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Abstract A series of Schiff bases (compounds 1–10)

were synthesized by condensing heterocyclic/aromatic

aldehydes with heterocyclic/aromatic amines through both,

conventional method and microwave-assisted synthesis.

The compounds were confirmed by means of IR spec-

troscopy, Mass spectrometry, 1H NMR and elemental

analyses. The compounds were assayed for antibacterial

activity against selected strains of Gram positive, Gram

negative bacteria and some fungi by zone inhibition

method. Minimum inhibitory concentration (MIC) was also

determined for each compound. Reaction times were

drastically reduced by microwave-assisted synthesis. MIC

was as low as 50 lg/ml exhibited by compounds 2 (against

Escherichia coli, Aspergillus niger and Penicillium chrys-

ogenum) and 10 (against Bacillus subtilis). The study

presents a series of potential antimicrobial agents through

efficient and simple reactions and mild reaction conditions,

thereby offering a green chemistry approach.

Keywords Schiff base � Antibacterial � Antifungal �
Microwave-assisted synthesis � Green chemistry

Introduction

Compounds with the structure of Ar1C=NAr2 are known as

Schiff bases, which are usually synthesized from the con-

densation of primary amines and active carbonyl groups.

Many Schiff bases have been reported to possess

antibacterial (Sridhar et al., 2001; Mladenova et al., 2002;

Pannerselvam et al., 2005; Walsh et al., 1996; Bharti et al.,

2010; Tenorio et al., 2005), antifungal (Walsh et al., 1996;

Bharti et al., 2010; Tenorio et al., 2005) and antitumor

activities (Liu et al., 1992; Hodnett and Dunn, 1970).

Researchers have consistently studied the synthesis, char-

acterization and structure–activity relationship of Schiff

bases (Curini et al., 2002; Yadav et al., 2004; Byrnes et al.,

1990; Kamel et al., 2010). It is well known that microwave

(MW) irradiation can accelerate a great number of chemical

processes and, in particular, the reaction time and energy

input are supposed to be mostly reduced in the reactions that

are run for a long time at high temperatures under conven-

tional conditions (Loupy, 2002). The most successful

applications of microwave irradiation are found to be related

to the use of solvents and solvent-free systems, in which

microwaves interact directly with reagents. Therefore, it can

more efficiently accelerate chemical reactions (Burczyk

et al., 2005). In classical organic synthesis of Schiff bases,

the common problems are removal of solvents from the

reaction mixture, liquid extraction especially in the case of

aprotic dipolar solvents with high boiling point and product

isolation through liquid–liquid extraction. The absence of

solvent reduces the risk of hazardous explosions when the

reaction takes place in a closed vessel or a microwave oven

(Yang et al., 2002). Local overheating, which can lead to

product, substrate and reagent degradation is avoided in

microwave-assisted synthesis (Lidstorm et al., 2001). The

solvent-free organic synthesis mediated by microwave irra-

diation offers several advantages such as higher atom

economy, environmental friendship and reduced hazard

potential. This approach has been used in past for synthesis of

imines and enamines (Varma et al., 1997) and sulfonyli-

mines (Vass et al., 1999). Thus, it was decided to utilize

microwave irradiation for the synthesis of Schiff bases in
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order to check whether such non-classical method of

chemical activation might influence yield, selectivity and

time of reaction in comparison to a conventional thermal

treatment under strictly similar sets of conditions. This study

reports the synthesis of some Schiff bases with heterocyclic/

aromatic rings and their antimicrobial properties.

Chemistry

Schiff base formation is another variation on the theme

of nucleophilic addition to the carbonyl group. In this

case, the nucleophile is an amine. In the first part of the

mechanism, the amine reacts with the aldehyde or

ketone to give an unstable addition compound called

carbinolamine. The carbinolamine loses water by acid or

base catalyzed pathways. Since the carbinolamine is an

alcohol, it undergoes acid catalyzed dehydration

(Clayden et al., 2001). In this study, a series of Schiff

bases (compounds 1–10) were synthesized by condens-

ing heterocyclic/aromatic aldehyde with heterocyclic/

aromatic amine in presence of glacial acetic acid,

both by conventional method and microwave method

(Scheme 1).
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Antimicrobial investigation

Antimicrobial studies of the compounds were performed by

cup-plate method as well as by tube assay method against

bacterial strains Staphylococcus aureus (MTCC no. 1430),

Bacillus subtilis (MTCC no. 441), Bacillus pumilus

(MTCC no. 1456), Micrococcus luteus (MTCC no. 1538),

Pseudomonas aeruginosa (MTCC no. 424), Pseudomonas

fluorescens (MTCC no. 2421), Escherichia coli (MTCC no.

1573) and fungal strains Aspergillus niger (MTCC no.

2546), Penicillium chrysogenum (MTCC no. 161).

Results and discussion

Different Schiff bases have been successfully synthesized

both by conventional and microwave method. Microwave

method offered a less time consuming approach with

milder reaction conditions, increased yield and drastically

reduced reaction times (Table 1). The ways in which

different Schiff base compounds react with bacteria and

fungi vary due to the difference in their structures. Struc-

tural analysis of these compounds may provide some

explanation for the structure–activity relationships. Such an

analysis might be helpful in the design of better inhibitors.

The biological activity of a particular substance depends on

a complex sum of individual properties including com-

pound structure, affinity for the target site and survival in

the medium of application, survival within the biological

system, transport properties and state of the target organism

(Kosower and Miyadera, 1972). In this study, the focus was

on the structure–activity relationship.

Amongst all tested compounds, compound 10 was found

to be most active against gram positive bacteria whereas

compounds 1–7 exhibited moderate to good activity. In case

of gram negative bacteria, compound 2 was highly active

whereas compounds 1, 3–7 and 10 exhibited moderate to

good activity. Compound 2 was found to be most active

against all fungal strains whereas compounds 1, 3–7 and 10

exhibited moderate to good activity. Minimum inhibitory
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concentration was as low as 50 lg/ml exhibited by com-

pounds 2 (against Escherichia coli, Aspergillus niger, Pen-

icillium chrysogenum) and 10 (against Bacillus subtilis).

The antimicrobial activity of the compounds was found

to vary with structure. The order of activity indicated that

the activity of compounds against microbial strains was

mainly due to the naphthalen-1-yl group. The results also

implied that heterocyclic structures were helpful in the

activity of compounds. Compounds containing chromen-4-

one, furan-2-yl and thiophene-2-yl groups were responsible

for moderate to good antimicrobial activity. Compounds 2

and 10 were found to be most active. This observation

indicated that heterocyclic ring containing N atom and

methyl group played an important role in antimicrobial

activity of compounds. Pyridine-2-yl ring with methyl

group at 3-C position in Schiff base was found to be most

active against gram positive bacteria whereas 5-membered

heterocyclic aromatic ring containing nitrogen at 1, 2 and 4

position was active against fungal strains. Aromatic ring

containing chlorine atom at para position with heterocyclic

structure like chromen-4-one, furan-2-yl and thiophene-2-

yl showed moderate to good antibacterial and antifungal

activity. Also, the activity of the compounds was found to

be concentration dependent.

Conclusion

A series of Schiff bases have been prepared both by con-

ventional method and microwave-assisted synthesis. All

compounds exhibited good antimicrobial activity with

two compounds 2 and 10 showing excellent potential.

There was a marked decrease in the reaction time, under

mild conditions through microwave synthesis wherein it

presented a green approach towards syntheses of the Schiff

bases.

Experimental protocols

Chemistry

Commercially available reagent grade chemicals were used

as received. The synthesized compounds were subjected to

physicochemical and spectral characterization. All reac-

tions were monitored on thin layer chromatography using

precoated aluminium silica G plates (20 9 20 cm) using

ethyl acetate and n-hexane (60:40). The spots were

developed in both UV chamber (long and short wave-

length) and iodine chamber. Melting range was determined

by Open Capillary Method and is uncorrected. IR, Mass

and NMR spectra confirmed all the compounds. IR spectra

were recorded as thin films (KBr) on Shimadzu 8400S and

Perkin Elmer Spectrum RX1 FTIR spectrophotometers.

Characteristic peaks observed were of N–H str, C=N str,

C–N str etc. Mass spectra were recorded on JEOL-Accu-

TOF JMS-T100LC spectrometer and NMR spectra were

recorded on Bruker DRX-300 spectrometer and Elemental

analysis was performed on Elemental Vario EL III

analyzer.

General method of synthesis of compounds 1–10

Equimolar quantities of aldehyde and primary amine were

dissolved in 20 ml of methanol, in the presence of few

drops of glacial acetic acid, and reaction mixture was

subjected to reflux for variable times between 7 and 21 h

(in microwave-assisted synthesis the reaction mixture was

subjected to microwave irradiation at 160 W intermittently

at 30 s intervals for 3–6 min). The progress of reaction was

monitored by TLC. The reaction mixture was then allowed

to stand overnight and excess of solvent was removed

under reduced pressure. The residue left behind was puri-

fied by recrystallization from methanol to obtain com-

pounds 1–10. The quantities of reactants used in synthesis

are summarized in Table 2.

Furan-2-ylmethylene-(1H-[1,2,4]triazol-3-yl)-amine (1)

Brown powder, yield 35% (CM); 79% (MAS), melting

range (in �C): 178–182, Rf 0.62 (ethylacetate: n-hexane

60:40), IR (KBr, cm-1): 720 (aromatic C–Hbend); 1427

(aromatic C=Cstr); 1643 (imine HC=N); 3415 (amine N–H);

1047 (5-membered C–Ostr); 1217 (asymmetric C–Ostr),

Mass (m/z): 163 [M ? H]?, 1H NMR (d ppm): 6.959–7.547

(m, 3H, furan); 7.264 (s, 1H, CH); 7.224 (s, 1H, CH 1,2,4-

triazole); 12.305 (d, 1H, NH). Anal. Calcd. for C7H6N4O:

Table 1 Comparative reaction time and yield of conventional and

microwave-assisted synthesis

Comp.

no.

Molecular

formula

Reaction time Yield (%)

CM MAS CM MAS

1 C7H6N4O 20–21 h 4 min 35 79

2 C13H10N4 10–11 h 3 min 32 80

3 C16H10ClNO2 16–17 h 5 min 48 78

4 C12H8N4O2 13–14 h 5 min 43 81

5 C15H12N2O 20–21 h 6 min 29 73

6 C7H6N4S 10–11 h 5 min 52 80

7 C11H8ClNS 9–10 h 5 min 57 80

8 C17H12ClN 6–7 h 5 min 23 69

9 C16H12N2 12–13 h 4 min 40 70

10 C17H14N2 7–8 h 3 min 34 84

Comp. compound, CM conventional method, MAS microwave assis-

ted synthesis
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C, 51.85; H, 3.73; N, 34.55. Found: C, 50.88; H, 3.94; N,

33.84.

Naphthalen-1-ylmethylene-(1H-[1,2,4]triazol-3-yl)-amine

(2)

Cream powder, yield: 32% (CM), 80% (MAS), melting

range (in �C): 160–165, Rf: 0.76 (ethylacetate: n-hexane

60:40), IR (KBr, cm-1): 763 (aromatic C–Hbend), 1479

(aromatic C=Cstr), 1608 (imine HC=N), 3415 (amine

N–H), Mass (m/z): 223 [M ? H]?, 1H NMR (d ppm):

7.591–7.927 (m, 7H, aromatic); 7.954 (s, 1H, CH); 7.264

(s, 1H, CH 1,2,4-triazole); 10.410 (d, 1H, NH). Anal.

Calcd. for C13H10N4: C, 70.26; H, 4.54; N, 25.21. Found:

C, 64.53; H, 4.44; N, 26.87.

3-[(4-chloro-phenylimino)-methyl]-chromen-4-one (3)

Yellow amorphous, yield: 48% (CM), 78% (MAS), melting

range (in �C): 120–124, Rf: 0.81 (ethylacetate: n-hexane

60:40), IR (KBr, cm-1): 670 (aromatic C–Hbend), 1470

(aromatic C=Cstr), 1650 (imine HC=N), 1013 (C–Clstr),

1067 (5-membered C–Ostr), 1216 (asymmetric C–Ostr),

Mass (m/z): 284[M ? H]?, 1H NMR (d ppm): 7.077–7.466

(m, 8H, aromatic); 5.788 (d, 1H, pyran); 7.349 (s, 1H, CH);

10.410 (d, 1H, NH). Anal. Calcd. for C16H10ClNO2: C,

64.74; H, 5.55; N, 4.94. Found: C, 64.68; H, 5.14; N, 4.10.

3-[(1H-[1,2,4]triazol-3-ylimino)-methyl]-chromen-4-one

(4)

Yellow powder, yield: 43% (CM), 81% (MAS), melting

range (in �C): 105–110, Rf: 0.61 (ethylacetate: n-hexane

60:40), IR (KBr, cm-1): 754 (aromatic C–Hbend), 1483

(aromatic C=Cstr), 1610 (imine HC=N), 3442 (amine

N–H), 1110 (5-membered C–Ostr), 1283 (asymmetric

C–Ostr), Mass (m/z): 241 [M ? H]?, 1H NMR (d ppm):

7.157–7.541 (m, 4H, aromatic); 6.993 (d, 1H, pyran); 7.520

(s, 1H, CH); 7.265 (s, 1H, CH 1,2,4-triazole); 11.447

(d, 1H, NH). Anal. Calcd. for C12H8N4O2: C, 60.00; H,

3.30; N, 16.32. Found: C, 60.99; H, 3.30; N, 17.75.

(5-methyl-5H-isoxazol-2-yl)-naphthalen-1-ylmethylene-

amine (5)

White powder, yield: 29% (CM), 73% (MAS), melting

range (in �C): 59–63, Rf: 0.80 (ethylacetate: n-hexane

60:40), IR (KBr, cm-1): 763(aromatic C–Hbend), 1431

(aromatic C=Cstr), 1516 (imine HC=N), 1088 (5-membered

C–Ostr), Mass (m/z): 237 [M ? H]?, 1H NMR (d ppm):

7.564–7.637 (m, 7H, aromatic); 7.265 (s, 1H, CH);

6.157–6.189 (m, 2H, isoxazole); 2.391 (d, 3H, CH3). Anal.

Calcd. for C15H12N2O: C, 64.25; H, 5.12; N, 11.86. Found:

C, 67.00; H, 6.11; N, 16.23.

Thiophen-2-ylmethylene-(1H-[1,2,4]triazol-3-yl)-amine (6)

Dark brown powder, yield: 52% (CM), 80% (MAS),

melting range (in �C): 100–105, Rf: 0.66 (ethylacetate:

n-hexane 60:40), IR (KBr, cm-1): 709 (aromatic C–Hbend),

1407 (aromatic C=Cstr), 1604 (imine HC=N), 3122 (amine

N–H), Mass (m/z): 179 [M ? H]?, 1H NMR (d ppm):

7.076–7.215 (m, 3H, thiophene); 7.265 (s, 1H, CH 1,2,4-

triazole); 9.412 (d, 1H, NH). Anal. Calcd. for C7H6N4S: C,

43.09; H, 3.39; N, 34.44. Found: C, 42.89; H, 3.61; N,

35.23.

(4-chloro-phenyl)-thiophen-2-ylmethylene-amine (7)

Dark brown flakes, yield: 57% (CM), 80% (MAS), melting

range (in �C): 56–60, Rf: 0.50 (ethylacetate: n-hexane

60:40), IR (KBr, cm-1): 713 (aromatic C–Hbend), 1481

Table 2 Quantity of reactants

used in synthesis
Compound

no.

Quantity of reactants

Aldehyde Amine

1 0.03 mol furan-2-carbaldehyde (2.5 ml) 0.03 mol 3-amino-1,2,4-triazole (2.5 g)

2 0.024 mol naphthalene-1-carbaldehyde (3.26 g) 0.024 mol 3-amino-1,2,4-triazole (2.0 g)

3 0.006 mol 3-formylchromone (1.0 g) 0.006 mol p-chloroaniline (0.762 g)

4 0.006 mol each of 3-formylchromone (1.0 g) 0.006 mol 3-amino-1,2,4-triazole (0.5 g)

5 0.012 mol naphthalene-1-carbaldehyde (1.8 ml) 0.012 mol 2-amino-5-methylisoxazole

(1.2 g)

6 0.012 mol thiophene-2-carbaldehyde (1.1 ml) 0.012 mol 3-amino-1,2,4-triazole (1 g)

7 0.012 mol thiophene-2-carbaldehyde (1.1 ml) 0.012 mol p-chloroaniline (1.5 g)

8 0.024 mol naphthalene-1-carbaldehyde (3.2 ml) 0.024 mol p-chloroaniline (3.0 g)

9 0.03 mol naphthalene-1-carbaldehyde (4.0 ml) 3-aminopyridine (2.82 g)

10 0.012 mol naphthalene-1-carbaldehyde (1.8 ml) 0.012 mol 2-amino-3-methylpyridine

(1.2 ml)
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(aromatic C=Cstr), 1614 (imine HC=N), 1008 (C–Clstr),

Mass (m/z): 222 [M ? H]?, 1H NMR (d ppm):

6.775–6.833 (m, 3H, thiophene); 7.139 (s, 1H, CH);

7.166–7.355 (m, 4H, aromatic). Anal. Calcd. for

C11H8ClNS: C, 59.37; H, 3.64; N, 6.32. Found: C, 59.37;

H, 3.69; N, 6.20.

(4-chloro-phenyl)-naphthalen-1-ylmethylene-amine (8)

Yellow powder, yield: 23% (CM), 69% (MAS), melting

range (in �C): 62–65, Rf: 0.78 (ethylacetate: n-hexane

60:40), IR (KBr, cm-1): 775 (aromatic C–Hbend), 1483

(aromatic C=Cstr), 1608 (imine HC=N), 1083 (C–Clstr),

Mass (m/z): 266 [M ? H]?, 1H NMR (d ppm): 1H NMR (d
ppm) 6.976–8.095 (m, 11H, aromatic); 7.411 (s, 1H, CH).

Anal. Calcd. for C17H12ClN: C, 76.84; H, 4.55; N, 5.27.

Found: C, 76.17; H, 5.31; N, 5.16.

Naphthalen-1-ylmethylene-pyridin-2-yl-amine (9)

Brown powder, yield: 40% (CM), 70% (MAS), melting

range (in �C): 89–92, Rf: 0.72 (ethylacetate: n-hexane

60:40), IR (KBr, cm-1): 771 (aromatic C–Hbend), 1431

(aromatic C=Cstr), 1689 (imine HC=N), Mass (m/z): 233

[M ? H]?, 1H NMR (d ppm): 1H NMR (d ppm)

6.640–7.905 (m, 11H, aromatic); 7.925 (s, 1H, CH). Anal.

Calcd. for C16H12N2: C, 77.86; H, 5.21; N, 12.06. Found:

C, 77.78; H, 5.99; N, 12.16.

(3-methyl-pyridin-2-yl)-naphthalen-1-ylmethylene-amine

(10)

Brown sticky solid, yield: 34% (CM), 84% (MAS), melting

range (in �C): 136–140, Rf: 0.70 (ethylacetate: n-hexane

60:40), IR (KBr, cm-1): 764 (aromatic C–Hbend), 1454

(aromatic C=Cstr), 1689 (imine HC=N), Mass (m/z): 247

[M ? H]?, 1H NMR (d ppm): 7.569–8.075 (m, 10H, aro-

matic); 7.429 (s, 1H, CH); 2.482 (d, 3H, CH3). Anal. Calcd.

for C17H14N2: C, 75.00; H, 5.73; N, 11.37. Found: C,

78.55; H, 5.70; N, 12.54.

Antimicrobial activity

Determination of zone of inhibition by cup plate method

A previously liquefied medium was inoculated with the

requisite quantity of suspension of the microorganism.

Then, the suspension was added to the medium at a tem-

perature between 40 and 50�C and the inoculated medium

was poured immediately into petri dishes with uniform

thickness, by placing the dishes on a uniform level surface.

The prepared dishes were stored in a manner so as to

ensure that no significant growth or death of test organism

occurred before the dishes were used and that surface of

agar layer was dry at the time of use. The solution of

antimicrobial agents 1–10 (with dilutions in the range 100

to 1500 lg/ml in DMSO) was poured into cavities (6 mm)

prepared on the surface of the solid agar medium. Standard

drugs used (Norfloxacin and Fluconazole) were taken in

reported quantities, i.e. 100 lg/ml. A solution of DMSO

(10%) was used as control. Same volume of the solution

was added to each cavity. The quantities were carefully

chosen to fill the holes. The plates were left for 1–4 h at

room temperature, as a period of pre-incubation diffusion

to minimize the effects of variation in the time between the

applications of the different solutions. They were incubated

for about 18 h at the temperature suitable for individual

microorganism (Indian Pharmacopoeia, 1996). The diam-

eters of the circular zones of inhibition were measured and

are reported in the Table 3.

Table 3 Results of antimicrobial activity of the tested compounds

Compound no. Conc. (lg/ml) Diameter of zone of inhibition (mm)

Gram ?ve bacteria Gram -ve bacteria Fungal strains

SA BS BP ML PA PF EC AN PC

1 100 – 11 11 12 10 13 10 11 11

200 12 15 15 16 11 16 13 16 15

500 14 16 16 18 13 18 14 18 17

1000 15 17 17 21 15 20 15 19 18

1500 18 22 20 22 21 23 25 23 21

2 100 12 15 13 12 17 14 17 16 17

200 13 16 16 15 18 16 18 17 18

500 14 18 17 18 20 19 19 18 20

1000 16 19 18 20 22 21 23 21 21

1500 18 21 20 23 24 23 25 22 24
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Table 3 continued

Compound no. Conc. (lg/ml) Diameter of zone of inhibition (mm)

Gram ?ve bacteria Gram -ve bacteria Fungal strains

SA BS BP ML PA PF EC AN PC

3 100 12 13 12 16 16 11 13 16 15

200 14 15 15 19 18 12 16 18 17

500 16 17 17 21 19 14 17 19 19

1000 18 19 18 23 20 16 19 20 20

1500 21 21 19 24 21 18 20 21 21

4 100 11 12 14 11 14 13 13 16 15

200 13 16 16 15 15 15 14 18 17

500 14 17 17 16 16 17 15 19 19

1000 17 18 19 18 18 19 16 20 20

1500 19 20 21 23 20 20 18 22 22

5 100 13 13 13 16 14 11 12 13 15

200 14 16 15 18 16 13 13 18 16

500 15 17 16 20 17 15 14 19 18

1000 16 19 17 22 18 18 15 20 19

1500 20 20 18 24 20 19 17 21 20

6 100 11 10 13 13 12 11 14 11 13

200 13 11 15 16 13 13 16 13 15

500 16 14 16 18 15 15 18 15 16

1000 18 16 17 20 18 18 20 16 18

1500 19 22 18 22 20 21 21 19 19

7 100 12 11 13 11 10 11 13 10 13

200 13 12 15 15 13 13 15 11 14

500 15 14 17 18 16 16 16 12 16

1000 16 18 18 20 17 18 19 17 17

1500 18 21 20 24 19 20 20 18 19

8 100 11 – – 13 – 11 – – –

200 13 – – 16 – 12 – – –

500 15 – – 19 – 14 – 11 11

1000 18 15 9 21 13 17 11 13 13

1500 21 17 10 25 14 19 17 15 14

9 100 11 – – 11 – 11 – – –

200 12 – – 12 – 13 – – –

500 14 – – 17 – 15 11 12 10

1000 16 – – 20 – 17 14 13 12

1500 20 – – 24 15 19 16 15 17

10 100 10 12 13 16 12 17 13 13 11

200 13 13 16 18 13 20 14 16 13

500 15 16 18 22 14 22 15 19 15

1000 18 18 19 24 16 23 16 20 17

1500 20 19 20 26 18 24 19 21 18

STD. 100 25 23 28 26 28 25 36 28 16

Control DMSO – – – – – – – – –

SA Staphylococcus aureus, BS Bacillus subtilis, BP Bacillus pumilus, ML Micrococcus luteus, PA Pseudomonas aeruginos, PF Pseudomonas
fluorescens, EC Escherichia coli, AN Aspergillus niger, PC Penicillium chrysogenum, STD. standard (Norfloxacin for bacteria, Fluconazole for

fungi)
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Minimum inhibitory concentrations

Minimum inhibitory concentrations (MICs) are considered

the ‘gold standard’ for determining the susceptibility of

organisms to antimicrobials and are therefore used to judge the

performance of all other methods of susceptibility testing

(Andrews, 2001). For each test, five test tubes containing

4.5 ml of nutrient broth, previously mixed with bacterial/

fungal inoculum, were taken. To each test tube, 0.5 ml of the

synthesized compounds of different concentrations (50, 100,

200, 300, 400 and 500 lg/ml) were added. An inoculated

broth containing no antibiotic was included as growth control

and a tube of uninoculated broth was used as sterility control.

These test tubes were then incubated for 24 h at suitable

temperature. Then, optical density was recorded using Labo-

tronics digital photo colorimeter at 530 nm. The point of sharp

fall in the readings of optical density was considered as MIC.

The observed MICs are presented in Table 4.
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