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ABSTRACT

TBSO (. \N’COZCHS

SPh
15 SO,Ph

11 steps (15.2%) to (+)-3
14 steps (10.9%) to (-)-3

sibirine (3)

The (methoxycarbonylamino)methyl radical can be readily generated from its PhSe precursor and undergoes preferential 6-exo-spiro cyclization
when PhSO; is attached at the distal alkene carbon. This property was applied to the synthesis of the racemic and optically active spirocyclic
alkaloid sibirine.

Regio- and stereocontrolled generation of quaternary carbonuse of radicals next to a heteroatom sucl2 ake synthesis
centers continues to remain a formidable challenge in organicof the spirocyclic alkaloid-{)-sibirine @3)° was investigated.
synthesis. Among a number of such methods currently

available, those based on radical cyclization are often quite

effective due to the exceptional predilection of most of the z z
reactive radical species to form bonds at the proximately N Y NG
disposed unsaturated centdn connection with our con- {\ - {\r‘ *
tinued interest in developing synthetic methods through the 1 2
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stabilizing interaction between the incipient radical and the || || A

N lone pair® this stability seems to adversely influence the

Scheme 1
reactivity of the ensuing radical reactibflt appears that |
for a successful outcome to a radical cyclization reaction, Ho _N RO PhSe RO
the rates of these two processes need to be fine-tuned through _~ ) 2 AUBr
highly system-dependent choices of groups Y and Z. A ad == O[
literature survey seemed to point to the notion that in general, X 07 "OCH, 5 X

a radical having an electron-withdrawing group attached to
the nitrogen atom is effective in botfi.In this context, a
carbamatéwas chosen as Z1) in our study since it can
readily be converted to either Glér H. The results of our
preliminary study indicated that while the generation of
radical2 from the sulfide precursod| Y = SPh; Z= C(=
0)OMe] is sluggish, that of the corresponding selef[de
Y = SePh; Z= C(=0)OMe] is in a fine balance with the
subsequent radical cyclization reaction in a number of
systems we examinéd.

On the basis of these results, the study toward the synthesis
of (—)-sibirine!® was initiated predicated upon the retrosyn-
thesis shown in Scheme 1. Of particular significance in this

study was the regio- and stereochemical outcome of the
cyclization of the radical intermediaéto be generated from

4. The transition state for the 6-exo mode of cyclization with
the radical center approaching from the opposite face of the
axially disposed OR group appeared clearly less strained over
that of the 7-endo. However, the effect of a group X on the
extent of selectivity between the two modes of cyclization
was of particular interest.

7
N
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The synthesis of the radical precursb(R = TBDMS)
with X H is summarized in Scheme 2. Thus, the
introduction of the carbamate-protected side chain arhine
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Angew. Chem., Int. EAL998 37, 104-105. Reviews: (v) Imanishi, T.;
lwata, C. In Studies in Natural Products Chemistry: Stereoselecti

SynthesisAtta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1994; Vol 14, Part

I, pp 517-550. (w) Wanner, M. J.; Koomen, G. J. Btudies in Natural
Products Chemistry: Stereoselei Synthesis Atta-ur-Rahman, Ed.;
Elsevier: Amsterdam, 1994; Vol 14, Part |, pp 7368. (x) Husson, H.-
P.; Royer, JChem. Soc. Re 1999 28, 383-394.
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a2 Reagents and conditions: (a) 9-BBN (1.5 mol equiv)/THF, rt,
3 h; (b) Pd(PP¥)4 (3 mol %), NaOH/THF/HO, reflux, 1.5 h; (c)
NaH (1.2 mol equiv)/THF, rt, 15 min; then IGBn({-Bu); (1.06
mol equiv), rt, 12 h (85%); (di-BuLi (1.2 mol equiv)/THF,—78
°C; (PhSe) (1.02 mol equiv)/THF,—78 °C, 0.5 h (49%); (e)rt-
Bu);SnH (1.5 mol equiv), AIBN (cat.)/toluene, reflux, 13 h.
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was smoothly achieved by the Suzuki coupling reaction of
the tert-butyldimethylsilyl (TBS)-protected bromid@ with Scheme 3
the borané 0" generated from allylamine methyl carbamate.

Carbamatel1 was first converted to its tm¢butyl)stannyl- TBSD TBSD _CO.CH
methyl derivative and transmetalation of the stannane with abe O\/\/\ 2
n-BuLi followed by treatment with diphenyl diselenide to 75% SPh 83/"

produce phenyl selenidE in an unoptimized overall yield

of 42%. Subjection of phenyl selenid® to radical reaction Qa%je

conditions resulted in the effective generation of the expected TBSO SePh TBSO

radical, which underwent cyclization cleanly with only a J ~ _CO.CH
N f’g N 2 3
small amount of the reduction product (i.e., H in place of O\/\/\bo CH, ~ 837 O(\AH
PhSe in12) detected. However, the cyclized products SO,Ph ~27" 3 ° SO,Ph
consisted of an inseparable mixture of spirobicyt3qone
stereoisomer) and bicyclic sytetd (as a 2:1 sterecisomeric
mixture)? indicating only a meager difference in transition
state energies between the 6-exo- and 7-endo modes of
radical cyclization processes.

In an effort to increase the formation of the spirocyclization
product (i.e., pathway a) from radicd| it was contemplated
that the use of a sterically demanding group for X might
impede the competing 7-endo mode of cyclization. In this 20 21 22
context, a phenylsufonyl group was selected because, in 78%1 ik
addition to its steric size, the radicalto be generated as a
result of the 6-endo cyclization could be stabilized by this HO !
group?® The synthesis of the sulfone-containing radical 2 ’h
precursorl9 that commences with 3-phenylthio-2-cyclo- "
hexen-1-one 5 is outlined in Scheme 3. While the 3
carbamatg—protegted S|de.cha|n could readlly_ be attaqhed by 2 Reagents and conditions: (a) NBS (1.5 mol equiv)iCe
the Suzuki coupling reaction as above, the introduction of 5, , (81%); (b) NaBH (1.1 mol equiv), CeGl (1.1 mol equiv)/
the PhSeCHlunit by the two-step sequence [(i) NaH; IgH  methanol, rt, 0.5 h (97%); (c) TBS-CI, imidazole, DMF, rt (95%);
Sn-Bu)s (43%). (ii) n-BuLi/THF, —78 °C; (PhSe) (5%)] (d) 10, Pd(PPB)4 (3 mol %), NaOH/THF, HO, reflux, 3 h; (e)
proved to be ineffective. The problem was circumvented by MCPAB (2.4 equiv)/CHCly, 1, 2.5 h; (f)t-BuOK (2.0 mol equiv),

paraformaldehyde (excessBuOH, rt, 1 h (75%); (g) PhSeH
first oxidizing the PhS to the PhS@roup (se€l? to 18). (excess)p-TsOH (cat.), 12 h (71%): (h) 6-Bu)SnH (2.0 mol

Interestingly, the presence of the sulfone group on the g quiv), AIBN (cat.), toluene, reflux, 7 h: (i) Na (20 mol equiv)/
cyclohexenyl ring appears to exert a considerable mﬂuenceethanm (20 mol equiv), from-20 °C to rt, 2 h at rt(92%); (j)
in making the NH readily accessible for deprotonation. Thus, LiAIH 4 (10 mol equiv)/THF, rt, 30 min; (k) CECN/45% aq HF
sulfone18 was converted to the selenide radical precursor (20:1), rt, 1.5 h (85% for steps j and k).
19via its N-hydroxylmethy! derivative in 53% overall yield.
Treatment of phenyl selenid&9 with tri(n-butyl)tin
hydride in the presence of a catalytic amount of AIBN in . .
refluxing toluene provided spirocycle0 in 60% vyield the OTES Iand Ph?grcl)upzmt'hﬁz m'ajotr grodu?rKr)]adOﬁ)t, i
together with a 1:1 inseparable mixture 2, the sufone ][espe;:_ ve y1; ?t?ua 0.”? anlf axiat orien 6,: ons. etsti etctlr\1/e
epimer of 20, and the reduction produ@?2 (15%) The rormation ot the axial sulione seems 10 suggest that the
initially cyclized radical undergoes ring inversion to adopt
(11) (a) Brosius, A. D.; Overman, L. B. Org. Chem1997 62, 440 a conformation s_,uch a&4 and that the observed outcome
441. (b) Kamatani, A.; Overman, L. B. Org. Chem 1999 64, 8743 may be a reflection of the preferential approach by tie (

8744. Reviews: (c) Miyaura, N.; Suzuki, £hem. Re. 1995 95, 2457 Bu);SnH from the equatorial face (sd).
2483. (d) Suzuki, A. InMetal-Catalyzed Cross-Coupling Reactipns

Diederich, F., Stang, P. J., Eds.; Wiley-VCH Verlag: Weinheim, Germany,

inspection of the HNMR spectrum in CDGlrevealed that

(12) Due to the presence of the rotational isomers of the carbamate group .
in each of the three products, analysis of #he NMR spectrum of the PhSO OTBS
mixture of 13 and 14 was severely hampered. Therefore, the mixture was ?'\/\& N—CO,CH,
reduced with LiAlH, and the resulting, still inseparable mixture of the PhSO¥ v
N-methyl compounds was analyzed. TBSO (n-BuSnH

(13) For the use of the phenylsulfonyl group as a radical acceptor, see,

g.: (a) Clive, D. L. J.; Bergstra, R. J. Org. Chem199Q 55, 1786~ 23 24
1792. (b) Simpkins, N. SChem. Soc. Re 199Q 19, 335-354.

14) Danishefsky, S.; Harayama, T.; Singh, R. X.Am. Chem. Soc . . . . .
19§9 )101, 7008_78/12. Y 9 The combined yield of the desired spirocycle alkaloids
o (15) Fgr s?me unlfnomn Ir%aSQn, the t\/ﬂvg-step Sdequelr;ce toll%‘?':h 20 and 21 approached close to 70%. However, due to the
te fﬁc}gg: utyhstannylmethyl derivative o8 proved to be much less  gigiey ity of removing the contaminar22 from the mixture

(16) In addition, the dealkylated produt8 was also isolated<(10%). of 21 and 22, the single stereoisom@0 was subjected to
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the subsequent three-step sequence (78% overall yield) toof this alcohol with §)-O-acetylmandelic acid. Single
complete the synthesis of racemic sibirirg. ( recrystallization of the resulting este®y from benzene

The asymmetric synthesis of {-sibirine ) was achieved  provided ester27 with a diastereomeric ratio over 99:1.
through the use of the chiral allylic alcoh®¥ (Scheme 4). Removal of the mandelate portion frog¥ proved to be
somewhat problematic. While the use of DIBAL, LiAIH
or nucleophilic alkaline conditions resulted in the formation
of a complex mixture of products, that of LiBth THF led

Scheme 4 to the clean removal of the mandelate unit, providing allylic
26 (> 98% ee) alcohol 26 with >98% ee. The stereochemical integrity of
Br [alp™-110.4 the resulting allylic alcohol thus obtained was ascertained
sph 70%(2\1,::21 (;;%"f)rom 25 by conversion to_ its9-O-acetylmandelate ar_ld the_4OO MHz
25 IH NMR analysis of the ester. The enantiomerically pure
Ph . OUB';'a . alcohol was then converted to its TBS etthérand the entire
C’i‘/kPh (0.3 mol equiv) 97% (T',_"_f"“r’t, ?%“,'1") sequence developed for the racemic series was repeated, thus
) ' achieving the synthesis of-{-sibirine; [0]*; —29.7 € 0.63,
N-g ﬁfg';';":e i) 27 (dr>99:1) CHCL) [lit.3 [a]p —22.5 € 0.81, CHCH)]. While the
THE 0?(';315 min a recryst. synthesis of racemic sibirine8 was achieved in 11 steps
T from benzene from 2-phenylthio-2-cyclohexen-1-on#5) in 15.2% overall
94% QAc o JOAc yield, that of ﬁ)—silt()jirine ) required 14 steps fror5 with
H A~ \ 10.9% overall yield.
° Br (1tho| 28,25) h_c}_:o Br In summary, we have shqwn that a (methoxycarbonylami-
O[ DCC (1.4 mol equiv) EI no)methyl radical can readily bg generated from the phen-
SPh DMAP (cat.)/CH,Cl, SPh ylselanyl precursor and the radical undergoes highly 6-exo
26 (88%ee) 1t 4h 27 stereo- and regioselective spirocyclization to a cyclohexene
(o2 -96.7 dr=94:6 unit bearing the sterically demanding and radical stabilizing

phenylsulfonyl group at the distal alkene carbon. This
observation has been applied to the effective synthesis of
racemic and |)-sibirine.

(c0.94, CHCl)
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