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Abstract : We reported a novel indolium salt -based colorimetind fluorescent
probe N1 for cyanide. The prolél showed a bleaching solution and fluorescence
guenching toward CNin 100% aqueous solution over other anions. Inwh/and
fluorescent spectrometry method, a large blue gB6tL nm), color bleaching and
fluorescence quenching was observed. The minimuectien limit on fluorescence
response of the probé¢l towards CNwas 3.34x 18@mol/L. This probeN1 operates
via intramolecular charge transfer (ICT) mechanidpecause the nucleophilic
attacking of CNto the indol C=N, the ICT progress was blockecdhvaiblor changed
and fluorescence quenched, which is further comfitrby*H NMR, MS and DFT
studies. Therefore, the synthesized probe wouldabpromising device for the

detection of cyanide.
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Keywords: cyanide; water soluble; intramolecular charge transhucleophilic
addition

1. Introduction

Cyanide plays a critical role in several industries such @ganic synthesis,
metallurgical engineering, electroplating technglagd other fields due to its special
characteristics. However, it is still extremely dagimg to human beings even at very
low concentrations for 0.5 mg per kilogram of boagight, which leads to cellular
asphyxiation and death [1-5]. Hence, in human terit's very urge to develop
reliable and efficient approaches to detect cyamdmvironmental systems [6, 7].

Up to now, several traditional detection methodshsas titrimetric, electrochemistry
and spectroscopy [8-11], have been devised forditection of CN With the
development of analytical instruments, the devismtd prepared probes for
colorimetric and fluorescent detection of cyanidevén gained increasing attention
because of their outstanding properties [12, 1®m@ared with various traditional
approaches, colorimetric and fluorescent probesegyarded as the powerful tools for
detection method owing to their simplicity, highhsgivity and naked eye detection
[14-17]. And lots of fluorescent probes have besported for CNdetection so far.
The above probes had been designed on the basrarimius chemical reaction
mechanisms, nucleophilic addition reaction [18-28)pramolecular self-assembly
[24], hydrogen bonding motifs [25-28], cyanide cdexation addition[9], electron
deficient alkenes [14, 29, 30], and so on. Howetlex, majority of these probes are

inclined to poor solubility in water [31-35]. Théxg there is a significant challenge
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to develop the CNprobes in 100% aqueous solution in biological andironmental
systems.

Herein, we synthesized a novel colorimetric andrdscent dual-channel probes N1
with carboxylated indole as an electron-withdrawgrgup and dimethylamine as an
electron-donating grougstheme }, which showed highly sensitive detection for CN
in 100% HO solution (0.01 M Tris-HCI buffer, pH 7.2). The amanism of detection
for CN' was mainly based on the nucleophilic addition tiea¢c which collapsed the
n-conjugation and interrupted the ICT process tonf@ sensitive colorimetric and
fluorescent turn-on response. The possible meamaafsthe probe Ml sensing CN
was confirmed by the measurements'sf NMR, MS and DFT. Therefore, the
synthesized probe would be a promising deviceHerdetection of cyanide.

Scheme 1

2. Materials and methods

2.1 Chemicals and Apparatus

All reagents and solvents were analytical grade @ndined commercially without
further purification. The ultrapure water was ust#doughout the experiment.
Tetrabutylammonium salt of anions (GIN, CI, Br, I', Ac, SQ%, H,PO; and CIQ)
were purchased from Sigma-Aldrich. Sodium salt§, (SCN and CQ*) was
obtained from Energy Chemical (Shanghai, Chittd)NMR and**C NMR spectra
were carried out on a 500 MHz, and TMS was usedirasnternal standard. A

Shimadzu UV-2550 spectrometer was performed tolUyevis spectra. Fluorescent
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spectra was achieved by use of a Shimadzu RF-380te$cence spectrophotometer.
2.2 Synthesis of the probe N1

The schematic illustration of synthesis methodspi@be N1 is shown iScheme 1
5-carboxy-1-ethyl-2,3,3-trimethyl-3H-indol-1-ium dme @) was prepared by
references [36]. Compound 5-carboxy-1-ethyl-2,8y3d¢thyl-3H-indol-1-ium iodide
() (0.72g, 2mmol), p-dimethylaminobenzaldehyde) ((0.33g, 2.2mmol) and
piperidine (3 drop) were dissolved in ethyl alcof@0mL), stirred and refluxed for
12h. After the above reaction cooled to ambient tenajpee, we removed the solvent
and refined the left residue with column chromaapipy to getN1 as a black red
powder.

1: Yield 75%,*H NMR (500 MHz, DMSO) 13.20 (s, 1H), 8.39 (s, 1H), 8.14 (b=
32.0 Hz, 2H), 4.53 (s, 2H), 2.90 (s, 3H), 1.584H), 1.45 (s, 3H)*C NMR (126
MHz, DMSO) ¢ 196.38, 171.47, 149.00, 141.11, 140.05, 125.88,2R? 114.23,
53.72,42.67, 21.27, 20.54, 13.37, 12.09.

N1: Yield 65%,H NMR (500 MHz, DMSO) 13.21 (s, 1H), 8.42 (d] = 15.3 Hz,
1H), 8.31 (s, 1H), 8.25 — 7.94 (m, 3H), 7.79Jd; 8.3 Hz, 1H), 7.27 (d] = 15.4 Hz,
1H), 6.92 (dJ = 8.5 Hz, 2H), 4.54 (d] = 6.5 Hz, 2H), 3.21 (s, 6H), 1.79 (s, 6H), 1.38
(t, J=7.0 Hz, 3H).13C NMR (126 MHz, DMSO) 180.28, 167.18, 156.38, 155.58,
144.78, 143.30, 131.00, 129.74, 124.21, 123.07.581312.96, 104.51, 51.14, 41.00,
40.50, 40.33, 40.16, 40.00, 39.83, 39.67, 39.50903826.88, 13.50. M®Vz [M]*
CaaH27N20," 363.2073; GaHoeN.O.Na™ 385.1892. FT-IR: (KBr, CﬁJr) v=3465.12

(-COOH), 3049.25 (C—H), 1700.41 (C=0), 1613.18 (F=C
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2.3 Theoretical approach of the probe N1 and N1-CN

The Gaussian 09 program was performed. The optimoizaof the molecular
configurations of N1 and N1-CN in the ground stated excited state were
implemented using the density functional theory TPwith the b3lyp methodology

containing 6-31G(d) basis sets.

3. Results and discussion

Compound N1 was synthesized by the aldol condemwsatreaction of
5-carboxy-1-ethyl-2,3,3-trimethyl-3H-indol-1-ium dale Q) and
p-dimethylaminobenzaldehyde (2) in ethan®Stlieme ). The N1 was prepared to
contain a strong electron withdrawing carboxylaitedble derivatives and carboxyl
and an electron donating dimethylamine, which Wiekeed via an ethylene. Carboxyl
group was selected because it is an excellent dhlwre with good
electron-withdrawing property and a good water-8l@group. Therefore, N1 can be
detected the CNn water.

3.1. UV-vis and Fluorescence spectroscopic studissN1

In order to obtain the optical properties of N1 di@tection of anions, the UV-Vis and
fluorescence titration experimentations of N1 weeeformed. The absorbance of N1
in H,O (0.01 M Tris-HCI buffer, pH 7.2) exhibited onesalpption bands at 569. In the
UV-Vis spectrum, the significant changes were dieced of N1 in the presence of
CN compared to the other anions, including®, Br, I', Ac, SQ%, H,POy, CIOy,

S%, SCN, CO,%, Cys and GSHUpon the addition of 50 equiv.Chto the HO solution



107  of N1 (2QuM), the absorption band at 56én disappeared and a new band started to
108 grow at 30&m (Fig. 18). In the fluorescence spectrum, the prdtk displays a
109  strongly fluorescence peak at 603.May addition of CN, the fluorescence band at
110 603nm disappeare(@Fig. 1b). However, the addition 50 equiv. of other anicihg
111 absorption band and fluorescence did not remarkatdage, which show the fact that
112 probeN1 possesses a reasonable selectively in respeganide anion.

113 (Fig. 1)

114 In order to obtain more information of tiNd with CN, we carried out UV-Vis and
115  fluorescence titration experimentations. By gradaddition of CN, the UV-Vis
116 absorption peak at 569 nm declined, while the adtgr gradually increased at 308
117  nm. It is noteworthy that the blue shift of abs@mptwavelength consistent with a
118  pretty evident color change from amaranth to cek®ldemonstrates thhfl can
119 achieve the goal of detection of CWith visual observation. Meanwhile, the
120 fluorescence titration of N1 with CNvas carried out, the emission intensity at 603
121 nm weakens gradually while enhancing ‘Giéncentration, along with an obvious
122 fluorescence quenching. The LOD of the N1 was daled as 3.34x 10mol/L using
123 the formula 3/S. Which is far below the WHO standard of 1.9 £ a@bl/L cyanide.

124 (Fig. 2)

125 To study the selectivity of N1, competition expegms were carried out in the
126  presence of other anions. The addition of 50 equivCN and other anions, the
127  UV-Vis absorption band and fluorescence intenstyot lead to observable changes

128 in absorption at 568m and the intensity of emission at 608 by the presence of
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other aniongFig. 3). These results indicated that the interferencetloér anions is
negligible for the selective detection of TN

(Fig. 3)
3.2. Plausible mechanism
To examine the possible mechanism of interactidméen N1 and CN'H NMR
titrations and MS methods have been implemeritédMR titrations were dissolved
in DMSO-ds. The incremental addition of cyanide to the N1sealthe vanishing of
the signal corresponding to the carboxyl OH at 1&8d all‘H NMR signals shifted
upfield. The peaks belonging to the vinylic protdhexhibited an up-field shift from
7.79 and 7.27 ppm to 6.85 and 6.57 ppm upon adbieguiv. CN. Additionally, the
signals in accordance with —N—GH i.e. Hc protons presented an up-field shift from
4.54 to 3.18 ppm. By mass spectral analyses, tak peN1 was at 363.34 m/z. The
CN was dropped into the solution of N1, and thenNtieCN peak arised at 390.37
m/z. Therefore, we thus proposed that the suggestedhanism of CNas a
proverbial nucleophile is the strong nucleophilitaek of CN to the -C=N group of
N1.

(Fig. 4)
3.3. Theoretical studies
The geometry of N1 was optimized using Gaussiapro§ram, B3LYP methodology,
6-31G(d) basis sets. As shownHiy. 5(a),the optimized ground-state (S0) structures,
the highest occupied molecular orbitals (HOMO) &mdest unoccupied molecular

orbitals (LUMO) ofN1 andN1-CN have been showed. The HOMO of probe N1 was
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mainly distributed on the entire indol and benzeimg, demonstrating the well
delocalization of the electron cloud density and #ictive ICT processes. However,
when the N1 was converted to N1-CN, the conjugatsomterrupted and the ICT
process is blocked. The HOMO-LUMO energy gapNdfwas calculated to be 2.69
eV, which is much lower than that dfl-CN (4.04 eV) Fig. 5b). This building up
energy gap is responsible for the blue shift of thé-vis of N1. The experiment
phenomenon was well in line with the theoreticautes. Hence, we can summarily

conclusion that th&l1l detected CNby a nucleophilic addition reaction.

(Fig. 5)

4. Conclusions

In this study, we have successfully designed a Iginsplorimetric and fluorescent
probe N1 based on indolium-derived for detectiorcydnide in 100% kO (0.01 M
Tris-HCI buffer, pH 7.2) solution. The probe perfa good anti-interference ability
and high selectivity toward CNover other anions. The potential or possible
mechanism is characterized as a nucleophilic anditeaction by conductingH
NMR, MS and DFT measurements. The prdlie exhibits high selectivity for CN
even in the presence other anions and a desim@le®D of 3.34x 10 mol/L. These
unique properties of prepared probe N1 rendeggdsising application for detecting

cyanide in environmental systems.
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Figure & Scheme captions

Scheme 1Synthetic procedures fgprobe N1. (a) AcOH, KOH. (b), CHCH,l, acetonitrile,
refluxed,75%. (c) piperidine, EtOH, refluxed. 65%.

Fig. 1. (a) UV—vis absorption spectra BfL (2.0x10° M) with various analytes in 4 [0.01 M
Tris-HCI buffer, pH 7.2] in the presence of N, CI', Br', I, Ac’, SO, H,POy, ClO4, N3, S7,
SCN, CO%, Cys and GSH. (b) Fluorescence spectri b{2.0x10° M) with various analytes in
H,0.

Fig. 2. (a) UV—vis spectra oN1 (2.0x 10°M) in H,O [0.01 M Tris-HCI buffer, pH 7.2] upon
adding an increasing concentration of Chhset: Color change. (b) Fluorescence spectidlof
upon adding an increasing concentration of AhNset: Color change.

Fig. 3. (a)UV—vis spectra oN1 at 569 nm with addition of CNn the presence of 50 equiv. of
other anions (0 L1; 1 CN2 F; 3 CI; 4 Br; 5 I; 6 Ac; 7 SQ%; 8 H,PO,; 9 ClO,; 10 Ns; 11 S
12 SCN; 13 CQ?; 14 Cys; 15 GSH.) inyD (b). Fluorescence ™1 at 603 nm with addition of
CN' in the presence of 50 equiv. of other anions i@ H

Fig. 4. Suggested mechanism for thel to CN". Partial'H NMR spectra ofN1 and in the
presence of different equiv. of CN

Fig. 5. (&) The optimized ground-state structuredlbfandN1-CN (b) Frontier molecular orbitals

of N1 andN1-CN obtained from the DFT calculations using Gaars§i9 program.
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Scheme 1Synthetic procedures fqprobe N1. (a) AcOH, KOH. (b), CHCH,l, acetonitrile,

refluxed,75%. (c) piperidine, EtOH, refluxed. 65%.
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Fig. 1. (@) UV—vis absorption spectra BfL (2.0x10° M) with various analytes in 4 [0.01 M
Tris-HCI buffer, pH 7.2] in the presence of N, CI', Br', I, Ac’, SO, H,POy, ClO4, N3, S7,
SCN, CO%, Cys and GSH. (b) Fluorescence spectri b{2.0x10° M) with various analytes in

H.0.



(a) 1.50

—_
=
=

400
1.254

1.004 300

0.75-
200 4

Absorbance
Fluorescence intensity

100
0.25+

0.004 e — o
T T T M T T T T T T T T

300 350 400 450 500 550 600 650 700 550

Wavelength(nm) Wavelength(nm)

- =
700 750

Fig. 2. (a) UV-vis spectra oN1 (2.0x 10°M) in H,O [0.01 M Tris-HCI buffer, pH 7.2] upon
adding an increasing concentration of Chhset: Color change. (b) Fluorescence spectidlof

upon adding an increasing concentration of ANset: Color change.
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Fig. 3. (a)UV—vis spectra oN1 at 569 nm with addition of CNn the presence of 50 equiv. of
other anions (O L1; 1 CN2F; 3 CI; 4 Br;51;6 Ac; 7 SQZ'; 8 H,PO,; 9 CIO; 10 N5 11 -
12 SCN; 13 CQ?; 14 Cys; 15 GSH.) inpD (b). Fluorescence &1 at 603 nm with addition of

CN in the presence of 50 equiv. of other anions O H
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Fig. 4. Suggested mechanism for thd to CN. Partial'H NMR spectra ofN1 and in the

presence of different equiv. of CN
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Fig. 5. (a) The optimized ground-state structuredlbtfandN1-CN (b) Frontier molecular orbitals

of N1 andN1-CN obtained from the DFT calculations using Gaars€i9 program.



Highlights
1. A cyanide probe based on a conjugated indolium system.
2. The probe recognizes CN" selectively in 100% agueous solution

3. Thedetection of cyanide with probe can be performed clearly by color changes



