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ABSTRACT

A new total synthesis of the antitumor alkaloids, pancratistatin (1), has been accomplished from readily available staring materials. The
Claisen rearrangement of dihydropyranethylene 5 was employed to construct the A and C rings. Stereo- and regiocontrolled functional group
interchange, such as iodolactonization, dihydroxylations, and a cyclic sulfate elimination reaction, allows for the production of the target

natural product.

Pancratistatink, Figure 1) is a highly oxygenated phenan-
thridone alkaloid, which was isolated from the roots of

OH O

(+)-pancratistatin (1) (+)-narciclasine

@)

Figure 1. Structures of pancratistatii)(and narciclasine?.

Pancratium littoraleby Pettit and co-workers in 1984This
alkaloid exhibits a high level of in vitro and in vivo cancer
cell growth inhibitory activity and antiviral activity.The
significant synthetic interest in pancratistatin stems from its
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promising pharmacological profile, low natural abundance,
and unique structural features, as it contains six contiguous
stereogenic centers in the C ring of a phenanthridone
skeleton. The first total synthesis of the racemate was
reported by Danishefsky in 1989and the first enantio-
selective synthesis of the natural enantiomer was recorded
by Hudlicky in 1995 In the same year, Trost presented an
enantioselective synthesis with a high overall yielBince
then, Haseltiné, Magnus’ and Rigby have also presented
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a new synthesis of H)-pancratistatin. Recently, Pettit
achieved the synthesis oft-J-1 from the more abundant
alkaloid (+)-narciclasine 2, Figure 1)? In this Letter, we
wish to report our successful approach to the synthesis of MeO  4q OMe 11 R=COMe s
(&)-pancratistatin. 12 Rfcoé':) B
The strategy of our synthesis is presented in Scheme 1. 13 R=NHCOMe
The B ring of the phenanthridone skeleton would be  a(a) p(Ome), toluene, sealed tube, 18€, 2 h, 97%; (b)8,
constructed at a relatively late stage of the synthesis by LHMDS, THF, 0°C to rt, 22 h, 60% (92% based on the recovered
employing the BischlerNapieralski reactio!® The reg- starting material); (c) toluene, sealed tube, 26020 h, 78%; (d)
uisite cyclization precurso8, which contains the six ste- ~ NaClQ NatbPOy2H;0, 2-methyl-2-butene, THRBUOH, HO,
reocenters in the C ring, could be stereoselectively synthe—g’BlL? Bégg e/;’]’e('er)eﬂtzéé?‘%%z;s (R%Ha%%(;ﬁﬁf;%gj r2e0f|3>'<,(lgo h
sized from thecis-disubstituted cyclohexen The presence  g3u: (g) 1N LiOH, THF, rt, 18 h, 99%; (h) (i) DPPA, £, toluene,
of ay,0-unsaturated carbonyl unit in compouiduggested  reflux, 15 h, (i) NaOMe, MeOH, reflux, 0.5 h, 82%.
the use of a Claisen rearrangement of 3,4-dihydfe-2
pyranylethyleneb.'t
The synthesis began by preparing the known broréide - -
from the commercially available methyl gallate via a hand, our study focused on the selective introduction of the

conventional four-step sequence. Treatmer@t wfth excess ~ Stereocenters in the C ring. First, the aldehyde group of
trimethyl phosphite provided phosphonatén 97% vyield was o?<|d|zed Wlth NaCl@to thg cc_;rrespondmg carboxylic
(Scheme 233 Employing the Honer Wadsworth-Emmons aC|d9 in 90% yield. lodolactonization &3 undgr tvyo-phase
reaction betweer? and commercially available acrolein cqndltlons.followed' by treatment of the resulting |qdolactone
dimer 8 (1.1 equiv) in the presence of LHMDS in THF vv_|th DBU in refluxmg benzene led to the formation of the
afforded the desiredE)-olefin 5 with very high stereo- blcycl_|c lactonel0 with an overall yield of 7898°> Metha-
selectivity in 60% yield (92% yield based on the recovered NOlysis of the lactond0 with NaOMe at room temperature
starting material}* Only trace amounts <1%) of the for 18_h afforded an mseparabl_e equnlbrlqm mixture (ca.
correspondingZ)-olefin were detected in the crude NMR ~ 1:1 ratio) of hydroxy estet1and its C-4a epimer (pancrat-

spectra. The Claisen rearrangement of dihydropyranethylendStatin numbering). However, when the methanolysis was
5 (250 °C in a sealed tube) provided this-disubstituted carried out in refluxing methanol for 20 h, epimerization of
cyclohexenet as a single isomer in 78% yield. As discussed the methoxycarbonyl group was accomplished very cleanly
by Bichil! this rearrangement must proceed through a to give 11 as the only identifiable product in 93% vyield.
boatlike transition state. Saponification of the methyl estetl with LiOH was
followed by a modified Curtius rearrangem&nbof the
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RoL3) Jawad, /?Agéa%qﬁféégdblzgrigég"_}('; Christian H.; Hugues, M-, hecessary to protect the free hydroxyl group 18 to
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With the appropriately functionalized cyclohexe#dn

and acrolein dime8 in the presence of KOH and 18-crown-6 ether in£H (16) (a) Shin, K. J.; Moon, H. R.; George, C.; Marquez, VJ.Erg.
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The regioselective elimination of the C-3 hydroxyl group to
Scheme 3 generate the requisitA®# unsaturation was achieved by
employing the cyclic sulfate elimination reacti&lreatment
of diol 16 with thionyl chloride followed by oxidation with
RuCk-3H,0/Oxoné? provided the corresponding cyclic
sulfate 17 in 83% yield. The reaction of cyclic sulfate7
with DBU in refluxing toluené™ led, after acidic workup,
to the formation of the desired allylic alcoht8 (67% yield).
Routine cis-dihydroxylation of18 with OsQ, afforded the
o single isomerl9 in 88% yield, thereby completing the
0-520 functionalization of the C ring of pancratistatin. The structural
BzOL A_ 0 assignment made for this compound was strongly supported
* by its relevantH NMR coupling patterns and by comparing
the IH NMR spectral data of the derived tetraacetate with

< NHCO,Me those reported by Magnus.
OMe 16 The remaining steps to pancratistatin required protection
of the hydroxyl groups, formation of the final lactam B ring,
OH and protecting group removal and were accomplished by
BzOs . 4OH employing reaction conditions analogous to those of Magnus
et al’ Peracetylation ofl9 (77%) was followed by a
<O Y~ TOH Banwell’'s modified BischlerNapieralski cyclizatiorf;°
NHCO,Me which provided predominantly the desired prod2@talong

with a minor amount of the regioisom2t in 78% combined
yield and 7:1 regioselectivity. Treatment of an inseparable
mixture of 20 and 21 with BBr; to remove the C-7 methyl
group protection yielde@2 (65%) and unreacte®l, which
were now separablé.Finally, simple removal of protecting
groups with NaOMe/MeOH affordedH)-1 in 83% yield,
of which H and 3C NMR spectral data were in good
agreement with those report&#.1°

In conclusion, we have accomplished the stereoselective
synthesis of £)-pancratistatin from readily available starting
materials. We utilized the Claisen rearrangement of dihy-
dropyranethylenes to construct the A and C rings, and
subsequent iodolactonization, dihydroxylations, and cyclic
sulfate elimination reactions to install six contiguous ste-
reogenic centers in the C ring.

_h, pancratistatin (1)
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selectively install the C-2 hydroxyl group on theface. This
was accomplished by reacting compout@iwith benzoyl
) . ; o v L
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