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Abstract A straightforward and concise method for the highly stereo-
selective synthesis of α,β-unsaturated hydrazones by the Y(OTf)3-cata-
lyzed cascade propargylic substitution/aza-Meyer–Schuster rearrange-
ment reaction of tertiary propargylic alcohols and p-toluenesulfonyl
hydrazide under an air atmosphere is developed. A series of α,β-unsatu-
rated hydrazones have been synthesized from simple and readily avail-
able starting materials in good yields. Furthermore, the obtained α,β-
unsaturated hydrazones are converted into pyrazoles in the presence of
LiOt-Bu.

Keywords propargylic alcohols, aza-Meyer–Schuster rearrangement,
Y(OTf)3, α,β-unsaturated hydrazones, pyrazoles

Currently, considerable interest has been focused on the
transition-metal-catalyzed cascade reactions of propargylic
alcohols, since these novel reactions can directly construct
diverse complicated organic molecules from readily avail-
able starting materials under very mild conditions.1 Among
these, the Lewis acid catalyzed carbon–carbon and carbon–
heteroatom bond formations of propargylic alcohols with
various nucleophiles have been extensively investigated
over the last few decades.2 However, compared to the wide
applications of amine nucleophiles in the C–N bond forma-
tion reactions of propargylic alcohols, particularly tertiary
propargylic alcohols, the use of hydrazines as nucleophiles
is barely documented.3 In 2012, Yoshimatsu and co-workers
reported the first convenient method for the preparation of
propargyl hydrazides from tertiary propargylic alcohols
through scandium-catalyzed hydrazination in MeNO2–H2O
(Scheme 1, eq 1).4 Almost at the same time, Zhan and co-
workers reported a novel FeCl3-catalyzed domino regiose-
lective propargylic substitution/aza-Meyer–Schuster rear-
rangement reaction for the synthesis of acrylonitriles from

trimethylsilyl-substituted tertiary propargylic alcohols and
p-toluenesulfonyl hydrazide (Scheme 1, eq 2).5 More re-
cently, the same group has also developed a one-pot syn-
thesis of pyrazoles from tertiary propargylic alcohols and p-
toluenesulfonyl hydrazide through a two-step cascade se-
quence (Scheme 1, eq 3).6 During our recent studies on
propargylic chemistry,7 we have found that tertiary propar-
gylic alcohols with p-toluenesulfonyl hydrazide can be effi-
ciently converted into α,β-unsaturated hydrazones using
Y(OTf)3 [yttrium(III) tifluoromethanesulfonate] as the cata-
lyst through a cascade propargylic substitution/aza-Meyer–
Schuster rearrangement reaction (Scheme 1, eq 4). More-
over, the obtained α,β-unsaturated hydrazones can be fur-
ther transformed into pyrazoles in the presence of LiOt-Bu.
Herein we report the results of this study.

Scheme 1  The reactions of tertiary propargylic alcohols with p-tolu-
enesulfonyl hydrazide
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At the outset of this investigation, a series of tertiary
propargylic alcohols 1a–u were prepared by KOt-Bu-pro-
moted alkynylation of arylacetylenes with ketones under
solvent-free conditions recently developed by our group.7b

Next, we employed the propargylic alcohol 1a and p-tolu-
enesulfonyl hydrazide (2) as the substrates to test this reac-
tion. Treatment of compound 1a with 2 in the presence of
10 mol% of Ce(OTf)3 in MeNO2 at 60 °C for 7.5 hours result-
ed in the formation of α,β-unsaturated hydrazone 3a in 34%
isolated yield, as the only stereoisomer (Table 1, entry 1).
Encouraged by this result, we proceeded to optimize the re-
action by first screening the rare-earth-metal catalyst (Ta-
ble 1, entries 1–5). We were delighted to find that Y(OTf)3
could promote the reaction (Table 1, entry 2). Other rare
earth metal salts, such as Yb(OTf)3, La(OTf)3, and Sc(OTf)3,
also worked for this reaction, albeit with lower yields (Table
1, entries 3–5). For the catalyst of Yb(OTf)3, much more by-
products were generated which made the product purifica-
tion more difficult. So we used Y(OTf)3 for the further opti-
mizations. Next, a series of common organic solvents were
examined (Table 1, entries 6–10); MeCN was found to be
the most suitable solvent for this transformation (Table 1,
entry 10), whereas a low yield of 3a was obtained when di-
oxane or DCE was used as the solvent (Table 1, entries 6 and
7). However, the strong polar solvents, such as DMF and
DMSO, were found not effective in this reaction (Table 1,
entries 8 and 9). Furthermore, the reaction temperature
and catalyst loading were examined, and it was found that a
20 mol% of catalyst with 80 °C of reaction temperature led
to the highest yield of 3a in the shortest reaction time (Ta-
ble 1, entry 13). Finally, it is noted that the reaction pro-
ceeded with high stereoselectivity. The structure of α,β-un-
saturated hydrazone 3a was confirmed by X-ray crystallo-
graphic analysis.8

With the optimized reaction conditions in hand, the
scope and generality of this transformation was investigat-
ed by using a variety of tertiary propargylic alcohols. As il-
lustrated in Schene 2, the reaction proceeds smoothly over
a wide range of substrates to afford the corresponding α,β-
unsaturated hydrazones in moderate to excellent yields.9
Among the Ar groups of tertiary propargylic alcohols 1,
substituents possessing an electron-rich aromatic ring gave
the desired product 3 in higher yields than those with an
electron-poor ring (Scheme 2, 3a–h). However, when an ali-
phatic alkyne derived (1-hexyne) propargylic alcohol was
used, no desired product was detected. Next, substituent
effects at the propargylic position were investigated
(Scheme 2, 3i–t). In the examples of asymmetric propargyl-
ic alcohols (R1 = Ar, R2 = Alk), the α,β-unsaturated hydra-
zones were obtained in good yields (Scheme 2, 3i–o). Be-
sides, we were pleased to discover that an aliphatic ketone
derived propargylic alcohol 1p is also compatible with this
transformation and with satisfactory yield (Scheme 2, 3p).

Interestingly, it was found that the symmetric tertiary
propargylic alcohols (R1 = R2), derived from an aliphatic ke-
tone or an aromatic ketone, were also effective and gave ex-
cellent product yields (Scheme 2, 3q–t). Moreover, it is
noteworthy that the steric effect of ortho substituent was
obviously observed in the formation of 3f and 3i.

The corresponding α,β-unsaturated hydrazones are at-
tractive and can be further converted into organic synthe-
sis.10 First, we were delighted to find that a novel trisubsti-
tuted 3H-pyrazole 4a was obtained in moderate yield when
treatment of α,β-unsaturated hydrazone 3a with LiOt-Bu in
toluene at 80 °C for 1.5 hours. Considering the importance
of pyrazoles in organic chemistry,11 we then proceeded to
investigate this pyrazole formation reaction using various
α,β-unsaturated hydrazones which were synthesized above
(Scheme 3).12 It was noted that a wide range of α,β-unsatu-
rated hydrazone substrates can be employed in this trans-
formation to afford the corresponding 3H-pyrazole in mod-
erate to good yields (Scheme 3, 4a–f).

More interestingly, when α,β-unsaturated hydrazones
3r and 3s were employed in this pyrazole formation reac-
tion, we found that the novel 1H-pyrazoles 5a and 5b rather
than 3H-pyrazoles were obtained in 73% and 56% isolated
yields, respectively (Scheme 4). We attributed the result of
1H-pyrazole formation to a [1,5]-sigmatropic shift as well
as aromatization sequence (Scheme 4). These results are
consistent with Zhan’s report.6

Table 1  Optimization of Reaction Conditionsa

Entry Cat. 
(mol%)

Solvent Temp 
(°C)

Time 
(h)

yield 
(%)b

 1 Ce(OTf)3 (10) MeNO2  60  7.5 34

 2 Y(OTf)3 (10) MeNO2  60  7.5 51

 3 Yb(OTf)3 (10) MeNO2  60  6 48

 4 La(OTf)3 (10) MeNO2  60  7.5 38

 5 Sc(OTf)3 (10) MeNO2  60  7.5 27

 6 Y(OTf)3 (10) dioxane  60 10 27

 7 Y(OTf)3 (10) DCE  60  7.5 41

 8 Y(OTf)3 (10) DMF  60  7.5 trace

 9 Y(OTf)3 (10) DMSO  60  7.5 trace

10 Y(OTf)3 (10) MeCN  60  7.5 60

11 Y(OTf)3 (10) MeCN  80  6 65

12c Y(OTf)3 (10) MeCN 100  6 62

13 Y(OTf)3 (20) MeCN  80  2.5 71
a All the reactions were carried out with 1a (0.3 mmol) and 2 (0.6 mmol) in 
2.0 mL of solvent.
b Yield of isolated product after chromatography.
c The reaction was carried out in a sealed tube.
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To further validate whether this reaction can be practi-
cally useful, two gram-scale experiments have been carried
out for propargylic alcohols 1a and 1r under standard reac-
tion conditions. The reaction proceeded smoothly, provid-
ing the corresponding α,β-unsaturated hydrazone products
3a and 3r in 56% and 81% yields, respectively.

On the basis of the above results and related literature,4–

6 two plausible reaction pathways to account for the forma-
tion of α,β-unsaturated hydrazones and pyrazoles from ter-
tiary propargylic alcohols with p-toluenesulfonyl hydrazide
is outlined in Scheme 5. In path a, the Y(OTf)3-catalyzed di-
rect substitution of a propargylic alcohol with a p-toluene-
sulfonyl hydrazide occurred to afford propargyl hydrazide
intermediate A. Next, the intermediate A undergoes a [1,3]-
shift of the NHNHTs group through the aza-Meyer–Schuster
rearrangement, which leads to allene intermediate B. Final-

Scheme 2  Y(OTf)3-catalyzed reaction of various tertiary propargylic alcohols with p-toluenesulfonyl hydrazide. All the reactions were carried out with 
propargylic alcohols 1a–t (0.3 mmol), p-toluenesulfonyl hydrazide (2, 0.6 mmol), Y(OTf)3 (0.06 mmol) in 2.0 mL of MeCN. Isolated yields are reported. 
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Scheme 3  Synthesis of 3H-pyrazoles from the corresponding α,β-un-
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ly, the intermediate B then isomerizes to give the corre-
sponding α,β-unsaturated hydrazone 3. The product 3 can
be easily converted into the diazo compound C in the pres-
ence of a base.10a,d Next, the 1,5-dipole isomer of the diazo
compound C undergoes an intramolecular 6π-electrocyclic
ring closure; which affords the corresponding 3H-pyrazole
product 4. On the other hand, when R1 and R2 are aryl
groups, the [1,5]-sigmatropic shift occurs and produces the
4H-pyrazoles intermediate E, which subsequently experi-
ence a rapid isomerization to afford the trisubstituted 1H-
pyrazoles 5. However, since the Meyer–Schuster rearrange-
ment of the propargylic alcohol can be catalyzed by Lewis
acid,13 a prior Meyer–Schuster rearrangement followed by
nucleophilic attack of the p-toluenesulfonyl hydrazide can-
not be strictly ruled out. In such case, an α,β-unsaturated
ketone intermediate is generated, which is attacked by the
p-toluenesulfonyl hydrazide and accompanied with the
elimination of water to afford the corresponding α,β-unsat-
urated hydrazone 3 (path b).

Finally, a one-pot transformation of three-step reactions
from ketones with phenylacetylene to pyrazoles directly
was explored. Thus, ketones 6 and 7 were reacted with phe-
nylacetylene in the presence of KOt-Bu under solvent-free
conditions at room temperature. After completion of the
alkynylation, p-toluenesulfonyl hydrazide, Y(OTf)3, and
MeCN were added, respectively, to the reaction mixture.
The resulting mixture was heated at 80 °C for several hours.
After completion of this hydrazone formation reaction, KOt-Bu
was added to the reaction mixture again and continued to

heat at 80 °C for 1.5 hours. After workup, the pyrazoles 4a
and 5a were isolated in 40% and 65% overall yields, respec-
tively (Scheme 6).

Scheme 6  One-pot reactions from ketones

In summary, we have developed a simple and efficient
Y(OTf)3-catalyzed cascade propargylic substitution/aza-
Meyer–Schuster rearrangement reaction of tertiary propar-
gylic alcohols and p-toluenesulfonyl hydrazide for the syn-
thesis of α,β-unsaturated hydrazone derivatives. Moreover,
the obtained α,β-unsaturated hydrazones have been con-
verted into pyrazoles in the presence of LiOt-Bu.
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Scheme 5  Proposed mechanism of the reaction
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