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Abstract A straightforward and concise method for the highly stereo-
selective synthesis of a,B-unsaturated hydrazones by the Y(OTf);-cata-
lyzed cascade propargylic substitution/aza-Meyer-Schuster rearrange-
ment reaction of tertiary propargylic alcohols and p-toluenesulfonyl
hydrazide under an air atmosphere is developed. A series of a,B-unsatu-
rated hydrazones have been synthesized from simple and readily avail-
able starting materials in good yields. Furthermore, the obtained a,B-
unsaturated hydrazones are converted into pyrazoles in the presence of
LiOt-Bu.

Keywords propargylic alcohols, aza-Meyer-Schuster rearrangement,
Y(OTf);, o, B-unsaturated hydrazones, pyrazoles

Currently, considerable interest has been focused on the
transition-metal-catalyzed cascade reactions of propargylic
alcohols, since these novel reactions can directly construct
diverse complicated organic molecules from readily avail-
able starting materials under very mild conditions.! Among
these, the Lewis acid catalyzed carbon-carbon and carbon-
heteroatom bond formations of propargylic alcohols with
various nucleophiles have been extensively investigated
over the last few decades.? However, compared to the wide
applications of amine nucleophiles in the C-N bond forma-
tion reactions of propargylic alcohols, particularly tertiary
propargylic alcohols, the use of hydrazines as nucleophiles
is barely documented.? In 2012, Yoshimatsu and co-workers
reported the first convenient method for the preparation of
propargyl hydrazides from tertiary propargylic alcohols
through scandium-catalyzed hydrazination in MeNO,-H,0
(Scheme 1, eq 1).# Almost at the same time, Zhan and co-
workers reported a novel FeCl;-catalyzed domino regiose-
lective propargylic substitution/aza-Meyer-Schuster rear-
rangement reaction for the synthesis of acrylonitriles from

trimethylsilyl-substituted tertiary propargylic alcohols and
p-toluenesulfonyl hydrazide (Scheme 1, eq 2).> More re-
cently, the same group has also developed a one-pot syn-
thesis of pyrazoles from tertiary propargylic alcohols and p-
toluenesulfonyl hydrazide through a two-step cascade se-
quence (Scheme 1, eq 3).6 During our recent studies on
propargylic chemistry,” we have found that tertiary propar-
gylic alcohols with p-toluenesulfonyl hydrazide can be effi-
ciently converted into «,B-unsaturated hydrazones using
Y(OTf), [yttrium(IIl) tifluoromethanesulfonate] as the cata-
lyst through a cascade propargylic substitution/aza-Meyer-
Schuster rearrangement reaction (Scheme 1, eq 4). More-
over, the obtained «,B-unsaturated hydrazones can be fur-
ther transformed into pyrazoles in the presence of LiOt-Bu.
Herein we report the results of this study.
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Scheme 1 The reactions of tertiary propargylic alcohols with p-tolu-
enesulfonyl hydrazide
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At the outset of this investigation, a series of tertiary
propargylic alcohols 1a-u were prepared by KOt-Bu-pro-
moted alkynylation of arylacetylenes with ketones under
solvent-free conditions recently developed by our group.”
Next, we employed the propargylic alcohol 1a and p-tolu-
enesulfonyl hydrazide (2) as the substrates to test this reac-
tion. Treatment of compound 1a with 2 in the presence of
10 mol% of Ce(OTf); in MeNO, at 60 °C for 7.5 hours result-
ed in the formation of «,B-unsaturated hydrazone 3a in 34%
isolated yield, as the only stereoisomer (Table 1, entry 1).
Encouraged by this result, we proceeded to optimize the re-
action by first screening the rare-earth-metal catalyst (Ta-
ble 1, entries 1-5). We were delighted to find that Y(OTf);
could promote the reaction (Table 1, entry 2). Other rare
earth metal salts, such as Yb(OTf);, La(OTf);, and Sc(OTf),,
also worked for this reaction, albeit with lower yields (Table
1, entries 3-5). For the catalyst of Yb(OTf);, much more by-
products were generated which made the product purifica-
tion more difficult. So we used Y(OTf); for the further opti-
mizations. Next, a series of common organic solvents were
examined (Table 1, entries 6-10); MeCN was found to be
the most suitable solvent for this transformation (Table 1,
entry 10), whereas a low yield of 3a was obtained when di-
oxane or DCE was used as the solvent (Table 1, entries 6 and
7). However, the strong polar solvents, such as DMF and
DMSO, were found not effective in this reaction (Table 1,
entries 8 and 9). Furthermore, the reaction temperature
and catalyst loading were examined, and it was found that a
20 mol% of catalyst with 80 °C of reaction temperature led
to the highest yield of 3a in the shortest reaction time (Ta-
ble 1, entry 13). Finally, it is noted that the reaction pro-
ceeded with high stereoselectivity. The structure of o,B-un-
saturated hydrazone 3a was confirmed by X-ray crystallo-
graphic analysis.?

With the optimized reaction conditions in hand, the
scope and generality of this transformation was investigat-
ed by using a variety of tertiary propargylic alcohols. As il-
lustrated in Schene 2, the reaction proceeds smoothly over
a wide range of substrates to afford the corresponding a,f3-
unsaturated hydrazones in moderate to excellent yields.?
Among the Ar groups of tertiary propargylic alcohols 1,
substituents possessing an electron-rich aromatic ring gave
the desired product 3 in higher yields than those with an
electron-poor ring (Scheme 2, 3a-h). However, when an ali-
phatic alkyne derived (1-hexyne) propargylic alcohol was
used, no desired product was detected. Next, substituent
effects at the propargylic position were investigated
(Scheme 2, 3i-t). In the examples of asymmetric propargyl-
ic alcohols (R! = Ar, R? = Alk), the a,B-unsaturated hydra-
zones were obtained in good yields (Scheme 2, 3i-0). Be-
sides, we were pleased to discover that an aliphatic ketone
derived propargylic alcohol 1p is also compatible with this
transformation and with satisfactory yield (Scheme 2, 3p).

Table 1 Optimization of Reaction Conditions®

Id catalyst NNHTs
Ph%\ + TNHNH  ——= " PhJ\/U\Ph
Ph
1a 2 3a
Entry  Cat. Solvent Temp Time yield
(mol%) (°0) (h) (%)
1 Ce(OTf); (10) MeNO, 60 7.5 34
2 Y(OTf), (10) MeNO, 60 7.5 51
3 Yb(OTf); (10) MeNO, 60 6 48
4 La(OTf); (10) MeNO, 60 7.5 38
5 Sc(OTf); (10) MeNO, 60 7.5 27
6 Y(OTf); (10) dioxane 60 10 27
7 Y(OT), (10) DCE 60 7.5 41
8 Y(OTf); (10) DMF 60 7.5 trace
9 Y(OTf); (10) DMSO 60 7.5 trace
10 Y(OTf), (10) MeCN 60 7.5 60
1 Y(OT), (10) MeCN 80 6 65
12¢ Y(OTf); (10) MeCN 100 6 62
13 Y(OTf); (20) MeCN 80 2.5 71

2 All the reactions were carried out with 1a (0.3 mmol) and 2 (0.6 mmol) in
2.0 mL of solvent.

bYield of isolated product after chromatography.

¢ The reaction was carried out in a sealed tube.

Interestingly, it was found that the symmetric tertiary
propargylic alcohols (R! = R?), derived from an aliphatic ke-
tone or an aromatic ketone, were also effective and gave ex-
cellent product yields (Scheme 2, 3q-t). Moreover, it is
noteworthy that the steric effect of ortho substituent was
obviously observed in the formation of 3f and 3i.

The corresponding o,B-unsaturated hydrazones are at-
tractive and can be further converted into organic synthe-
sis.!® First, we were delighted to find that a novel trisubsti-
tuted 3H-pyrazole 4a was obtained in moderate yield when
treatment of a,B-unsaturated hydrazone 3a with LiOt-Bu in
toluene at 80 °C for 1.5 hours. Considering the importance
of pyrazoles in organic chemistry,!" we then proceeded to
investigate this pyrazole formation reaction using various
o,B-unsaturated hydrazones which were synthesized above
(Scheme 3).'? It was noted that a wide range of «,B-unsatu-
rated hydrazone substrates can be employed in this trans-
formation to afford the corresponding 3H-pyrazole in mod-
erate to good yields (Scheme 3, 4a-f).

More interestingly, when «,B-unsaturated hydrazones
3r and 3s were employed in this pyrazole formation reac-
tion, we found that the novel 1H-pyrazoles 5a and 5b rather
than 3H-pyrazoles were obtained in 73% and 56% isolated
yields, respectively (Scheme 4). We attributed the result of
1H-pyrazole formation to a [1,5]-sigmatropic shift as well
as aromatization sequence (Scheme 4). These results are
consistent with Zhan’s report.®
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Scheme 2 Y(OTf);-catalyzed reaction of various tertiary propargylic alcohols with p-toluenesulfonyl hydrazide. All the reactions were carried out with
propargylic alcohols 1a-t (0.3 mmol), p-toluenesulfonyl hydrazide (2, 0.6 mmol), Y(OTf); (0.06 mmol) in 2.0 mL of MeCN. Isolated yields are reported.

To further validate whether this reaction can be practi-
cally useful, two gram-scale experiments have been carried
out for propargylic alcohols 1a and 1r under standard reac-
tion conditions. The reaction proceeded smoothly, provid-
ing the corresponding o,B-unsaturated hydrazone products
3aand 3r in 56% and 81% yields, respectively.
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Scheme 3 Synthesis of 3H-pyrazoles from the corresponding a,B-un-
saturated hydrazones. All the reactions were carried out with o,B-unsat-
urated hydrazones 3 (0.3 mmol), LiOt-Bu (0.45 mmol) in 2.0 mL of
toluene at 80 °C. Isolated yields are reported.

On the basis of the above results and related literature,*
6 two plausible reaction pathways to account for the forma-
tion of o,B-unsaturated hydrazones and pyrazoles from ter-
tiary propargylic alcohols with p-toluenesulfonyl hydrazide
is outlined in Scheme 5. In path a, the Y(OTf);-catalyzed di-
rect substitution of a propargylic alcohol with a p-toluene-
sulfonyl hydrazide occurred to afford propargyl hydrazide
intermediate A. Next, the intermediate A undergoes a [1,3]-
shift of the NHNHTSs group through the aza-Meyer-Schuster
rearrangement, which leads to allene intermediate B. Final-

H
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X NS toluene, 80 °C

=
3r 5a, 73%
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—_—
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Scheme 4 Synthesis of 1H-pyrazoles from a,B-unsaturated hydrazones
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Scheme 5 Proposed mechanism of the reaction

ly, the intermediate B then isomerizes to give the corre-
sponding o,B-unsaturated hydrazone 3. The product 3 can
be easily converted into the diazo compound C in the pres-
ence of a base.'%2d Next, the 1,5-dipole isomer of the diazo
compound C undergoes an intramolecular 6m-electrocyclic
ring closure; which affords the corresponding 3H-pyrazole
product 4. On the other hand, when R' and R? are aryl
groups, the [1,5]-sigmatropic shift occurs and produces the
4H-pyrazoles intermediate E, which subsequently experi-
ence a rapid isomerization to afford the trisubstituted 1H-
pyrazoles 5. However, since the Meyer-Schuster rearrange-
ment of the propargylic alcohol can be catalyzed by Lewis
acid,’® a prior Meyer-Schuster rearrangement followed by
nucleophilic attack of the p-toluenesulfonyl hydrazide can-
not be strictly ruled out. In such case, an o,B-unsaturated
ketone intermediate is generated, which is attacked by the
p-toluenesulfonyl hydrazide and accompanied with the
elimination of water to afford the corresponding o,B-unsat-
urated hydrazone 3 (path b).

Finally, a one-pot transformation of three-step reactions
from ketones with phenylacetylene to pyrazoles directly
was explored. Thus, ketones 6 and 7 were reacted with phe-
nylacetylene in the presence of KOt-Bu under solvent-free
conditions at room temperature. After completion of the
alkynylation, p-toluenesulfonyl hydrazide, Y(OTf);, and
MeCN were added, respectively, to the reaction mixture.
The resulting mixture was heated at 80 °C for several hours.
After completion of this hydrazone formation reaction, KOt-Bu
was added to the reaction mixture again and continued to

Y3+

NHNHTSs ‘ TSHN_ Y

"
, /_H
y3+ TRs1H N\'\;/ H . \,N\
— 3 SN
Ro Z%R >HA—H3
R R?

aza-Meyer—Schuster
rearrangement

- R! NHNHTs
tautomerization \
/
R? R3
c
H
~N

aromatization

heat at 80 °C for 1.5 hours. After workup, the pyrazoles 4a
and 5a were isolated in 40% and 65% overall yields, respec-
tively (Scheme 6).

) tBUOK, neat, r.t.

TsNHNHz Y (OTf)3 (20 mol%) N=N
MeCN, 80 °C, 5 h Ph

Z Ph
3) t-BuOK

MeCN, 80°C,25h 4a, 40%

1) +BuOK, neat, r.t.
o 2) TsNHNH_, Y(OTf)3 (20 mol%) H
)I\ _ - MeCN, 80 °C,2.5h Nl’ Ph
+ =
Ph Ph W 3) +BuOK Ph/‘\/gi
MeCN, 80 °C, 1.5 h

Ph

7 5a, 65%

Scheme 6 One-pot reactions from ketones

In summary, we have developed a simple and efficient
Y(OTf);-catalyzed cascade propargylic substitution/aza-
Meyer-Schuster rearrangement reaction of tertiary propar-
gylic alcohols and p-toluenesulfonyl hydrazide for the syn-
thesis of ,B-unsaturated hydrazone derivatives. Moreover,
the obtained o,B-unsaturated hydrazones have been con-
verted into pyrazoles in the presence of LiOt-Bu.
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99.7, 122.1, 127.3, 128.2, 129.0, 129.5, 1304, 131.9, 1354,
135.8, 155.3. Anal. Calcd for C;¢H;3BrN,: C, 61.36; H, 4.18; N,
8.94. Found: C, 61.29; H, 4.31; N, 8.95.

(13) For reviews on Meyer-Schuster rearrangement, see:
(a) Cadierno, V.; Crochet, P.; Garcia-Garrido, S. E.; Gimeno, J.
Dalton Trans. 2010, 39, 4015. (b) Engle, D. A.; Dudley, G. B. Org.
Biomol. Chem. 2009, 7, 4149. (c) Swaminathan, S.; Narayanan, K.
V. Chem. Rev. 1971, 71, 429.
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