AGRICULTURAL AND FOOD CHEMISTRY

UNIVERSITY^{OF} BIRMINGHAM

Subscriber access provided by University of Birmingham

Biotechnology and Biological Transformations

Selective Oxygenation of Ionones and Damascones by Fungal Peroxygenases

Esteban D Babot, Carmen Aranda, José C. del Río, René Ullrich, Jan Kiebist, Katrin Scheibner, Martin Hofrichter, Angel T Martínez, and Ana Gutierrez

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.0c01019 • Publication Date (Web): 15 Apr 2020

Downloaded from pubs.acs.org on April 15, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	Selective Oxygenation of Ionones and Damascones by
2	Fungal Peroxygenases
3	
4	
5	
6	Esteban D. Babot, [†] Carmen Aranda, [†] José C. del Río, [†] René Ullrich, [‡] Jan Kiebist, [£]
7	Katrin Scheibner, [£] Martin Hofrichter, [‡] Angel T. Martínez, [§] and Ana Gutiérrez *, [†]
8	
9	
10	
10	
11	
12	*Corresponding author: (Tel: +34 954624711; E-mail: anagu@irnase.csic.es)
13	[†] Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Av. Reina Mercedes
14	10, E-41012 Seville, Spain.
15	[‡] TU Dresden, International Institute Zittau, Department of Bio- and Environmental
16	Sciences, Markt 23, 02763 Zittau, Germany
17	[£] JenaBios GmbH, Löbstedter Str. 80, 07749 Jena, Germany
18	[§] Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, E-
19	28040 Madrid, Spain

ABSTRACT: Apocarotenoids are among the most highly valued fragrance 21 22 constituents, being also appreciated as synthetic building blocks. This work shows the 23 ability of unspecific peroxygenases (UPOs, EC1.11.2.1) from several fungi, some of 24 them being described recently, to catalyze the oxyfunctionalization of α - and β -ionones and damascones. Enzymatic reactions yielded oxygenated products such as hydroxy-, 25 26 oxo-, carboxy- and epoxy-derivatives that are interesting compounds for the flavor and 27 fragrance and pharmaceutical industries. Although a variable regioselectivity was observed depending on the substrate and enzyme, oxygenation was preferentially 28 produced at the allylic position in the ring, being especially evident in the reaction with 29 α -ionone, forming 3-hydroxy- α -ionone and/or 3-oxo- α -ionone. Noteworthy were the 30 reactions with damascones, in the course of which some UPOs oxygenated the terminal 31 position of the side chain, forming oxygenated derivatives (i.e. the corresponding 32 33 alcohol, aldehyde and carboxylic acid) at C-10, which were predominant in the Agrocybe aegerita UPO reactions, and first reported here. 34 35

KEYWORDS: aromas, apocarotenoids, ionones, damascones, peroxygenases,

37 biocatalysis, UPO

36

38 INTRODUCTION

39	Apocarotenoids or norisoprenoids, which are usually formed by partial oxidative
40	degradation of carotenoids, include a wide range of compounds with different chemical
41	structures and biological activities. Among these compounds, those having thirteen
42	carbon atoms, such as ionones and damascones, are essential constituents of the aroma
43	of tea, grapes, roses, tobacco and wine, and are also relevant flavors or fragrances that
44	constitute an important economic resource for chemical industries. ¹ Moreover,
45	damascones and their derivatives have also been identified as a novel class of potential
46	cancer chemopreventive phytochemicals. ²
47	The introduction of hydroxyl or keto functionalities in these compounds reduces
48	their volatility and increases the long lasting odor. ³ Most of these derivatives (3-
49	hydroxy and 3-oxo- α -ionone, 4-hydroxy- and 4-oxo- β -ionone and hydroxy- β -
50	damascone isomers) are present in plants but in very small amounts and extraction is
51	not a viable process for their industrial use. For that reason, they are usually prepared by
52	chemical synthesis and, therefore, alternative methods for the bioproduction of these
53	compounds are of high industrial interest. ¹
54	Biotransformation of α - and β -ionones, and their respective α - and β -damascones
55	isomers, to a number of hydroxy and keto derivatives has been reported for several
56	fungi. ³⁻⁷ However, microbial whole-cell biotransformations require long incubation
57	times, and often suffer from low conversion rates and substrate partial degradation. On
58	the other hand, biotransformations with isolated enzymes (enzymatic in vitro
59	conversion), such as some cytochrome P450 monooxygenases (P450s) ⁸⁻¹⁰ including
60	engineered P450 BM-3 variants, ^{11,12} have also been reported. Most P450s, however,
61	have the disadvantages of requiring expensive cofactors and auxiliary enzymes, and
62	their stability is usually low due to their intracellular nature.

63	Unspecific peroxygenases (UPOs, EC.1.11.2.1) represent a relatively new and
64	appealing type of biocatalysts for organic synthesis that, unlike P450s, are extracellular
65	enzymes (therefore more stable) and only require H_2O_2 for activation. ¹³ However, in
66	spite of all recent progresses in our understanding of UPO catalysis and application, ¹⁴
67	some difficulties in UPO application are still to be solved. They include, in addition to
68	inactivation by hydrogen peroxide that affects enzyme reuse, the present limitations to
69	heterologously express UPOs in bacterial (and even in fungal systems), due to the more
70	recent discovery of these enzymes and their fungal origin. The latter aspects, to be
71	overcome in the future, currently limit enzyme engineering to tailor UPOs for specific
72	substrates and processes, as well as their production scale up. UPOs have been shown to
73	catalyze a diversity of interesting oxygenation reactions with aromatic substrates, ^{15,16}
74	aliphatic compounds such as fatty acids, alkanes, fatty alcohols, ¹⁷⁻²¹ steroids and
75	secosteroids, ²²⁻²⁴ and other flavor and fragrance compounds, such as isophorone. ²⁵ The
76	first UPO was described in the basidiomycetous fungus Agrocybe aegerita (AaeUPO) ²⁶
77	and since then, several other UPO enzymes have been purified from other
78	Basidiomycota and Ascomycota species such as Coprinellus radians,27 Marasmius
79	rotula (MroUPO) ²⁸ and Chaetomium globosum (CglUPO), ²⁹ which is indicative for
80	their widespread occurrence in the fungal kingdom. In addition to these wild-type (i.e.
81	non-recombinant) enzymes, there are other UPOs, e.g. from Coprinopsis cinerea
82	(r <i>Cci</i> UPO) ¹⁸ and <i>Humicola insolens</i> (r <i>Hin</i> UPO), ²⁹ which are only known as
83	recombinant proteins heterologously expressed by Novozymes A/S (Bagsvaerd,
84	Denmark) in the mold Aspergillus oryzae. ³⁰ Very recently, a new UPO from the
85	ascomycetous mold Daldinia caldariorum has become available from Novozymes, after
86	gene expression in A. oryzae, being also expressible in Escherichia coli as a soluble and
87	active enzyme. ³¹

88	In the present work, the oxygenation of α - and β -ionones, and their respective
89	isomers α - and β -damascones by several UPOs is shown for the first time. These are
90	new reactions of interest for the biotechnological synthesis of different natural flavors,
91	pharmaceuticals and synthetic building blocks to be added to the existing portfolio of
92	reactions catalyzed by these exciting enzymes. ¹⁴
93	
94	MATERIALS AND METHODS
95	Enzymes. AaeUPO (isoform II), a wild UPO from cultures of A. aegerita TM-A1
96	(syn. Cyclocybe aegerita, DSM 22459) grown in soybean-peptone medium, was
97	purified as previously described. ²⁶ MroUPO is another wild-type UPO, from cultures of
98	M. rotula DSM-25031 (German Collection of Microorganisms and Cell Cultures,
99	Braunschweig), which was purified as described by Gröbe et al. ²⁸ CglUPO, the third
100	wild-type UPO originates from cultures of C. globosum DSM-62110, which was
101	purified as recently described. ²⁹ rCciUPO corresponds to the protein model 7249 from
102	the sequenced C. cinerea genome available at the JGI
103	(<u>http://genome.jgi.doe.gov/Copci1</u>). The recombinant enzymes rCciUPO (44 kDa),
104	rHinUPO and rDcaUPO were provided by Novozymes A/S after expression in A.
105	oryzae. ³⁰ All UPO proteins were purified by fast protein liquid chromatography (FPLC)
106	using a combination of size exclusion chromatography (SEC) and ion exchange
107	chromatography on different anion and cation exchangers. Purification was confirmed
108	by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and UV-
109	vis spectroscopy following the characteristic heme-maximum around 420 nm (Soret
110	band of resting-state UPOs). Enzyme concentration was estimated according to the
111	characteristic UV-vis band of the reduced UPO complex (Fe ²⁺ -heme) with carbon
112	monoxide. ³⁴

113	Chemical compounds. Ionones, <i>rac-</i> (3 <i>E</i>)-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-
114	buten-2-one (also known as α -ionone) and (3 <i>E</i>)-4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-
115	3-buten-2-one (also known as β -ionone), and damascones, <i>rac</i> -(2 <i>Z</i>)-1-(2,6,6-trimethyl-
116	2-cyclohexen-1-yl)-2-buten-1-one (also known as α -damascone) and (2 <i>E</i>)-1-(2,6,6-
117	trimethyl-1-cyclohexen-1-yl)-2-buten-1-one (also known as β -damascone) were tested
118	as substrates of the above UPOs. All the compounds were purchased from Sigma-
119	Aldrich except α -ionone that was supplied by Fluka.
120	Enzymatic reactions. Reactions (1 mL volume) with ionones and damascones (0.5
121	mM) were performed at 30 °C, in 50 mM phosphate buffer, pH 7.0 (pH 5.5 in MroUPO
122	reaction). The enzyme concentration was 0.5 μM and the H_2O_2 was added every 6 min
123	in doses of 0.5 μ mol to a final concentration of 2.5 mM. ²⁵ In control experiments,
124	substrates were treated under the same conditions (including H ₂ O ₂) but without enzyme.
125	The blank experiments did not give any oxidation product. Samples, at 30 min reaction,
126	were extracted with ethyl acetate and directly analyzed by GC-MS. On the other hand, a
127	time course experiment with all substrates and enzymes was performed, and the
128	corresponding samples within several reaction times (5 min, 10 min, 15 min and 20
129	min) were analyzed by GC-MS. In addition, samples were dried under N_2 to prepare
130	trimethylsilyl (TMS) derivatives with N,O-bis(trimethylsilyl)trifluoroacetamide
131	(Supelco) that were also analyzed by GC-MS. Reactions with higher substrate
132	concentration were also performed using 5 mM of β -ionone, 1 μ M of enzyme and by
133	adding H_2O_2 with a syringe pump over 6 hours at 3 µmol h ⁻¹ . Total turnover number
134	(TTN) (mol product x number of conversions/mol enzyme) as well as total turnover
135	frequency (TOF) (TTN/time) were calculated in these reactions.
136	GC-MS analyses. The analyses of samples (with and without silvlation) were
137	performed in a Shimadzu GC-MS QP 2010 Ultra system, using a fused-silica DB-5HT

6

138	capillary column (30 m \times 0.25 mm internal diameter, 0.1 μm film thickness) from J&W
139	Scientific. The oven was heated from 50 °C (1.5 min) to 90 °C (2 min) at 30 °C min ⁻¹ ,
140	and then from 90 °C to 250 °C (15 min) at 8 °C min ⁻¹ . The injection was performed at
141	250 °C and the transfer line was kept at 300 °C. Compounds were identified by mass
142	fragmentography and comparing their mass spectra with those of the Wiley and NIST
143	libraries, and those previously reported, 3,4,7,9,10,35-37 and relative quantification was
144	obtained from total-ion peak area, using response factors of the same (in the case of
145	substrates) or similar compounds. The mass spectra and chemical structures of
146	substrates and their reaction products (underivatized and as TMS derivatives) are
147	included in Supporting Information (Table S1).
148	
149	RESULTS AND DISCUSSION
150	In the present work, several fungal UPOs -namely AaeUPO, MroUPO, CglUPO,
151	rCciUPO, rHinUPO and rDcaUPO- were tested for their ability to oxygenate
152	apocarotenoids such as α -ionone, β -ionone, α -damascone and β -damascone (Figures 1-
153	4), using H_2O_2 as co-substrate and O-donor. The performance of enzymatic reactions
154	were evaluated by GC-MS, and the different activities and selectivities attained by the
155	UPOs are described and discussed in the following sections.
156	Reactions with α-ionone. All UPOs were capable of completely transforming α -
157	ionone within 30 min reaction time, except rCciUPO that only reached 21% conversion
158	under these conditions (Table 1). The time course of the reactions showed that
159	rHinUPO and rDcaUPO completely converted the substrate within 5 min, while
160	AaeUPO, MroUPO and CglUPO needed 15-30 min (Figure 5A).
161	GC-MS analyses of enzymatic reactions revealed that all enzymes selectively (86-
162	98%) oxygenated α -ionone at C-3 (allylic position) producing 3-hydroxy- α -ionone (3-

163	OH- α -I) and 3-oxo- α -ionone (3-CO- α -I) (Table 1 , Figures 1 , S1). In addition to these
164	derivatives, the tautomer of the keto-derivative, 3-hydroxy-2,3-dedihydro- α -ionone (3-
165	OH-2,3-DH- α -I) (7%), was observed in r <i>Hin</i> UPO reactions. Small amounts (1-14%) of
166	4-epoxy- α -ionone (4-epoxy- α -I) were also detected in all reactions. The mass spectra of
167	these compounds (Table S1) were in agreement with those published in the NIST
168	library and in the literature. ^{7,9,10}
169	Different proportions of both <i>cis</i> -3-OH- α -I and <i>trans</i> -3-OH- α -I isomers were
170	observed in the reactions with the different UPOs, the trans-diastereoisomer being
171	generally the most abundant, except in AaeUPO reactions where the proportion of both
172	isomers was similar (Figures 6A, S1) after 30 min. The higher proportion of the trans-
173	diastereoisomer may be attributed to the faster further oxygenation of the cis-
174	diastereoisomer by these enzymes via a gem-diol intermediate that is in equilibrium
175	with the corresponding keto derivative (Figure 1), ¹⁷ although an enzymatically
176	preference for hydroxylation of α -ionone to the corresponding <i>cis</i> or <i>trans</i>
177	diastereomers may not be discarded.
178	Interestingly, all UPOs were able to over-oxygenate the 3-OH- α -I to form 3-CO- α -
179	I (via the gem-diol), except AaeUPO that only formed 5% of the latter compound
180	(Table 1). Low over-oxygenating activity of <i>Aae</i> UPO for hydroxy-derivatives was also
181	observed in the hydroxylation of the related α -isophorone. ²⁵ The contrary was observed
182	in r <i>Hin</i> UPO reactions, in which 3-CO- α -I was the predominant product and the OH-
183	tautomer was also observed. The reason why the enol form was only found in rHinUPO
184	reactions may be due to the high amount of the keto-form in these reactions. With other
185	UPOs, the lower amount of the 3-CO- α -I formed may cause that the OH-tautomer is
186	below the detection limit.

187	Similar oxygenated derivatives were reported for fungi-mediated biotransformation
188	of α -ionone, although generally with lower substrate conversion rates ^{3,5,7} . On the other
189	hand, the biotransformation of α -ionone catalyzed by P450 CYP109D1 showed the
190	regioselective formation of 3-OH- α -I. ⁹ The selectivity found here for most UPOs is
191	similar to that reported for cytochrome CYP101B1, where the trans diastereoisomer
192	was preferentially obtained (66%). ¹⁰
193	Reactions with β-ionone. All UPOs were able to completely convert β -ionone
194	under the same conditions within 30 min of reaction, except rCciUPO that only reached
195	41% conversion (Table 2). Time courses of the reactions show similar conversion
196	degrees as those observed with α -ionone for the different UPOs, with the exception of
197	AaeUPO, which achieved almost complete substrate conversion within just 5 min
198	(Figure 5B). On the other hand, different regioselectivities were noticed for the
199	different UPOs tested, and oxygenation occurred at different positions (Table 2,
200	Figures 2, S2). CglUPO and rHinUPO were most selective (around 80%
201	regioselectivity) towards the C-4 position, resulting in the formation of 4-hydroxy- β -
202	ionone (4-OH-β-I) and its over-oxygenated (via a gem-diol intermediate) derivative 4-
203	oxo-β-ionone (4-CO-β-I). All UPOs oxygenated, in addition to C-4, other ring positions
204	(C-2 and C-3) although to lesser extent. These compounds were tentatively identified by
205	MS, and their mass spectra (Table S1) matched with those published in the NIST
206	library and literature. ^{9,10,12,37,38} Moreover, other hydroxylated derivatives resulting from
207	a second and third oxygenation step (di-hydroxy and/or hydroxy-keto derivatives,
208	Figures S2-S3) were also detected in almost all reactions.
209	Only in the case of r <i>Cci</i> UPO, the oxygenation of the terminal C-10 position in the
210	side chain (10-hydroxy- β -ionone, 10-OH- β -I) was observed (Figure S2C). The position

of the hydroxyl group was determined by the mass spectrum of the TMS derivative that

212	showed a major peak at m/z 177 corresponding to the loss of the terminal hydroxyl
213	group (Figure S4A). This compound was only evidenced in the silylated sample. To our
214	best knowledge, the occurrence of this oxygenated derivative has not been reported so
215	far. The terminal oxygenation of side chains of other aliphatic cyclic compounds by
216	UPOs has been described for steroids, secosteroids and <i>trans</i> - β -methylstyrene. ^{22,23,39}
217	On the other hand, the presence of 7,11-epoxymegastigma-5(6)-en-9-one (EME)
218	and its hydroxylated derivative 4-hydroxy-7,11-epoxymegastigma-5(6)-en-9-one (4-
219	OH-EME) was only observed in the reaction with rDcaUPO (Figures 2, S2F), and to
220	our best knowledge, not reported so far for P450s or microbial cultures. This unusual
221	bicyclic ionone derivative would be formed by the oxygenation of the C-13 followed by
222	ring closure between position 7 and 13 of the ionone framework as reported for the
223	chemical synthesis of EME (in several steps) starting from racemic γ -ionone
224	epoxidation. ³⁵ The presence of the hydroxylated derivative of β -ionone at C-13
225	(Figures S2F, S4B) supports this mechanism. Moreover, the absence of the
226	dihydroxylated derivative of β -ionone at C-4 and C-13 suggests that 4-OH-EME is not
227	formed from 4-hydroxy- β -ionone although this could not be absolutely discarded.
228	Finally, reactions with higher substrate (5 mM) and enzyme (1 μ M) loading were
229	also performed, in which the co-substrate H_2O_2 was continuously supplied over 6 hours
230	with a syringe pump to preserve the enzyme stability (that is decreased by high local
231	concentrations of peroxide). Under these conditions, nearly complete substrate
232	conversion (except with rDcaUPO) and slightly increased selectivity were achieved,
233	taking into account that five times less enzyme/substrate ratio was used. That way, total
234	turnover numbers of 1,700-6,200 were reached (Table 3).
235	Reactions with α-damascone. All UPOs tested transformed the substrate to high

extents (88-100%) within 30 min, except r*Cci*UPO that only accomplished 11%

10

237	conversion under the same conditions (Table 4). The time course of the reaction
238	showed that rHinUPO and rDcaUPO were more efficient than the other UPOs, since
239	they completely transformed the substrate within 5 min of the reaction (Figure 5C).
240	All UPOs (except r <i>Cci</i> UPO) oxygenated the C-3 position to produce 3-hydroxy- α -
241	damascone (3-OH- α -D) (Table 4, Figures 3, S5). In a similar way as in the reactions
242	with α -ionone, the hydroxylation of α -damascone by several UPOs yielded both
243	diastereoisomers, <i>cis</i> -3-OH- α -D and <i>trans</i> -3-OH- α -D, whose mass spectra were in
244	accordance with those previously reported. ⁴ MroUPO, CglUPO, rDcaUPO and
245	rHinUPO were more selective giving principally the trans-diastereoisomer, while
246	AaeUPO mainly produced the cis-diastereoisomer (Figure 6B). In addition, CglUPO,
247	r <i>Hin</i> UPO and r <i>Dca</i> UPO over-oxygenated 3-OH- α -D to the 3-oxo derivative, and most
248	UPOs (<i>Mro</i> UPO, <i>Cgl</i> UPO, r <i>Dca</i> UPO and r <i>Hin</i> UPO) formed 4-epoxy-α-damascone (4-
249	epoxy- α -D) as well, although in minor amounts. Again, similar products were obtained
250	in fungi-mediated biotransformation of α -damascone but with lower conversion rates,
251	maybe due to the toxicity of these compounds to fungal cells/hyphae. ³
252	Interestingly, in addition to ring oxygenation, AaeUPO, MroUPO and rCciUPO
253	oxygenated the terminal position of the side chain (Figure 3) being the predominant
254	reaction (80% of total products) for the former UPO (Table 4, Figure S5). In these
255	reactions, the formation of the terminal alcohol (10-hydroxy- α -damascone, 10-OH- α -
256	D) was followed by its over-oxygenation producing the corresponding aldehyde (4-oxo-
257	4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-2-enal, 10-CHO- α -D) and the carboxylic acid
258	(4-oxo-4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-2-enoic acid, 10-COOH-α-D). These
259	compounds were tentatively identified by the mass spectra of their TMS derivatives
260	(Figure S6). The spectra show the molecular ions at m/z 280 (10-OH- α -D), m/z 206
261	(10-CHO- α -D) and <i>m</i> / <i>z</i> 294 (10-COOH- α -D) as well as the fragments corresponding to

11

ACS Paragon Plus Environment

Page 12 of 34

the loss of a methyl group $[M-CH_3]^+$ at m/z 265, 191 and 279, respectively, and the 262 fragment at m/z 123 from the intact ring moiety. Additionally, diagnostic fragments at 263 264 m/z 157 corresponding to the side chain butenoyl group in the 10-OH- α -D (Figure S6A), and at m/z 177 due to the loss of the aldehyde group [M-CHO]⁺ (Figure S6B) 265 266 are also observed. To our best knowledge, such damascone derivatives at C-10 have not been reported so far. This may be due to the fact that most authors analyzed these 267 268 compounds without derivatization, and we found that they can only be detected after 269 derivatization (silylation). 270 **Reactions with \beta-damascone.** Among all UPOs tested, only *Cgl*UPO and *rHin*UPO completely converted β-damascone within 30 min, while AaeUPO, MroUPO and 271 rDcaUPO) attained conversions of 81%, 72% and 34%, respectively, under the same 272 conditions; rCciUPO was practically incapable of oxidizing it (Table 5, Figures 4, S7). 273 274 Noteworthy is the low conversion of this compound by rDcaUPO compared to the other substrates tested. The time course of the reaction showed that rHinUPO was more 275 276 efficient than the other UPOs, since it completely transformed the substrate within 5 min (Figure 5D). 277 278 In most cases, the hydroxylation at C-4 position was dominant over that at C-3 279 position with the exception of AaeUPO. On the other hand, rHinUPO, and to minor extent CglUPO, were the only enzymes that over-oxygenated the 4-OH- β -D to 4-oxo- β -280 damascone (4-CO-β-D) (Figures S7D-E). The mass spectra of these compounds (Table 281 S1) are in agreement with those previously reported.^{3,36,38} On the other hand, as in α -282 283 damascone reactions, oxygenated derivatives (alcohol, aldehyde and carboxylic acid) at 284 C-10 were also formed (Figure 4), preferentially by AaeUPO and MroUPO (Figure 285 S7). These compounds were identified by the mass spectra of their TMS derivatives (Figure S8), which showed similar characteristic fragments to those of α -damascone 286

12

ACS Paragon Plus Environment

287	derivatives, as the molecular ions at m/z 280 (10-OH- β -D), m/z 206 (10-CHO- β -D) and
288	m/z 294 (10-COOH- β -D) and the fragments corresponding to the loss of a methyl group
289	$[M-CH_3]^+$ at m/z 265, 191 and 279, respectively. Likewise, the fragment at m/z 177
290	originated by the loss of the aldehyde group [M-CHO] ⁺ (Figure S8B) is also observed.
291	Comparison of oxygenation patterns by different UPOs. Generally, all UPOs
292	accomplished high conversion rates for all substrates tested, except rCciUPO. rHinUPO
293	and rDcaUPO were the most efficient ones (that converted more substrate in less time
294	under the same conditions) in oxidizing all substrates tested (with the exception of β -
295	damascone that was only moderately converted by rDcaUPO) (Figure 5). On the other
296	hand, <i>Aae</i> UPO showed higher efficiency with β -ionone than with any other substrate.
297	Regarding selectivity of the reactions with ionones, all UPOs showed higher
298	regioselectivities (up to 99%) with α -ionone than with β -ionone (Tables 1-2). Although
299	α - and β -ionones differ only in the position of the cyclohexene double bond, UPOs
300	realized different reactivities towards them. Analyses of the different oxygenation
301	products formed by the UPOs revealed that the position of the double bond in the
302	cyclohexenyl ring had seemingly an effect on the regioselectivity of hydroxylation,
303	directing it towards the allylic position. In this sense, α - and β -ionone were mainly
304	hydroxylated by most UPOs at C-3 and C-4 to form 3-hydroxy- α -ionone and 4-
305	hydroxy- β -ionone, respectively. However, this effect was more pronounced with α -
306	ionone, since several oxygenated derivatives at other positions (C-2 and C-3) of the ring
307	(or in the side-chain) were formed with β -ionone. The opposite was reported for P450
308	BM-3 mutants that selectively produced 4-OH- β -I, while they contrarily oxidized α -
309	ionone to a mixture of four products. ¹² Interestingly, rHinUPO was the UPO that most
310	pronouncedly oxygenated mono-hydroxyl derivatives further into the corresponding
311	keto derivatives (that are in equilibrium with the gem-diol counterparts formed first). On

the other hand, most of the tested UPOs left unaffected the C-13 methyl group of both 312 α - and β -ionone. Only in the reaction with r*Dca*UPO the hydroxylation of the C-13 313 carbon atom of β -ionone was observed, producing the interesting EME and 4-OH-EME 314 315 products. 316 The preference for the hydroxylation of the allylic position in the cyclohexene ring by UPOs was also observed in the reactions with α - and β -damascones. A strict 317 regioselectivity for this position was especially evident in the reaction of α -damascone 318 with r*Hin*UPO and r*Dca*UPO, followed by *Cg*/UPO, and in the reaction of β -damascone 319 320 with rHinUPO and CglUPO. Interestingly, in damascones reactions, a different 321 regioselectivity with respect to that observed with ionones was ascertained. Therefore, in addition to the cyclohexenyl ring, hydroxylation was produced at the terminal 322 323 position of the butenoyl side chain, being predominant in AaeUPO reactions but completely absent in rHinUPO, rDcaUPO and CglUPO reactions. Thus, the change in 324 325 the position of the carbonyl and alkene moieties in the butenoyl side chain caused a drastic change in regioselectivity of AaeUPO towards damascones compared to ionones. 326 327 It can be concluded that the oxyfunctionalization of the ionone and damascone 328 isomers catalyzed by UPOs reveal clear advantages over P450 catalysis (e.g. engineered 329 P450 BM-3 variants) due to the higher conversion rates, enzyme stabilities and little 330 requirements concerning cofactors. These enzymes can therefore be of high interest for 331 the production of valuable compounds, of interest for the flavor and fragrance, cosmetic and pharmaceutical industries. However, it is necessary to mention that some current 332 limitations of UPOs, related to their large-scale production and application, need to be 333 334 solved for their efficient industrial implementation. 335

336 ACKNOWLEDGMENTS

337	We	thank Novozymes A/S (Bagsvaerd, Denmark) for providing the recombinant		
338	enzymes (rCciUPO, rHinUPO and rDcaUPO) used in this study and A. González-			
339	Benjumea for helpful discussion.			
340				
341	FUN	NDING SOURCES		
342	This	work was supported by the EnzOx2 (H2020-BBI-PPP-2015-2-1-720297) EU-		
343	proj	ect and the CSIC (201740E071) project.		
344				
345	Sup	porting Information		
346	Che	mical structures and mass fragmentations of ionones and damascones and their		
347	oxygenated derivatives from enzymatic reactions with several UPOs (Table S1), GC-			
348	MS analyses of ionones and damascones reactions with several UPOs (Figures S1, S2,			
349	S5 and S7), Chemical structures of the dihydroxy and keto-hydroxy-derivatives from			
350	UPO reactions with β -ionone (Figure S3), and mass spectra and			
351	formulae/fragmentations of several oxygenated derivatives of ionones and damascones			
352	fron	n reactions with several UPOs (Figures S4, S6 and S8).		
353				
354	REI	FERENCES		
355	(1)	Serra, S. Recent Advances in the Synthesis of Carotenoid-Derived Flavours and		
356		Fragrances. Molecules 2015, 20, 12817-12840.		
357	(2)	Gerhäuser, C.; Klimo, K.; Hümmer, W.; Hölzer, J.; Petermann, A.; Garreta-Rufas,		
358		A.; Böhmer, F. D.; Schreier, P. Identification of 3-hydroxy-β-damascone and		
359		related carotenoid-derived aroma compounds as novel potent inducers of Nrf2-		
360		mediated phase 2 response with concomitant anti-inflammatory activity. Mol.		
361		Nutr. Food Res. 2009, 53, 1237-1244.		

362	(3)	Serra, S.; De Simeis, D. Fungi-Mediated Biotransformation of the Isomeric Forms
363		of the Apocarotenoids Ionone, Damascone and Theaspirane. Molecules 2019, 24,
364		19.
365	(4)	Schoch, E.; Benda, I.; Schreier, P. Bioconversion of α -damascone by <i>Botrytis</i>
366		cinerea. Appl. Environ. Microbiol. 1991, 57, 15-18.
367	(5)	Lutz-Wahl, S.; Fischer, P.; Schmidt-Dannert, C.; Wohlleben, W.; Hauer, B.;
368		Schmid, R. D. Stereo- and regioselective hydroxylation of alpha-ionone by
369		Streptomyces strains. Appl. Environ. Microbiol. 1998, 64, 3878-3881.
370	(6)	Gliszczynska, A.; Gladkowski, W.; Dancewicz, K.; Gabrys, B.; Szczepanik, M.
371		Transformation of β -damascone to (+)-(S)-4-hydroxy- β -damascone by fungal
372		strains and its evaluation as a potential insecticide against aphids Myzus persicae

and lesser mealworm *Alphitobius diaperinus* Panzer. *Catal. Commun.* 2016, *80*,
39-43.

375 (7) Yamazaki, Y.; Hayashi, Y.; Arita, M.; Hieda, T.; Mikami, Y. Microbial

- 376 Conversion of α -Ionone, α -Methylionone, and α -Isomethylionone. *Appl. Environ*.
- *Microbiol.* **1988**, *54*, 2354-2360.
- 378 (8) Schulz, S.; Girhard, M.; Urlacher, V. B. Biocatalysis: Key to Selective Oxidations.
 379 *ChemCatChem* 2012, *4*, 1889-1895.
- 380 (9) Khatri, Y.; Girhard, M.; Romankiewicz, A.; Ringle, M.; Hannemann, F.; Urlacher,
- 381 V. B.; Hutter, M. C.; Bernhardt, R. Regioselective hydroxylation of
- norisoprenoids by CYP109D1 from *Sorangium cellulosum* So ce56. *Appl.*
- 383 *Microbiol. Biotechnol.* **2010**, *88*, 485-495.
- 384 (10) Hall, E. A.; Bell, S. G. The efficient and selective biocatalytic oxidation of
- norisoprenoid and aromatic substrates by CYP101B1 from *Novosphingobium*
- 386 *aromaticivorans* DSM12444. *RSC Adv.* **2015**, *5*, 5762-5773.

16

387	(11)	Appel, D.; Lutz-Wahl, S.; Fischer, P.; Schwaneberg, U.; Schmid, R. D. A P450
388		BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes. J.
389		Biotechnol. 2001, 88, 167-171.
390	(12)	Urlacher, V. B.; Makhsumkhanov, A.; Schmid, R. D. Biotransformation of β -
391		ionone by engineered cytochrome P450 BM-3. Appl. Microbiol. Biotechnol. 2006,
392		70, 53-59.
393	(13)	Hofrichter, M.; Kellner, H.; Herzog, R.; Karich, A.; Liers, C.; Scheibner, K.;
394		Wambui, V.; Ullrich, R. Fungal peroxygenases: A phylogenetically old
395		superfamily of heme enzymes with promiscuity for oxygen transfer reactions. In
396		Grand challenges in fungal biotechnology; Nevalainen, H., Ed.; Springer: Cham,
397		Switzerland, 2020.
398	(14)	Wang, Y.; Lan, D.; Durrani, R.; Hollmann, F. Peroxygenases en route to
399		becoming dream catalysts. What are the opportunities and challenges? Curr. Opin.
400		Chem. Biol. 2017, 37, 1-9.
401	(15)	Hofrichter, M.; Ullrich, R.; Pecyna, M. J.; Liers, C.; Lundell, T. New and classic
402		families of secreted fungal heme peroxidases. Appl. Microbiol. Biotechnol. 2010,
403		87, 871-897.
404	(16)	Aranda, C.; Ullrich, R.; Kiebist, J.; Scheibner, K.; del Río, J. C.; Hofrichter, M.;
405		Martínez, A. T.; Gutiérrez, A. Selective synthesis of the resveratrol analogue 4,4'-
406		dihydroxy-trans-stilbene and stilbenoids modification by fungal peroxygenases.
407		Catal. Sci. Technol. 2018, 8, 2394-2401.
408	(17)	Gutiérrez, A.; Babot, E. D.; Ullrich, R.; Hofrichter, M.; Martínez, A. T.; del Río, J.
409		C. Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic
410		compounds by a basidiomycete heme-thiolate peroxidase. Arch. Biochem.
411		Biophys. 2011, 514, 33-43.

- 412 (18) Babot, E. D.; del Río, J. C.; Kalum, L.; Martínez, A. T.; Gutiérrez, A.
- 413 Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase
- from *Coprinopsis cinerea*. *Biotechnol*. *Bioeng*. **2013**, *110*, 2332.
- 415 (19) Aranda, C.; Olmedo, A.; Kiebist, J.; Scheibner, K.; del Río, J. C.; Martínez, A. T.;
- 416 Gutiérrez, A. Selective epoxidation of fatty acids and fatty acid methyl esters by
- 417 fungal peroxygenases. *ChemCatChem* **2018**, *10*, 3964-3968.
- 418 (20) Olmedo, A.; Aranda, C.; del Río, J. C.; Kiebist, J.; Scheibner, K.; Martínez, A. T.;
- Gutiérrez, A. From alkanes to carboxylic acids: Terminal oxygenation by a fungal
 peroxygenase. *Angew. Chem. Int. Ed.* 2016, *55*, 12248-12251.
- 421 (21) Peter, S.; Kinne, M.; Wang, X.; Ulrich, R.; Kayser, G.; Groves, J. T.; Hofrichter,
- 422 M. Selective hydroxylation of alkanes by an extracellular fungal peroxygenase.
- 423 *FEBS J.* **2011**, *278*, 3667-3675.
- 424 (22) Babot, E. D.; del Río, J. C.; Cañellas, M.; Sancho, F.; Lucas, F.; Guallar, V.;
- 425 Kalum, L.; Lund, H.; Gröbe, G.; Scheibner, K.; Ullrich, R.; Hofrichter, M.;
- 426 Martínez, A. T.; Gutiérrez, A. Steroid hydroxylation by basidiomycete
- 427 peroxygenases: A combined experimental and computational study. *Appl.*
- 428 *Environ. Microbiol.* **2015**, *81*, 4130-4142.
- 429 (23) Lucas, F.; Babot, E. D.; del Río, J. C.; Kalum, L.; Ullrich, R.; Hofrichter, M.;
- 430 Guallar, V.; Martínez, A. T.; Gutiérrez, A. Molecular determinants for selective
- 431 C25-hydroxylation of vitamins D2 and D3 by fungal peroxygenases. *Catal. Sci.*
- 432 *Technol.* **2016**, *6*, 288-295.
- 433 (24) Babot, E. D.; del Río, J. C.; Kalum, L.; Martínez, A. T.; Gutiérrez, A.
- 434 Regioselective hydroxylation in the production of 25-hydroxyvitamin D by
- 435 *Coprinopsis cinerea* peroxygenase. *ChemCatChem* **2015**, *7*, 283-290.

436	(25)	Aranda, C.; Municoy, M.; Guallar, V.; Kiebist, J.; Scheibner, K.; Ullrich, R.; del
437		Río, J. C.; Hofrichter, M.; Martínez, A. T.; Gutiérrez, A. Selective synthesis of 4-
438		hydroxyisophorone and 4-ketoisophorone by fungal peroxygenases. Catal. Sci.
439		Technol. 2018, 9, 1398-1405.
440	(26)	Ullrich, R.; Nuske, J.; Scheibner, K.; Spantzel, J.; Hofrichter, M. Novel
441		haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl
442		alcohols and aldehydes. Appl. Environ. Microbiol. 2004, 70, 4575-4581.
443	(27)	Anh, D. H.; Ullrich, R.; Benndorf, D.; Svatos, A.; Muck, A.; Hofrichter, M. The
444		coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes
445		aromatic peroxygenation. Appl. Environ. Microbiol. 2007, 73, 5477-5485.
446	(28)	Gröbe, G.; Ullrich, M.; Pecyna, M.; Kapturska, D.; Friedrich, S.; Hofrichter, M.;
447		Scheibner, K. High-yield production of aromatic peroxygenase by the agaric
448		fungus Marasmius rotula. AMB Express 2011, 1, 31-42.
449	(29)	Kiebist, J.; Schmidtke, K. U.; Zimmermann, J.; Kellner, H.; Jehmlich, N.; Ullrich,
450		R.; Zänder, D.; Hofrichter, M.; Scheibner, K. A peroxygenase from Chaetomium
451		globosum catalyzes the selective oxygenation of testosterone. ChemBioChem
452		2017 , <i>18</i> , 563-569.
453	(30)	Landvick, S.; Ostergaard, L. H.; Kalum, L. Polypeptides having peroxygenase
454		activity. Patent 2016, WO2014056916A3.
455	(31)	Linde, D.; Olmedo, A.; González-Benjumea, A.; Renau, C.; Estévez, M.; Carro,
456		J.; Fernández-Fueyo, E.; Gutiérrez, A.; Martínez, A. T. Two new unspecific
457		peroxygenases from heterologous expression of fungal genes in Escherichia coli.

458 *Appl. Environ. Microbiol.* **2020**, *86 doi:10.1128/AEM.02899-19.*

- 459 (32) Pecyna, M. J.; Schnorr, K. M.; Ullrich, R.; Scheibner, K.; Kluge, M. G.;
- 460 Hofrichter, M. Fungal peroxygenases and methods of application. *Patent*
- 461 (International) **2008**, WO 2008/119780 A2.
- 462 (33) Landvick, S.; Ostergaard, L. H.; Kalum, L. Polypeptides having peroxygenase
 463 activity. *Patent (International)* 2016, *WO2014056916A3*.
- 464 (34) Otey, C. R. High-throughput carbon monoxide binding assay for cytochromes
 465 P450. *Methods Mol. Biol.* 2003, *230*, 137-139.
- 466 (35) Brenna, E.; Fuganti, C.; Serra, S. Synthesis and olfactory evaluation of the
- 467 enantiomerically enriched forms of 7,11-epoxymegastigma-5(6)-en-9-one and
- 468 7,11-epoxymegastigma-5(6)-en-9-ols isomers, identified in *Passiflora edulis*.
- 469 *Tetrahedron: Asymmetry* **2005**, *16*, 1699-1704.
- 470 (36) Kitahara, T.; Takagi, Y.; Matsui, M. Novel synthesis of 3-hydroxy-β-damascone,
- 471 3-hydroxydihydro-β-damascone and β-damascenone. *Agric. Biol. Chem.* 1979, *43*,
 472 2359-2363.
- 473 (37) Mikami, Y.; Fukunaga, Y.; Arita, M.; Kisaki, T. Microbial Transformation of β -
- Ionone and β -Methylionone. *Appl. Environ. Microbiol.* **1981**, *41*, 610-617.
- 475 (38) More, G. P.; Bhat, S. V. Facile lipase catalysed syntheses of (S)-(+)-4-hydroxy-β-
- ionone and (S)-(+)-4-hydroxy- β -damascone: chiral flavorants and synthons.
- 477 *Tetrahedron Lett.* **2013**, *54*, 4148-4149.
- 478 (39) Kluge, M.; Ullrich, R.; Scheibner, K.; Hofrichter, M. Stereoselective benzylic
- 479 hydroxylation of alkylbenzenes and epoxidation of styrene derivatives catalyzed
- 480 by the peroxygenase of *Agrocybe aegerita*. *Green Chem.* **2012**, *14*, 440-446.
- 481
- 482

484	FIGURE LEGENDS
485	
486	Figure 1. α -Ionone (α -I) oxygenation by UPOs, showing the 3-hydroxy- α -ionone (3-
487	OH-α-I), 3-oxo-α-ionone (3-CO-α-I) formed via a <i>gem</i> -diol intermediate, its tautomer
488	3-hydroxy-2,3-didehydro- α -ionone (3-OH-2,3-DH-α-I) and 4-epoxy- α -ionone (4-
489	epoxy-a-I).
490	
491	Figure 2. β -ionone (β -I) oxygenation by UPOs showing the different oxygenated
492	derivatives: 4-hydroxy-β-ionone (4-OH-β-I), 3-hydroxy-β-ionone (3-OH-β-I), 2-
493	hydroxy-β-ionone (2-OH-β-I), 10-hydroxy-β-ionone (10-OH-β-I), 13-hydroxy-β-
494	ionone (13-OH-β-I), 4-oxo-β-ionone (4-CO-β-I), 2-oxo-β-ionone (2-CO-β-I), 7,11-
495	epoxymegastigma-5(6)-en-9-one (EME), and 4-hydroxy-7,11-epoxymegastigma-5(6)-
496	en-9-one (4-OH-EME).
497	
498	Figure 3. α -damascone (α -D) oxygenation by UPOs, showing the, 3-hydroxy- α -
499	damascone (3-OH-α-D), 10-hydroxy-α-damascone (10-OH-α-D), 4-epoxy-α-
500	damascone (4-epoxy-α-D), 3-oxo-α-damascone (3-CO-α-D), 4-oxo-4-(2,6,6-
501	trimethylcyclohex-2-en-1-yl)but-2-enal (10-CHO-α-D), 4-oxo-4-(2,6,6-
502	trimethylcyclohex-2-en-1-yl)but-2-enoic acid (10-COOH-α-D) derivatives.
503	
504	Figure 4. β -damascone (β -D) oxygenation by UPOs showing the 3-hydroxy- β -
505	damascone (3-OH-β-D), 4-hydroxy-β-damascone (4-OH-β-D), 10-hydroxy-β-
506	damascone (10-OH-β-D) and the over-oxygenated compounds 4-oxo- β -damascone (4-

507	CO- β -D), 4-oxo-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-2-enal (10-CHO- β -D) and
508	4-oxo-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-2-enoic acid (10-COOH-β-D).
509	
510	Figure 5. Time course of the transformation of 0.5 mM α -ionone (A), β -ionone (B), α -
511	damascone (C) and β -damascone (D) by 0.5 μ M <i>Aae</i> UPO (purple), <i>Mro</i> UPO (yellow),
512	rCciUPO (light blue), CglUPO (green), rHinUPO (red) and rDcaUPO (blue). The
513	standard deviations (SD) calculated for duplicates (at 30 min) are indicated.
514	
515	Figure 6. Abundance (relative percentage) and chemical structures (relative
516	configuration) of the different diastereoisomers formed in the reactions at 5 min and 30
517	min of α -ionone (A) and α -damascone (B) with several UPOs. The standard deviations

518 (SD) calculated for duplicates (at 30 min) are indicated.

Table 1. Conversion (percentage of substrate transformed) of α -ionone (α -I) by several UPOs (30 min) and abundance (relative percentage) of the reaction products, including hydroxy (OH), keto (CO) and epoxy derivatives

	AaeUPO	<i>Mro</i> UPO	r <i>Cci</i> UPO	<i>Cgl</i> UPO	r <i>Hin</i> UPO	r <i>Dca</i> UPO	
Conversion (%)	>99	>99	21	>99	>99	>99	
Products (%)							
3-OH-α-I	93	55	63	72	1	45	
3-CO-α-I	5	31	35	22	98*	53	
4-epoxy-α-I	2	14	2	6	1	2	
* including the keto derivative (91%) and its tautomer 3-hydroxy-2,3-didehydro- α -ionone (7%)							

Table 2. Conversion (percentage of substrate transformed) of β -ionone (β -I) by several UPOs (30 min) and abundance (relative percentage) of the reaction products, including hydroxy (OH) and keto (CO) derivatives, and/or 7,11-epoxymegastigma-5(6)-en-9-one (EME), and dihydroxy or hydroxy keto derivatives of β -I (others)

	AaeUPO	<i>Mro</i> UPO	r <i>Cci</i> UPO	<i>Cgl</i> UPO	r <i>Hin</i> UPO	rDcaUPO
Conversion (%)	>99	>99	41	>99	>99	>99
Products (%)						
4-OH-β-I	55	55	61	64	21	53
3-ОН-β-І	22	-	19	-	-	19
2-ОН-β-Ι	13	7	2	1	-	3
10-ОН-β-І	-	-	14	-	-	-
13-ОН-β-І	-	-	-	-	-	7
EME	-	-	-	-	-	11
2-CO- β-Ι	-	18	-	-	-	-
4-CO- β-Ι	3	1	2	20	58	-
4-OH-EME	-	-	-	-	-	5
Others	7	19	2	15	21	2

Table 3. Conversion (percentage of substrate transformed), abundance (relative percentage) of reaction products - including hydroxy (OH), keto (CO) and dihydroxy or hydroxy keto derivatives (others) - total turnover number (TTN) and total turnover frequency (TOF) in the enzymatic transformation of 5 mM β -ionone (β -I)

	AaeUPO	MroUPO	r <i>Cci</i> UPO	<i>Cgl</i> UPO	r <i>Hin</i> UPO	r <i>Dca</i> UPO
Conversion (%)	95	93	22	98	91	52
Products (%)						
4-OH-β-I	87	67	83	70	57	54
4-CO- β-Ι	-	13	-	24	24	-
Others	13	20	17	6	19	46
TTN	5200	5900	1700	6200	6000	2800
$TOF(min^{-1})$	14	16	5	17	17	8

Table 4. Conversion (percentage of substrate transformed) of α -damascone (α -D) by several UPOs (30 min) and abundance (relative percentage) of the reaction products, including hydroxy (OH), aldehyde (CHO), keto (CO), carboxy (COOH) and epoxy derivatives

	AaeUPO	<i>Mro</i> UPO	r <i>Cci</i> UPO	<i>Cgl</i> UPO	r <i>Hin</i> UPO	r <i>Dca</i> UPO
Conversion (%)	>99	88	11	>99	>99	>99
Products (%)						
3-OH-α-D	18	55	-	68	27	83
4-epoxy-α-D	-	6	-	16	3	4
10-OH-α-D	-	6	41	-	-	-
3-CO-α-D	-	-	-	16	70	13
10-CHO-α-D	2	14	52	-	-	-
10-COOH-α-D	80	19	7	-	-	-

Table 5. Conversion (percentage of substrate transformed) of β -damascone (β -D) by several UPOs (30 min) and abundance (relative percentage) of the reaction products, including hydroxy (OH), aldehyde (CHO), keto (CO), carboxy (COOH) and epoxy derivatives

	AaeUPO	MroUPO	r <i>Cci</i> UPO	<i>Cgl</i> UPO	r <i>Hin</i> UPO	r <i>Dca</i> UPO
Conversion (%)	81	72	1	>99	>99	34
Products (%)						
3-ОН-β-D	32	8	-	6	5	24
4-OH-β-D	9	46	-	88	53	71
10-ОН-β-D	3	6	>99	-	-	5
4-CO-β-D	-	-	-	6	42	-
10-CHO-β-D	8	17	-	-	-	-
10-СООН-β-D	48	23	-	-	-	-

Page 28 of 34

Page 30 of 34

4-CO-β-D

10-CHO-β-D

10-СООН-β-D

α-Damascone В SD (%) ±0.5 ±0.5 ±1.3 ±1.3 <0.1 <0.1 <0.1 <0.1 ±0.5 ±0.5 100% 50% 0% cis trans cis trans cis trans cis trans cis trans **MroUPO** Cg/UPO r*Dca*UPO AaeUPO r*Hin*UPO 💻 5 min. 30 min. HO HO, Syn-3-OH-a-D Anti-3-OH-α-D

Table of Contents graphic

