD₃OD) δ 7.54–7.46 (m, 2H), 7.45–7.39 (m, 3H), 4.44 (d, J=3.9 Hz, 1H), 4.08–4.00 (m, 1H), 3.40 (dd, J=11.0, 5.5 Hz, 1H), 3.28 (dd, J = 11.0, 6.0 Hz, 1H).

N-[(1*R*,2*R*)-2,3-dihydroxy-1-phenylpropyl]octanamide (52). The title compound 52 was prepared from 51 according to essentially the same procedure as described for the preparation of 24b from 23b: white solid; 83% yield; TLC R_f =0.55 (EtOAc); ¹H NMR (300 MHz, CDCl₃) δ 7.43–7.25 (m, 5H), 6.16 (d, *J*=7.2 Hz, 1H), 5.01 (t, *J*=7.8 Hz, 1H), 3.86 (dt, *J*=7.8, 3.0 Hz, 1H), 3.66 (dq, *J*=12.6, 3.0 Hz, 2H), 2.21 (t, *J*=7.5 Hz, 2H), 1.62 (m, 2H), 1.40–1.10 (m, 8H), 0.87 (m, 3H).

(1*R*,2*R*)-1-Hydroxymethyl-2-octanolyamino-2-phenylethyl disodium phosphate (15). The title compound 15 was prepared from 55 according to the general method B: to a stirred mixture of 52 (1.3 g, 4.3 mmol) and imidazole (589 mg, 8.7 mmol) in DMF (20 mL) was added TBDPSCl (1.4 g, 5.2 mmol) at room temperature and stirring was continued at that temperature for 18 h. The reaction mixture was diluted with Et₂O. The organic layer was successively washed with saturated NaHCO₃ aq, H_2O and brine before being dried over Na_2SO_4 . Removal of the solvent by evaporation gave 53 quantitatively as a colorless oil (2.3 g): TLC $R_f = 0.35$ (*n*-hexane/EtOAc, 2/1); ¹H NMR (300 MHz, CDCl₃) δ 7.73 (m, 1H), 7.60 (m, 3H), 7.45–7.30 (m, 6H), 7.28–7.20 (m, 5H), 6.70 (d, J = 8.1 Hz, 1H), 5.19 (dd, J = 8.1, 4.2 Hz, 1H), 3.99 (dd, J=9.6, 4.2 Hz, 1H), 3.59 (dd, J=10.8, J=10.8,4.2 Hz, 1H), 3.48 (dd, J = 10.8, 5.7 Hz, 1H), 2.18 (t, J = 7.2 Hz, 2H), 1.60 (m, 2H), 1.38–1.15 (m, 8H), 1.09 (s, 9H), 0.87 (t, J = 6.6 Hz, 3H). The compound 54 was

prepared from 53 according to the same procedure as described for the preparation of dibenzyl (1S,2R)-1methyl-2-(3-methoxyphenyl)-2-(octanoylamino)ethyl phosphate from 24b: colorless oil; 70% yield from 53. **54**: ¹H NMR (300 MHz, CDCl₃) δ 7.63–7.58 (m, 5H), 7.40-7.20 (m, 20H), 5.49 (dd, J=8.1, 3.0 Hz, 1H), 5.20-4.85 (m, 5H), 4.65–4.55 (m, 1H), 3.65–3.0 (m, 2H), 2.20– 2.10 (m, 2H), 1.65–1.50 (m, 2H), 1.38–1.20 (m, 8H), 1.07 (s, 9H), 0.85 (m, 3H). (1R,2R)-1-tert-Butyldiphenylsilyloxymethyl-2-octanonyamino-2-phenylethyl dihydrogen phosphate was prepared from 54 according to the same procedure as described for the preparation of 25b from dibenzyl (1S,2R)-1-methyl-2-(3-methoxyphenyl)-2phosphate: (octanoylamino)ethyl TLC $R_{f} = 0.50$ $(CHCl_3/MeOH/H_2O, 65/25/4);$ ¹H NMR (300 MHz, CDCl₃) & 7.70–7.60 (m, 4H), 7.45–7.20 (m, 1H), 5.50 (d, J=3.3 Hz, 1H), 4.63–4.58 (m, 1H), 3.74 (dd, J=10.5, 4.2 Hz, 1H), 3.42 (dd, J = 10.5, 7.8 Hz, 1H), 2.24 (t, J = 7.2 Hz, 2H), 1.65–1.53 (m, 2H), 1.38–1.20 (m, 8H), 1.09 (s, 9H), 0.89 (t, J = 6.3 Hz, 3H). To a stirred solution of (1R,2R)-1-tert-butyldiphenylsilyloxymethyl-2octanolyamino-2-phenylethyl dihydrogen phosphate (1.8 g, 3 mmol) in THF (20 mL) was added TBAF (1 M in THF, 7.5 mL, 7.5 mmol) at room temperature and stirring was continued at that temperature for 15 min. The reaction was quenched with H₂O and the pH adjusted to 12 with 2 M NaOH before the organic layer was extracted with Et₂O. The aqueous layer was acidified with 2 M HCl and extracted with EtOAc. Next, the organic layer was successively washed with H2O and brine before being dried over Na₂SO₄. Removal of the solvent by evaporation gave 55 as an amorphous powder (700 mg, 63% yield): TLC $R_f = 0.23$ (CHCl₃/MeOH/ H₂O, 65/25/4); ¹H NMR (300 MHz, CDCl₃) δ 7.24–7.20 (m, 5H), 5.28 (d, J = 5.0 Hz, 1H), 4.60–4.43 (m, 1H), 3.60-3.40 (m, 2H), 2.28 (t, J = 7.5 Hz, 2H), 1.60 (m, 2H),1.40–1.20 (m, 8H), 0.88 (m, 3H). 15: TLC $R_f = 0.23$ (CHCl₃/MeOH/H₂O, 65/25/4); IR (KBr) 3418, 2928, 2856, 1644, 1539, 1455, 1094 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.44 (d, J=7.2 Hz, 2H), 7.26–7.14 (m, 3H), 4.93 (d, J=2.7 Hz, 1H), 4.48 (m, 1H), 3.38-3.25 (m, 2H), 2.36-2.18 (m, 2H), 1.55 (m, 2H), 1.38-1.18 (m, 8H),0.86 (t, J = 6.3 Hz, 3H); MS (FAB, Pos.) m/z 418 $(M+H)^+$, 396, 374; HRMS (MALDI-TOF, Pos.) calcd for $C_{17}H_{26}NO_6P \cdot 2Na + H^+$: 418.1371; found: 418.1407.

N-[(1*R*,2*S*)-2-Hydroxy-1,2-dipenylethyl]octanamide (57). The title compound 57 was prepared from (1S,2R)-2-amino-1,2-diphenylethanol 56 according to essentially the same procedure as described for the preparation of 24b from 23b: white powder; 84% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.11 (d, *J*=9.6 Hz, 1H), 7.35–7.10 (m, 10H), 5.35 (d, *J*=4.8 Hz, 1H), 4.94 (dd, *J*=9.4, 7.8 Hz, 1H), 4.70 (m, 1H), 1.93 (t, *J*=7.0 Hz, 2H), 1.34–0.90 (m, 10H), 0.85 (t, *J*=6.2 Hz, 3H).

Method D

(1*S*,2*R*)-1,2-Diphenyl-2-octanoylaminoethyl disodium phosphate (16). To a stirred mixture of 57 (770 mg, 2.3 mmol) and tetrazole (318 mg, 4.5 mmol) in CH₃CN (25 mL)–CH₂Cl₂ (25 mL) was added a solution of bis(2-cyanoethyl)diisopropylamidophosphite (678 mg, 2.5

mmol) in CH₃CN (5 mL) at room temperature and stirring was continued at that temperature for 1.5 h. The reaction mixture was poured into saturated NaHCO₃ aq and extracted with EtOAc. The organic layer was washed with brine and dried over Na₂SO₄. Removal of the solvent by evaporation gave bis(2-cyanoethyl) (1S,2R)-1,2-diphenyl-2-(octanoylamino)ethyl phosphite as a white powder which was used for the next reaction without further purification (1.2 g, quant): TLC $R_f = 0.43$ (*n*-hexane/EtOAc, 1/1). To a stirred solution of bis(2-cyanoethyl) (1S,2R)-1,2-diphenyl-2-(octanoylamino)ethyl phosphite (1.2 g) in CH₂Cl₂ (30 mL) was added m-CPBA (57%, 685 mg, 2.3 mmol) at 0°C and stirring was continued at that temperature for 30 min. To the reaction mixture saturated Na₂S₂O₃ aq was added and extracted with CH₂Cl₂. The organic layer was successively washed with H2O, saturated NaHCO3 aq and brine before being dried over Na_2SO_4 . The *m*chlorobenzoic acid was removed by passing the solution through a pad of Al_2O_3 . Removal of the solvent by evaporation gave bis(2-cyanoethyl) (1S,2R)-1,2-diphenyl-2-(octanoylamino)ethyl phosphate as a white powder which was used for the next reaction without further purification (1.0 g, 84% yield): TLC $R_f = 0.20$ (CH₂Cl₂/ EtOAc, 1/1). To a stirred solution of bis(2-cyanoethyl) (1S,2R)-1,2-diphenyl-2-(octanoylamino)ethyl phosphate (1.0 g, 1.9 mmol) in EtOH (20 mL) was added 50% Me₂NH aq and stirring was continued under reflux for 8 h. After cooling, removal of the solvent by evaporation gave a residue, which was dissolved in 1 M NaOH and extracted with Et₂O. The aqueous layer was acidified with 1 M HCl and extracted with EtOAc. The organic layer was successively washed with H₂O and brine before being dried over Na₂SO₄ Removal of the solvent by evaporation gave (1S, 2R)-1,2-diphenyl-2-(octanoylamino)ethyl dihydrogen phosphate as a white solid (641 mg, 80% yield), which was converted to the disodium salt 16 according to the same procedure as descried for the preparation of **2** from **25b**: TLC $R_f = 0.41$ (CHCl₃/ MeOH/H₂O, 65/25/4); IR (KBr) 3062, 2927, 1652, 1520, 1453, 1114 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.20-7.05 (m) and 7.00 (m) total 10H, 5.68 (dd, J = 10.2, 2.4Hz, 1H), 4.96 (d, J=2.4 Hz, 1H), 2.40–2.30 (m, 2H), 1.65–1.55 (m, 2H), 1.40–1.20 (m, 8H), 0.88 (t, J=6.3Hz, 3H); MS (FAB, Pos.) m/z 486 (M+Na)⁺, 464 $(M+H)^+$, 442; HRMS (MALDI-TOF, Pos.) calcd for $C_{22}H_{28}NO_5P \cdot 2Na + H^+$: 464.1579; found: 464.1557.

N-[(1*R*,2*S*)-2-Hydroxy-2,3-dihydro-1*H*-inden-1-yl]octanamide (59). The title compound 59 was prepared from (1*R*,2*S*)-1-aminoindan-2-ol 58 according to essentially the same procedure as described for the preparation of 24b from 23b: 86% yield; TLC R_f =0.13 (*n*-hexane/ EtOAc, 3/2); ¹H NMR (300 MHz, CDCl₃) δ 7.30–7.10 (m, 4H), 6.20 (brd, J=8.4 Hz, 1H), 5.37 (dd, J=8.4, 5.1 Hz, 1H), 4.61 (ddd, J=5.1, 5.1, 2.4 Hz, 1H), 3.16 (dd, J=16.5, 5.1 Hz, 1H), 2.93 (dd, J=16.5, 2.4 Hz, 1H), 2.31–2.26 (m, 2H), 1.70–1.50 (m, 2H), 1.40–1.20 (m, 8H), 0.88 (brt, J=6.9 Hz, 3H).

(1*R*,2*S*)-1-(Octanoylamino)-2,3-dihydro-1*H*-inden-2-yl bis(2,2,2-trichloroethyl) phosphate (60). The title compound 60 was prepared from 59 according to essentially

the same procedure as described for the preparation of **34** from **33**: 50% yield; ¹H NMR (200 MHz, CDCl₃) δ 7.30–7.20 (m, 4H), 6.06 (brd, J=9.0 Hz, 1H), 5.75–5.67 (m, 1H), 5.40–5.33 (m, 1H), 4.61 (d. J=7.0 Hz, 2H), 4.59 (d, J=7.0 Hz, 2H), 3.38 (dd, J=17.6, 1.6 Hz, 1H), 3.24 (dd, J=17.6, 4.4 Hz, 1H), 2.32 (dd, J=7.8, 7.2 Hz, 2H), 1.80–1.65 (m, 2H), 1.50–1.20 (m, 8H), 0.89 (t, J=6.6 Hz, 3H).

(1*R*,2*S*)-1-(Octanoylamino)-2,3-dihydro-1*H*-inden-2-yl disodium phosphate (17). The title compound 17 was prepared from 60 according to the same procedures as described for the preparation of 6 from (1*S*,2*S*)-1-methyl-2-phenyl-2-(octanoylamino)ethyl bis(2,2,2-trichloroethyl) phosphate: 60% yield; TLC R_f =0.29 (CHCl₃/MeOH/H₂O, 65/25/4); IR (KBr) 3305, 1626, 1542, 1459, 1106, 986 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.25–7.05 (m, 4H), 5.27 (d, *J*=4.8 Hz, 1H), 5.01 (m, 1H), 3.35 (m, 1H), 3.03 (dd, *J*=16.4, 4.4 Hz, 1H), 2.50–2.25 (m, 2H), 1.70 (m, 2H), 1.50–1.20 (m, 8H), 0.90 (m, 3H).; MS (FAB, Pos.) *m/z* 422 (M+Na)⁺, 400 (M+H)⁺; HRMS (MALDI-TOF, Pos.) calcd for C₁₇H₂₄NO₅P·2Na+H⁺: 400.1266; found: 400.1301.

Method E

Dibenzyl (1S,2R)-1-(octanoylamino)-2,3-dihydro-1H-inden-2-yl phosphate (61). To a stirred mixture of 59 (1.1 g, 4.0 mmol), Ph₃P (1.3 g, 4.8 mmol) and dibenzyl hydrogen phosphate (1.3 g, 4.8 mmol) in THF (12 mL) was added DEAD (40% in toluene, 2.1 mL, 4.8 mmol) at 0 °C. Stirring was continued at room temperature for 24 h. Removal of the solvent by evaporation gave a residue which was purified by column chromatography on silica gel (FL60D, *n*-hexane/EtOAc, 5/1-4/1) twice to afford **61** (260 mg, 12%): TLC $R_f = 0.55$ (CH₂Cl₂/ MeOH, 19/1); ¹H NMR (300 MHz, CDCl₃) δ 7.40–7.15 (m, 14H), 5.89 (d, J = 8.1 Hz, 1H), 5.53 (dd, J = 8.1, 7.5 Hz, 1H), 5.10-5.01 (m, 4H), 4.92 (m, 1H), 3.22 (dd, J = 15.6, 6.9 Hz, 1H), 3.01 (dd, J = 15.6, 7.8 Hz, 1H), 2.17 (dd, J = 8.1, 7.2 Hz, 2H), 1.80–1.55 (m, 2H), 1.40– 1.20 (m, 8H), 0.87 (t, J = 6.9 Hz, 3H).

(1*S*,2*R*)-1-(Octanoylamino)-2,3-dihydro-1*H*-inden-2-yl dihydrogen phosphate (62). The title compound 62 was prepared from 61 according to the same procedure as described for the preparation of 25b from dibenzyl (1*S*,2*R*)-1-methyl-2-(3-methoxyphenyl)-2-(octanoylamino)ethyl phosphate: 83% yield; ¹H NMR (200 MHz, CD₃OD) δ 7.30–7.10 (m, 4H), 5.39 (brd, *J*=5.8 Hz, 1H), 4.85 (m, 1H), 3.40 (dd, *J*=16.0, 7.0 Hz, 1H), 3.04 (dd, *J*=16.0, 6.6 Hz, 1H), 2.26 (brt, *J*=7.4 Hz, 2H), 1.70–1.55 (m, 2H), 1.45–1.20 (m, 8H), 0.90 (brt, *J*=6.6 Hz, 3H).

(1*S*,2*R*)-1-(Octanoylamino)-2,3-dihydro-1*H*-inden-2-yl disodium phosphate (18). The title compound 18 was prepared from 62 according to the same procedure as described for the preparation of 2 from 25b: 87% yield; TLC R_f =0.29 (CHCl₃/MeOH/H₂O, 65/25/4); IR (KBr) 3430, 1631, 1543, 1461, 1096, 987 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) δ 7.14 (m, 4H), 5.16 (d, *J*=7.6 Hz, 1H), 4.67 (ddd, *J*=8.0, 7.6, 7.0 Hz, 1H), 3.41 (dd, *J*=15.8, 7.0 Hz, 1H), 2.94 (dd, *J*=15.8, 8.0 Hz, 1H),

2.25 (m, 2H), 1.68 (m, 2H), 1.45–1.20 (m, 8H), 0.89 (m, 3H); MS (FAB, Pos.) m/z 422 (M+Na)⁺, 400 (M+H)⁺; HRMS (MALDI-TOF, Pos.) calcd for C₁₇H₂₄NO₅P·2Na+H⁺: 400.1266; found: 400.1275.

N-[(1*R*)-2-hydroxy-1-phenylethyl]-*N*-methyloctanamide (64). Ethyl (1*R*)-2-hydroxy-1-phenylethylcarbamate was prepared from (2R)-2-amino-2-phenylethanol 63 according to essentially the same procedures as described for the preparation of 24b from 23b. To the stirred suspension of LiAlH₄ (760 mg, 20 mmol) in THF (50 mL) was added dropwise a solution of ethyl (1R)-2hydroxy-1-phenylethylcarbamate (2.1 g, 10 mmol) in THF (10 mL) under reflux. Stirring was continued for 11 h under reflux. To this stirred reaction mixture H₂O (0.76 mL), 15% NaOH aq (0.76 mL) and H₂O (2.2 mL) were successively added at 0 °C and the vigorous stirring was continued. The precipitates were removed by filtration and the filtrate was concentrated to give a residue, which was dissolved in dioxane (5 mL). To the mixture was added 4 M HCl in dioxane (3 mL) and removal of the solvent by evaporation gave a residue, which was solidified by Et₂O/EtOH to afford (2R)-2-(methylamino)-2-phenylethanol (665 mg, 36% yield): TLC $R_f = 0.19$ (CH₂Cl₂/ MeOH/AcOH, 3/1/1). The title compound 64 was prepared from (2R)-2-(methylamino)-2-phenylethanol according to essentially the same procedure as described for the preparation of 24b from 23b: 67% yield: TLC $R_f = 0.26$ (*n*-hexane/EtOAc, 1/1); ¹H NMR (200 MHz, $CDCl_3$) δ 7.40–7.15 (m, 5H), 5.85, 5.14 (dd, J=9.4, 5.0 Hz, 1H), 4.23-4.00 (m, 2H), 2.75 (s, 3H), 2.56-2.35 (m, 3H), 1.75–1.60 (m, 2H), 1.45–1.20 (m, 8H), 0.85 (m, 3H).

(2*R*)-2-[hexanoyl(methyl)amino]-2-phenylethyl dihydrogen phosphate (19). The title compound 19 was prepared from 64 according to the general method A: 17% yield; TLC R_f =0.23 (CHCl₃/MeOH/H₂O, 65/25/4); IR (KBr) 3399, 1618, 1451, 1406, 1096, 987 cm⁻¹; ¹H NMR (300 MHz, CD₃OD, 2 rotamers) δ 7.34–7.20 (m, 5H), 5.94 (dd, *J*=9.0, 6.0 Hz, 0.55H), 5.32 (dd, *J*=9.0, 5.1 Hz, 0.45H), 4.41–4.13 (m, 2H), 2.93 (s, 1.65H), 2.88 (s, 1.35H), 2.60–2.35 (m, 2H), 1.60 (m, 2H), 1.45–1.20 (m, 8H), 0.89 (m, 3H); MS (FAB, Pos.) *m*/*z* 402 (M+H)⁺; HRMS (MALDI-TOF, Pos.) calcd for C₁₇H₂₆NO₅P·2-Na+H⁺: 402.1422; found: 402.1430.

Biological assay method

Inhibition of LPS-induced plasma TNF-α production in rats (iv). LPS from the *Escherichia coli* strain 055 B5 (Difco laboratories) and the test compounds were all dissolved in saline. Male Sprague–Dawley (CD)/IGS rats (Charles River Inc., Japan) aged 6–8 weeks (n=5) were injected intravenously with the test compounds (0.01–0.1 mg/ 10 mL/kg), and then immediately given an intraperitoneal injection of LPS (30 µg/kg). Plasma TNF-α production was determined by ELISA 90 min after the LPS challenge using a commercial kit (R&D Systems). ID₅₀ Values were determined by log-linear regression analysis (3–4 doses per compound). ID₅₀=The dosage required to inhibit plasma TNF-α production by 50%. The data were expressed as the mean±SEM of 5 animals per group or ID₅₀ values. % Inhibition = $100 - (C - S)/(L - S) \times 100$

C: Plasma TNF- α concentration of LPS-treated animals pretreated with a test compound.

L: Plasma TNF- α concentration of LPS-treated animals pretreated with saline.

S: Plasma TNF- α concentration of saline-treated animals also pretreated with saline.

Inhibition of LPS-induced plasma TNF- α production in rats (po). The experiments were performed using male Sprague–Dawley (CD (IGS)) rats, 6–8 weeks of age, purchased from Charles River Breeding Laboratories (Shizuoka, Japan). The animals were given access to food and water ad libitum and were maintained on 12 h light/dark cycle at 22-23 °C. All experimental procedures were conformed to the Animal Care and Use Committee protocols filed at ONO Pharmaceutical Co., Ltd. (Osaka, Japan). In experiments under fasted condition, rats were fasted for about 16 h. Test compounds and LPS from Escherichia coli strain 055 B5 (DIFCO LABORATORIES, Detroit, MI, USA) were dissolved in saline. Compounds were administrated orally (1-100 mg/kg) to rats 30 min prior to intravenous injection of LPS at the dose of 30 µg/kg. After 90 min of LPS injection, heparinized blood was obtained. Blood was centrifuged and plasma samples were kept frozen at -80 °C. Plasma TNF- α concentration was determined by enzyme-linked immunosorbent assay using a commercial kit (BIOSOURCE international inc., CA, USA) according to the manufacturer's instructions. The data were expressed as the mean \pm SEM of 5 animals per group or ID₅₀ values. ID₅₀ values, which describe the effective dose with 50% inhibition of TNF-a production, were determined by log-linear regression analysis (3–4 doses per compound).

Inhibition of LPS-induced plasma TNF- α production in mice (iv). Male BALB/c mice aged 8 weeks (n=5) were injected intravenously with the test compounds (0.01–0.1 mg/ 10 mL/kg), and then immediately given an intraperitoneal injection of LPS (5 mg/ 10 mL/kg). Plasma TNF- α production was determined by ELISA 90 min after the LPS challenge using a commercial kit (GENZYME). ID₅₀ = The dosage required to inhibit plasma TNF- α production by 50%. The data were expressed as the mean ± SEM of 5 animals per group or ID₅₀ values.

- % Inhibition = $100 (C-S)/(L-S) \times 100$
- C: Plasma TNF- α concentration of LPS-treated animals pretreated with a test compound.
- L: Plasma TNF- α concentration of LPS-treated animals pretreated with saline.
- S: Plasma TNF- α concentration of saline-treated animals also pretreated with saline.

LPS-induced shock model in mice. LPS from *Escherichia coli* strain 055 B5 (Difco Laboratories, Detroit, MI, USA) and the test compounds were all dissolved in saline. Female BALB/c mice (Charles River Inc., Shizuoka, Japan), 7 weeks of age, were injected intravenously with the test compounds and then immediately given an

intraperitoneal injection of LPS (20 mg/kg). The survival rate of the mice was evaluated after 96 h. Predonisolone (Shionogi Pharmaceutical Co., Ltd., 10 mg/kg, iv), which was used as the positive control, demonstrated an efficacy (survival rate: 13/20) equivalent to 4 (survival rate 15/20 at 0.3 mg/kg, iv) in this model. The survival rate of the controls which were given saline was 2/20. Results are expressed as the mean \pm SEM. Parameters were analyzed with ANOVA-Dunnett's *t*-test, but survival was analyzed with the Mantel-Cox test.

D-(+)-Galactosamine/LPS-induced hepatitis model in rats. D-(+)-Galactosamine (SIGMA)/LPS (Difco Laboratories, Detroit, MI, USA) and the test compounds were all dissolved in saline. Male Sprague-Dawley rats (Charles River Inc., Shizuoka, Japan), 6 weeks of age, were injected intravenously with the test compounds and then immediately given an intraperitoneal injection of D-(+)-galactosamine/LPS (1 g/ 7.5 $\mu g/5 \text{ mL/kg}$). The survival rate of the rats was evaluated after 96 h. Predonisolone (Shionogi Pharmaceutical Co. Ltd., 10 mg/kg, iv), which was used as the positive control, demonstrated an efficacy (survival rate: 13/18) equivalent to 4 (survival rate: 12/18 at 0.3 mg/kg, iv) in this model. The survival rate of the controls which were given saline was 0/18. Results are expressed as the mean ± SEM. Parameters were analyzed with ANOVA-Dunnett's t-test, but survival was analyzed with the Mantel-Cox test.

References and Notes

- 1. (a) Camussi, G.; Lupia, E. *Drugs* **1998**, *55*, 613. (b) Arrieta, O.; Rodriguez-Reyna, T. S.; Sotelo, J. *Exp. Opin. Ther. Patents* **2000**, *10*, 601.
- 2. (a) Matsui, T.; Kondo, T.; Nishita, Y.; Itadani, S.; Nakatani, S.; Omawari, N.; Sakai, M.; Nakazawa, S.; Ogata, A.; Ohno, H.; Obata, T.; Nakai, H.; Toda, M. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 903. (b) Matsui, T.; Kondo, T.; Nishita, Y.; Itadani, S.; Tsuruta, H.; Fujita, S.; Omawari, N.; Sakai,

37, 3219. (b) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. **1994**, *94*, 2483.

4. (a) Dibenzylphosphorochloridate was prepared from benzyl phenoxymethylphosphinate according to the following paper and used as 1 M stock solution: Kenner, G. W.; Todd, A. R.; Weymouth, F. J. J. Chem. Soc. 1952, 3675. (b) Rasolonjaatovo, I.; Sarfati, S. R. Nucleosides & Nucleotides **1998**, 17, 2021 and references cited therein. (c) Ozaki, S.; Ling, L.; Ogasawara, T.; Watanabe, Y.; Hirata, M. Carbohydr. Res. **1994**, 259, 307.

- 5. Scheit, K.-H. Biochim. Biophys. Acta 1968, 157, 632.
- 6. Franke, A.; Scheit, K.-H.; Eckstein, F. Chem. Ber. 1968, 101, 2998.
- 7. Mitsunobu, O. Synthesis, 1.
- 8. Compound **41** was prepared from 3-benzyloxy benzaldehyde according to the following paper: Steiger, R. E. *Org. Synth.*, **1995**, III 84.
- 9. Deuchert, K.; Hertenstein, U.; Hünig, S. Synthesis 1973, 777.
- 10. Krepski, L. R.; Jensen, K. H.; Heilmann, S. M.; Rasmussen, J. K. Synthesis, 301.

11. Mitsunobu, O.; Kato, K.; Kimura, J. J. Am. Chem. Soc. **1969**, *91*, 6510.

 (a) Sekut, L.; Yarnall, D.; Stimpson, S. A.; Noel, L. S.; Bateman-Fite, R.; Clark, R. L.; Brackeen, M. F.; Menius, J. A.; Connolly, K. M., Jr. *Clin. Exp. Immunol.* **1995**, *100*, 126.
 (b) Furusako, S.; Takahashi, T.; Mori, S.; Takahashi, Y.; Tsuda, T.; Namba, M.; Mochizuki, H. *Acta. Med. Okayama* **2001**, *55*, 105. (c) Solorzano, C. C.; Ksontini, R.; Pruitt, J. H.; Hess, P. J.; Edwards, P. D.; Kaibara, A.; Abouhamze, A.; Auffenberg, T.; Galardy, R. E.; Vauthey, J. N.; Copeland, E. M., 3rd.; Edwards, C. K., 3rd.; Lauwers, G. Y.; Clare-Salzler, M.; MacKay, S. L.; Moldawer, L. L.; Lazarus, D. D. J. *Immunol.* **1997**, *158*, 414. (d) Tiegs, G.; Barsig, J.; Matiba, B.; Uhlig, S.; Wendel, A. J. Clin. Invest. **1994**, *93*, 2616. (e) Barton, B. E.; Jackson, J. V. *Infect. Immun.* **1993**, *61*, 1496.
 See Experimental.