V. I. Ustinov, V. A. Grinenko, and S. G. Ivanov

UDC 539.183.2:541.7:546.224-31

Significant photolytic separation of the sulfur isotopes was noted upon the irradiation of gaseous SO_2 using a PRK-4 mercury lamp (λ 1849 Å) and the residual SO_2 was enriched in the light isotopes (Table 1). Analysis of the photolysis products indicated that the dissociation proceeds as follows:

$$3SO_2 + hv \to 2SO_3^* + S \tag{1}$$

and virtually only residual SO_2 is present in the gas phase (as determined relative to the pressure change in the reaction vessel), while the vessel surface is coated with elemental sulfur and $(SO_3)_2$ -type polymer compounds. The mass spectral isotope analysis carried out according to our procedure [1] with an error of $\pm 0.2\%$ are given in Table 1 (the initial SO_2 pressure in the vessel was 80 torr).

The sulfur isotope partition coefficient α in this process was calculated using the generally accepted expression for enrichment upon Rayleigh exhaustion. The direction of the observed isotope effect is probably a consequence of isotope exchange between the reagent and products of reaction (1), which occurs upon the interaction of SO_2 with a light quantum. Comparison of the ratios of the β -factors of these compounds and α_{av} 0.9835 may indicate that the isotope effect is a function of the isotope equilibrium constant between excited SO_3 * and SO_2 . We should also note that there is a mass-dependent sulfur isotope separation, which obevs the isotope pleiad rule $\delta^{33}S \simeq 0.505$ $\delta^{34}S$.

TABLE 1

p, mm Hg	δ ³³ S, % ₀	634 S, %	α	α _{av} ,
20	-11,0 -37,7	-21,7 -74,5	0,9827 0,9844	0,9835±0,0008

LITERATURE CITED

V. I. Ustinov and V. A. Grinenko, Precision Mass Spectrometric Methods for the Determination of the Sulfur Isotope Composition [in Russian], Izd. Nauka, Moscow (1965).

V. I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 1192-1193, May, 1988. Original article submitted January 5, 1988.